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Introduction

Data produced by automated DNA sequencing
instruments are used for a variety of genetic analy-
sis applications including genome sequence assem-
bly, polymorphism studies, expressed sequence

tag (EST) analysis, identity and paternity testing,
phylogenetic analysis, and others. Along with the
nucleotide sequence data (base-call) produced by
the sequencer, it is helpful to have an objective
assessment of the accuracy of the reported
sequence. The CEQ" analysis software produces
two different measures of sequence accuracy, each
meant to address a different set of applications.
The discussion that follows describes the technique
used to derive the measures assigned by the CEQ
and suggests ways to take advantage of the addi-
tional information these measures provide.
Advantages include aiding in Editing, Trimming,
selecting primers, alignment of an assembly, and
increasing the BLAST score for true positives and
decreasing the BLAST score for false positives.

History and Definition of Quality
Values

In order to cope with the volume of data involved in
large-scale sequencing projects, software tools have
been developed to help manage and automate much
of the sequence assembly process. The typical
sequencing project comprises four main activities:
1) Breaking down the DNA for which the sequence
is to be determined into smaller, overlapping pieces
(library construction); 2) Acquisition of primary read
data (sequence data from the samples in the library,
usually 500-1000 nt/sample); 3) Piecing the primary
read data into longer stretches (contig assembly) by

determining which parts of the read data overlap;
and 4) Finishing, which involves closing gaps
between contigs and shoring up the ambiguous por-
tions of the contig sequences that have been deter-
mined. Base-calling errors in the primary read data
complicate the contig assembly process. If not
accounted for, higher error rates at the beginnings
and ends of reads may prevent overlapping reads
from being assembled into the same contig. When
too much disagreement between read sequences
exists, the assembly software will not join the reads
into the same contig. Figure 1 shows an example of
data from overlapping reads that might be misinter-
preted by sequence assembly software.

Several methods have been employed to pre-
vent assigning reads that truly overlap from being
assigned to more than one contig erroneously. In
general, these methods can be divided into two cate-
gories: trimming and weighting.

Trimming methods discard portions of
sequence data from each read prior to the assembly
process. Criteria for trimming vary and may
include: 1) Trimming the ends of the reads from the
point at which a certain number of Ns are found
within a window of some number of bases; 2)
Trimming a fixed number of bases from either end
of each read (e.g., trimming the first 25 and last 100
bases); 3) Trimming all data that falls outside some
base number range (e.g., keeping only data between
base numbers 25 and 500). Each of the methods
has the disadvantage that some valuable information
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Base # 750:
Base # b:

Base # 150:
Consensus:

..ATGT GACCCGGGGT CCACATGGGAAATTTAAC

AAATGACC- GGG TC- ACATGG AA- TTTAACTGITGCACAC...
.ATGTGACC- GG - TC- ACATGG AA- TTTAACTGITGCACAC...
.ATGTGACC- GG - TC- ACATGG AA- TTTAACTGITGCACAC...

Figure 1. Alignment of stretches of sequence data from three reads showing base number of first represented
base for each read. Lower-quality portions of read data are shown in italics. The actual sequence is shown on

the Consensus line.

from each read is discarded, leading to less data
from each read being incorporated into the contig
assembly process. Thisin turn leads to a greater
number of reads being required to assemble a contig
of agiven length. In addition, the last two methods
make assumptions about the accuracy of datain
specific portions of reads that will not be true for al
reads in a project.

Weighting methods allow all data from the
reads to enter the assembly process. Weighting fac-
tors are then used to indicate the portions of each
read where the data is |ess important in deriving
the true sequence. Different types of weighting
methods include: 1) Fixed weighting methods
and 2) Methods employing an estimate of the confi-
dence of each called base. An example of a fixed
weighting method is the trapezoidal weighting tech-
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Figure 2. Trapezoidal Weighting method assigns a
weighting factor that varies between O and 1 to the
importance of each called base. The weight assigned
depends on the base number of the called base.

nique, where the importance of data gradually
increases within a read to some plateau and then
falls gradually at the end of the run (Figure 2).
Methods using estimates of the confidence of
each called base include several discussed by Dear
and Staden®, Lawrence and Solovyev®, Berno®,
Ewing and Green®, and others. Dear and Staden
proposed using a technique where four probability
estimates for each base position would be used: the
probability of abase being an “A,” the probability a
base being a“T,” the probability of a base being a
“C,” and the probability of abase beinga“G.”
Others have proposed using multiple confidence
estimates such as the probability that the identity of
acaled base is correct and the probability that a
base should really be called at that position. Still
others have proposed assigning probability esti-

mates for each type of error that can occur at each
position in a base-call: delete (no call), insert, mis-
call.

The method used by Ewing, Green, and Gordon
(in the Phred/Phrap/Consed suite of software tools)
uses a single measure of confidence for each called
base in the primary read data. The measure used is
the Quality Value (QV) and relates to the estimated
error rate, p, according to the equation:

QV=-10 x logo(p)

Quality Values are assigned by the program
Phred based on a calibration process where certain
characteristics (indicators) of the trace data from
automated sequencers is measured at or near each
called base. The observed error rates of groups of
bases are determined and, using a technique
described by Ewing and Green, alookup table is
produced relating threshold values for each of the
indicators to an estimated probability of error.
Millions of bases of aligned sequence are required
for the calibration process along with high-quality
consensus sequence. The indicators used include:

* Peak Spacing ratio: the ratio of the largest
peak-to-peak spacing in a seven-base window to
the smallest peak-to-peak spacing in the same
window;

e Uncalled/called ratio: The height ratio of the
highest uncalled peak to the lowest called peak
in a seven-peak window around the called base;

e Uncalled/called ratio: same as above, but in a
three-peak window

» Distanceto Unresolved base: Number of bases
between the called base and the nearest unre-
solved base.

Severa properties of QV's make them particu-
larly useful for sequence assembly projects.

e Accuracy: the validity of QV's depends on the
estimated error rates of groups of bases corre-
sponding well to the observed error rates for the
same groups.

e Discriminating Power®:; the utility of QVs
depends on the ability of the error rate estimates
to discriminate between various qualities of
data. For example, an estimated error rate of 5%



might apply to all bases taken together in a
sequencing project. However, such an estimate
would not be very useful for determining which
bases in aread are more reliable than others.
Therefore, the ahility to discriminate between a
wider range of error rates with greater resolu-
tion increases the utility of the QVs.

e Log-based estimate of error rate: This alows QVs
for bases from independent reads (e.g., reads
from opposite strands, different chemistries,
etc.) to be added at a particular position to give
an estimate of the error rate for the consensus at
that position.

Taken together, the estimated error rates for al
bases in a consensus can provide an estimate of the
total number of errors one might expect to find in
the sequence.

Implementation of Call Scores and
Quality Values on the CEQ™

Two estimates of error rates for called bases are
available on the CEQ sequencers. Call Scores and
Quality Values. Both estimates have al the proper-
ties of QV's produced by Phred, but they are tailored
for the sequences called by the CEQ. Over the past
several releases of CEQ software, severa changes
have been made to improve the accuracy of the
base-calling. These changes have resulted in
decreased error rates. Since the estimated error rates
have not changed, discrepancies between predicted
and actual error rates have grown. The greatest
increases in base-calling accuracy have occurred in
the latter portions of the reads. As suggested in a
paper by Richterich®, predicted error rates can be
compared to observed error rates at each base posi-
tion over multiple reads in a sequencing project.
The discrepancy between predicted and observed
error rates for data produced by CEQ software ver-
sion 4.2 are shown for about 9 million bases of data
in Figure 3.

Since actual error rates will vary among differ-
ent base-callers (e.g., Phred and the CEQ Sequence
Analysis Software), the estimated error rate for a
given set of bases may differ as well. Severa cali-
brations were performed using over 9 million bases
of data called by the CEQ which could be aigned
against known sequences. Several combinations of
indicators were tested including the ones used by
Phred. A discriminant analysis performed by
Beckman Coulter’'s Math Group® was used to iden-
tify several indicators that are well-correlated with
error rates.

Call Scores vs. Quality Values

The two measures of quality produced by the CEQ
are Call Scores (CS) and Quality Values (QV). Both
provide an accurate estimate of the error rates of
groups of bases. It has been suggested by Ewing,

et a.?, that “[improved base-calling] accuracy in

the lower quality part of the trace would be useful

in single-read applications.” Toward this end,

Beckman Coulter has developed Call Scores as an

aid to editing and selecting portions of single-pass

sequencing results that will provide the greatest util-
ity, while QV's are most useful in identifying the
highest-quality portions of reads for use in sequence
assembly and multiple sequence applications. The
main difference between the two measuresis that

Quality Values discriminate better between various

levels of high-quality data, and Call Scores dis-

criminate better between various levels of low-
quality data.

When reviewing the results of calibration tables
obtained using different sets of indicators, several
criteria were assessed for each calibration including:
e The minimum and maximum estimated error

rates,

»  The percentage of bases grouped into the lowest
and highest quality levels (quality levels with
error rates greater than 1% and those with error
rates lower than 1%);

e The number of different quality levels assigned
at the high and low end of the error rate spec-
trum and the evenness of the distribution of
those levels;

»  Thereproducibility of the accuracy of calibra-
tions performed using the same indicators but
with smaller subsets of data (cross-validation);
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Figure 3. Predicted vs. observed error rates for
positions grouped by 50 base numbers (using QV
estimates from version 4.2 software for the CEQ).




GOZ_010404791%]

Figure 4A. Call Scoresviewed in linear scale.

Figre 4B. Call Scoresviewed in log scale.

» The differences between predicted error rates The first three criteria pertain to the
and observed error rates when viewed for each Discriminating Power of the calibrations, while
base position (Binned by Base Number); the last three pertain to the validity of the calibra-

* The differences between predicted error rates tions. The calibrations that showed the best accura-
and observed error rates when viewed for bases cy and reproducibility of accuracy were examined
with different levels of estimated quality further. The one that showed the greatest discrimi-
(Binned by QV). nating power on the low end of quality was selected

as the Call Score calibration. The one that showed
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Figure 4C. Call Scores viewed in log scale as a bar plot.

the greatest discriminating power on the high end of
quality was selected as the Quality Values calibra-
tion.

Log vs. Linear Scale

Both CSs and QV's may be viewed in either Log or
Linear scale in the CEQ™ Analysis Software
(Figures 4A and B).

In general, it is more useful to use the Log
Scale view when looking for or examining higher-
guality data. The Linear Scale view isn’t as useful
for discriminating between various levels of high-
guality data. On the other hand, the Linear scaleis
often useful when looking for lower-quality data
that might benefit from editing by the user.

Users may wish to view the QV or CS dataas a
bar plot as shown in Figure 4C. This has the advan-
tage of making it easy to find peak-spacing anom-
alies within the Quality Parameters View.

Trace Characteristics Used in
Calibration Lookup Tables

The metrics (indicators) used to lookup the associat-
ed CSor QV for each called base are listed in
Table 1. Both calibration tables use five indicators
to classify called bases into different Quality “bins.”

Each “bin” has an estimated probability of error
associated with it and is bounded by values for each
of the five indicators. The calibrations share three of
their indicators. The indicators that differ between
the two help provide added discriminating power at
one end of the quality spectrum or the other. The
“Prob Ratio” and “Peak Score Ratio” are metrics
that use quantities estimated by the base-caller; the
other indicators measure characteristics of the ana-
lyzed trace data.

Accuracies of New Calibrations

The accuracies of the new CS and QV calibrations
are shown in Figures 5A-D.

Using Call Scores as an Aid to
Editing

Call Scores are particularly well suited to helping
identify parts of reads that can benefit from visual
inspection and manual editing. Thisis true since
they have more power to discriminate between vari-
ous levels of error-prone sequence. Viewing the
Call Scores, Base Sequence Text, and Trace Data
for aread on a single screen facilitates the editing
process. Thisis particularly useful when working
with single-pass sequence from projects using enti-

Table I. Metrics Used to Estimate CS and QV Values

Call Scores

Quality Values

Base Spacing Consistency

Base Spacing Consistency

Distance to Nearest Unresolved Base

Distance to Nearest Unresolved Base

“Peak Score Ratio:” Highest Score of Uncalled

“Peak Score Ratio:” Highest Score of Uncalled Peak/L owest

Peak/Lowest Score of Called Bases in Seven-Base Window |Score of Called Bases in Seven-Base Window

Height Ratio of Highest Uncalled Peak to Lowest Called
Base in a Three-Base Window

Height Ratio of Highest Uncalled Peak to Lowest Called Base
in a Seven-Base Window

Peak/Shoulder/Interpolated: Whether Called Baseis a
Peak, a Shoulder, or Neither

“Prob Ratio:” Ratio of the Probability for the Most Likely
Alternative Call to the Probability of the Current Call Being
Correct
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Figure 5A. Comparison of predicted vs. observed
error rates for new Call Scores (by base position).
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Figure 5B. Comparison of predicted vs. observed
error rates for new Quality Values (by base position).

ties such as Expressed Sequence Tags (ESTS). The
user may choose alevel of accuracy below which
Call Scores for error-prone bases will be visible. In
generdl, it is best to set the Call Threshold to a very
low or 0 value when processing the data. This has
the advantage that fewer edits will be necessary
since only the incorrect bases will need to be
changed instead of all “Ns.” Usually the goal of
manual editing is to obtain a very long, highly accu-
rate sequence or to obtain highly accurate sequence
in particular regions of interest. In Figure 6, the Call
Score View has been “zoomed-in” to alevel that
only displays Call Scores associated with bases hav-
ing less than a 0.95 probability of being correct.
Regions of lower quality (generally internal to the
lower quality ends of the read) are inspected to
obtain a highly accurate, long read.
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Figure 5C. Comparison of predicted vs. observed

error rates for new Call Scores (by quality).
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Figure 5D. Comparison of predicted vs. observed
error rates for new Quality Values (by quality).

In the example above, 25 bases out of 63 bases
had Call Scores with accuracy probabilities below
0.95. There were 7 base-calling errors among these
25 bases which were easily identified and corrected.
BLAST scores (Expectation Values) for the 63-base
subsequence before and after editing were 2 E-5
and 7 E-23, respectively. Using Call Scores as a
navigation aid greatly simplifies the task of editing
the called sequence.

In addition to helping navigate between |ow-
quality regions, Call Scores can provide an estimate
of the number of errors one might expect to find
within aregion. One can View the Base Sequence
Toolbar, select (highlight) a group of bases within
the Base Sequence Text View, and obtain an esti-
mated error rate for the selected bases. Figure 7
shows the Base Sequence Toolbar.

In Figure 7, 100 bases have been selected and they
show a Call Quality Score of 0.98. This means they
have roughly a 98% chance of being correct. For this
100-base region, roughly two errors can be expected.
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Figure 6. Screen showing Call Scores, Base Sequence Text, and Trace Data for approximately 63 bases of data.

Using Quality Values for Trimming

The use of Quality Vaues “in conjunction with
appropriate assembly software can improve the
accuracy and completeness of assembly by allowing
better discrimination of repeats and by making it
possible to use full read lengths; permit a more
accurate consensus sequence to be derived; and pro-
vide an objective criterion for finishing... .®” In the
absence of such assembly software, it is often
advantageous to trim the read ends. Most trimming
software requires the user to set some fixed criteria
(e.g., trim the first 50 bases and last 100 bases of
each read) or to set criteria based on the number of
Ns within a fixed window (e.g., three Ns within a
25-base window). Toward the goal of using as much
seguence as possible from each read, trimming
using Quality Values is preferable to the trimming
methods described above.

In the example in Figures 8A-C, Trimming
using the criterion of three Ns within a 25-base win-
dow results in a readlength of 663 bases (Figure 8C).
Trimming using Quality Values results in a readlength
of 768 bases (Figure 8A). Trimming with Quality

Values was performed by looking for the Highest
Scoring Read with error probabilities of <20% [7 O
-10 x log,(0.2), was subtracted from each QV; QVs
of all possible substrings were then summed and the
length of the maximal scoring substring was taken].

Picking Primers Using Call Scores

Call Scores (or QVs) can be viewed to select
regions of reads that are likely to be accurate.
These regions can then be used to pick primers for
further experiments. This may be particularly useful
for polymorphism studies where indels
(insertions/deletions) are involved or to resolve
samples where multiple templates were amplified
during the sequencing reaction. By choosing a
primer that incorporates high-quality bases up to an
ambiguous region and one or two possible bases
into the ambiguous region, the template for a single
seguence can then be amplified and its sequence
determined. Primers can then be designed that
incorporate the same high-quality bases followed by
other possible one or two base combinations to
seguence other templates that may be present.
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Using Call Scores Prior to Using Quality Values as an Aid

Searching or Using BLAST

As detailed in the section titled “Using Call
Scores as an Aid to Editing,” editing asingle-
pass sequence prior to performing a BLAST can
increase the search score. This can make it easi-
er to determine the most likely identity of the
template from which the sequence was deter-
mined. It can also prevent falsely identified hits
from giving an erroneously high score. If a
quality-weighted search program is available,
editing the sequence prior to searching becomes
unnecessary since bases with high error proba-
bilities will be de-weighted when computing the
score of search results.

to Alignment and Assembly

The value of using Quality Values when per-
forming alignments and assemblies has been
discussed throughout this document. Programs
such as Phrap/Consed and others make use of
one or another estimation of quality to improve
the accuracy of consensus calling and to
improve the efficiency of assembly by using
full-sequence readlengths. An example of con-
sensi determined both with and without Quality
Vauesisillustrated in Figure 9. In the first
view, the consensus as determined by
Sequencher® is displayed. The second view
shows the consensus from the same constituent
sequences as determined by Phrap along with
the Quality Values of the resulting consensus.

GTGCCAAGCTTAATCCTCACGAGCATCCTGTTCTGCACTCTGACCAGGGATGGCAGTATCGTATGAGAA-
GATATCAAAATATCCTTAAAGAACATGGTATTAAACAAAGCATGTCCAGAAAAGGCAATTGTCTGGATAAT-
GCTGTGGTGGAGTGTTTCTTTGGAACCTTAAAGTCGGAGTGTTTTTATCTTGAT-
GAGTTCAGTAATATAAGCGAACTGAAGGATGCTGTTACGGAATATATTGAATACTACAACAGCAGAA-
GAATTAGCCTGAAATTAAAAGGTCTGACTCCAATTGAATATCGGAATCAGACCTATATGCCTCGTGTT-
TAACTGTCCAACTTTTTGGGGTCAGTACAAACTTTGATTTATAGTCAGGTGGGGCTTTTCTCTGTCTGC-
CTTTCGGTGAATACCTGAGACAAACAGTCTCAAGCACCCGTGGCTATTCTAGCT-
TAATAAGTTTGTTTCTTCTCCTTGATATAATCCTAAAAAAATCTCATAAAATTAATATATGAGATAATCTT-
TATTCAGCAGAAGATTATTAAAGGTTGCTGTATTATTTAGCGATAAAAAAAGCCTGCCAGATGGCAGGC-
TATTTAATAACGGCGTTATTATTGCAACAGCGAAATATCCGCAACGCGCAGGAACAGTTCGCGCAGTTTC-
CTCAGCATGGTCAGACGGTGGATACGCACTCTTTTGTCATCACCATGACCATCACTTTATCGAAGAAAG-
CATCAACGGGTCACGCAGCTAGCAGTTCGACAGCGCAFFoTACGACCTCEAAGTCEEETeaecT-
GFEGTGACCACCTCATGEAGT AT CTCGECTCAGGGTAGEATACEGGTCCACCTGTFGATGEAAGTAAT-
G GFEEGCEGCACCEATAGAGAGTATCTFTATF

Figure 8A. Sequence Text results after analyzing using Call Threshold of 0.0. Bases that would be
trimmed using quality-based criterion as described in the text are shown in red and strikethrough.
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Conclusion Coulter’'s CEQ™ Sequence Analysis software
provide such an assessment. Beckman Coulter
has included Call Scoresin the CEQ
Sequence Analysis software in the hope that
single-sequence applications (such as
sequence editing and EST searching) will take
advantage of its increased discriminating
power among lower-quality bases.

Many applications involving the use of auto-
mated DNA sequencing data benefit from the
inclusion of the estimated accuracy of each
called base. Processes involving multiple
sequence fragments (such as sequence assem-
blies and alignments) often profit most from
quality assessments that discriminate best
between bases with the lowest error probabili-
ties. Quality Values produced by Beckman
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Figure 8B. Quality Values for Sequencesin 8A, 8C.

GTGCCAAGCTTAATCCTCACGAGCATCCTGTTCTGCACTCTGACCAGGGATGGCAGTATCGTATGA-
GAAGATATCAAAATATCCTTAAAGAACATGGTATTAAACAAAGCATGTCCAGAAAAGGCAATTGTCTG-
GATAATGCTGTGGTGGAGTGTTTCTTTGGAACCTTAAAGTCGGAGTGTTTTTATCTTGAT-
GAGTTCAGTAATATAAGCGAACTGAAGGATGCTGTTACGGAATATATTGAATACTACAACAGCAGAA-
GAATTAGCCTGAAATTAAAAGGTCTGACTCCAATTGAATATCGGAATCAGACCTATATGCCTCGTGTT-
TAACTGTCCAACTTTTTGGGGTCAGTACAAACTTTGATTTATAGTCAGGTGGGGCTTTTCTCTGTCT-
GCCTTTCGGTGAATACCTGAGACAAACAGTCTCAAGCACCCGTGGCTATTCTAGCT-
TAATAAGTTTGTTTCTTCTCCTTGATATAATCCTAAAAAAATCTCATAAAATTAATATATGAGATAATCTT-
TATTCAGCAGAAGATTATTAAAGGTTGCTGTATTATTTAGCGATAAAAAAAGCCTGCCAGATG-
GCAGGCTATNTAATAACGGCGTTATTATTGCAACAGCGAAATATCCGCAACGCGCAGGAACAGT-
NCGCGCAGNTTCNFCAGCATGETCAGACGETNGATACGEANTENTTTGTCATCACCATGANCAT-
CACTHTANCGANGAAAGCATCAACGENTCACGECAGENAGEAGNNCECGACAGENCATNNGGTAC-
GACCTCENAAGNENGETCGENTNTCONMNNENANNNCATNCAGNNATNTCGE-
NANNNGGGTNNNATANNNNTICCACCTNTNNNNENNNTANNGTTFGNNNNENGEANNCATNGN-
NAGTFATCHNTF

Figure 8C. Sequence Text results after analyzing using Call Threshold of 0.6. Bases that would be
trimmed using the criterion of 3 Nsin a 25-base window are shown in red and strikethrough.
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Read 1: G T G T A C A
Read 2: G T G T A C A
Consensus: G T G T A C A

Figure 9A. Consensus sequence determined without the use of

>

s
Q0N

©

Read 1: G T G T A C A

Read 2: G T G T A C A

Consensus: G T G T A C A
28 33 47 47 47 47 55

A
A
A

A C
A C
A C
65 65 43 32 37

Cc A G G G T A C

T A G G G T A C

R A G G G T A C
uality Values.

CcC A G G G T A C

T A G G G T A C

CcC A G G G T A C

45 55 65 65 65 65

Figure 9B. Consensus sequence determined using Quality Values. Differences in the consensi appear in bold

type.
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