Amino Acid Analysis for Hydrolysate Samples

iTRAQ® Reagents Application Kit for Use with LC/MS/MS Systems

Protocol

For Research Use Only
Not for Use in Diagnostics
Contents

Preface

Safety ... vii
Safety alert words ... vii
Chemical hazard warning .. vii
Chemical safety guidelines .. viii
About MSDSs .. viii
Obtaining MSDSs ... viii
Chemical waste hazards ... ix
Chemical waste safety guidelines x
Waste disposal ... x
Biological hazard safety ... xi
How to obtain more information xii
 Related documents ... xii
 Obtaining information using online help xii

Chapter 1 Introduction to iTRAQ® Reagent Chemistry

Overview ... 2
Product capabilities ... 2
For more information .. 3
Starter and assay kits and accessories 3
 Kits ... 3
 Accessories .. 3
Kit materials packaged with the 50-assay and 200-assay kits 5
User-supplied materials ... 7
Workflow ... 9
Amino Acid Analysis for Hydrolysate Samples Protocol

Chapter 2 Running the Labeling Protocol

Overview ... 12
 Hydrolysate sample size 12
 Assays per vial .. 12
 Before you begin .. 13
 Pipetting accuracy ... 13
 Optional quality–control tests 13
Labeling the hydrolysate sample with iTRAQ® Reagent 117 .. 14
Adding the iTRAQ Reagent 114-Labeled Amino Acid Internal Standard 17

Chapter 3 LC/MS/MS Analysis

Hardware overview ... 20
 Recommended MS system and software 20
 Alternative MS systems 20
 Recommended HPLC autosamplers 20
Overview ... 21
 Analyst® Software ... 21
 Cliquid® Software ... 21
 Workflow .. 21
 Before you begin .. 22
Prepare the HPLC System .. 23
 Review safety warnings 23
 Prepare the mobile phases 23
 Set up the HPLC system 24
Prepare the MS System .. 25
 Review safety warnings 25
 Connect the source ... 25
 Open Cliquid® Software 26
 Perform the system suitability test 27
 Review the system suitability test results 29
Prepare the Analyst® Software database 30
 Enter isotope correction 30
 Perform the Amino Acid 20/20™ Sample Assay 31
Contents

Before you begin ... 31
AA20 sample assay ... 32

Appendix A Standard Specifications
Amino acids in Hydrolysates Standard - 114 Labeled 36
iTRAQ® Reagent-labeled amino acids in a 5-µL injection 37
Representative report of the separation of amino acids 37
Amino acid specifications 41

Appendix B Quality Control and Troubleshooting
Small-volume handling tips to ensure accurate concentrations and volumes 46
Material storage ... 47
Quality control tests ... 48
 Verifying chromatographic performance 48
 Testing quantitation performance 49
 Testing the protocol .. 50
Recovery issues .. 51
Resolution and Retention Time Issues 53

Appendix C Developing an Acquisition Method
MRM Overview .. 56
Developing a customized Amino Acid 20/20™ sample
 assay acquisition method 57
 HPLC conditions .. 57
 TIS values ... 58
 MRM values ... 59
Preface

This preface covers:

Safety ... vii
How to obtain more information xii
How to obtain support .. xii

Safety

Safety alert words

Four safety alert words appear in our user documentation at points in the document where you need to be aware of relevant hazards. Each alert word—IMPORTANT, CAUTION, WARNING, DANGER—implies a particular level of observation or action, as defined below.

Definitions

IMPORTANT! – Indicates information that is necessary for proper instrument operation, accurate chemistry kit use, or safe use of a chemical.

⚠️ CAUTION – Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

⚠️ WARNING – Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

⚠️ DANGER – Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury. This signal word is to be limited to the most extreme situations.

Chemical hazard warning

⚠️ WARNING CHEMICAL HAZARD. Some of the chemicals used with our instruments and protocols are potentially hazardous and can cause injury, illness, or death.
To minimize the hazards of chemicals:

- Read and understand the Material Safety Data Sheets (MSDSs) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. (See “About MSDSs” on page viii.)

- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing). For additional safety guidelines, consult the MSDS.

- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood). For additional safety guidelines, consult the MSDS.

- Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer’s cleanup procedures as recommended in the MSDS.

- Comply with all local, state/provincial, or national laws and regulations related to chemical storage, handling, and disposal.

Chemical manufacturers supply current Material Safety Data Sheets (MSDSs) with shipments of hazardous chemicals to new customers. They also provide MSDSs with the first shipment of a hazardous chemical to a customer after an MSDS has been updated. MSDSs provide the safety information you need to store, handle, transport, and dispose of the chemicals safely.

Each time you receive a new MSDS packaged with a hazardous chemical, be sure to replace the appropriate MSDS in your files.

You can obtain the MSDS for any chemical supplied with this kit at www.sciex.com/msds.

Note: For the MSDSs of chemicals not distributed with this kit, contact the chemical manufacturer.
Chemical waste hazards

⚠️ CAUTION: HAZARDOUS WASTE. Refer to Material Safety Data Sheets and local regulations for handling and disposal.

⚠️ WARNING: CHEMICAL WASTE HAZARD. Wastes produced by our instruments are potentially hazardous and can cause injury, illness, or death.

⚠️ WARNING: CHEMICAL STORAGE HAZARD. Never collect or store waste in a glass container because of the risk of breaking or shattering. Reagent and waste bottles can crack and leak. Each waste bottle should be secured in a low-density polyethylene safety container with the cover fastened and the handles locked in the upright position. Wear appropriate eyewear, clothing, and gloves when handling reagent and waste bottles.
To minimize the hazards of chemical waste:

- Read and understand the Material Safety Data Sheets (MSDSs) provided by the manufacturers of the chemicals in the waste container before you store, handle, or dispose of chemical waste.

- Provide primary and secondary waste containers. (A primary waste container holds the immediate waste. A secondary container contains spills or leaks from the primary container. Both containers must be compatible with the waste material and meet federal, state, and local requirements for container storage.)

- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing). For additional safety guidelines, consult the MSDS.

- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood). For additional safety guidelines, consult the MSDS.

- Handle chemical wastes in a fume hood.

- After emptying the waste container, seal it with the cap provided.

- Dispose of the contents of the waste tray and waste bottle in accordance with good laboratory practices and local, state/provincial, or national environmental and health regulations.

Waste disposal

If potentially hazardous waste is generated when you operate the instrument, you must:

- Characterize (by analysis if necessary) the waste generated by the particular applications, reagents, and substrates used in your laboratory.

- Ensure the health and safety of all personnel in your laboratory.

- Ensure that the instrument waste is stored, transferred, transported, and disposed of according to all local, state/provincial, and/or national regulations.

IMPORTANT! Radioactive or biohazardous materials may require special handling, and disposal limitations may apply.
Biological hazard safety

WARNING BIOHAZARD. Biological samples such as tissues, body fluids, infectious agents, and blood of humans and other animals have the potential to transmit infectious diseases. Follow all applicable local, state/provincial, and/or national regulations. Wear appropriate protective equipment, which includes but is not limited to: protective eyewear, face shield, clothing/lab coat, and gloves. All work should be conducted in properly equipped facilities using the appropriate safety equipment (for example, physical containment devices). Individuals should be trained according to applicable regulatory and company/institution requirements before working with potentially infectious materials. Read and follow the applicable guidelines and/or regulatory requirements in the following:

- U.S. Department of Health and Human Services guidelines published in *Biosafety in Microbiological and Biomedical Laboratories* (stock no. 017-040-00547-4; http://bmbl.od.nih.gov)
- Occupational Safety and Health Standards, Bloodborne Pathogens (29 CFR §1910.1030; http://www.access.gpo.gov/nara/cfr/waisidx_01/29cfr1910a_01.html).
- Your company’s/institution’s Biosafety Program protocols for working with/handling potentially infectious materials.

Additional information about biohazard guidelines is available at:

http://www.cdc.gov
How to obtain more information

Related documents

• xTRAQ Family of Amine-Modifying Labeling Reagents for Multiplexed Relative and Absolute Quantification: Chemistry Reference Guide.
• AB SCIEX Cliquid® Software for Routine Amino Acid Analysis Online Help
• Amino Acid Analysis Quick Reference Card for Hydrolysate Samples
• Cliquid® Software for Routine Amino Acid Analysis Site Planning Guide.

For the portable document format (PDF) versions of the chemistry reference guide, this protocol, and the quick reference card, go to http://www.sciex.com, then click the link for Support. Click the literature link and perform a literature search.

Note: For additional documentation, see “How to obtain support” on page xii.

Obtaining information using online help

The Analyst® and Cliquid® Software have Help systems that describe how to use each feature of the user interface. Access the Help system by doing one of the following:

• Click in the toolbar of the software window
• Select the Help tab
• Press F1 (not applicable in Cliquid Software)

How to obtain support

We are committed to meeting the needs of your research. Please go to www.sciex.com and go to the Support tab for local support information.

Contacting Technical Support in North America

To contact technical support:

• By telephone: Dial 1.877.740.2129
• By fax: Dial 1.650.627.2803
Introduction to
iTRAQ® Reagent Chemistry

This chapter covers:
Overview ... 2
Starter and assay kits and accessories 3
Kit materials packaged with the 50-assay and 200-assay kits 5
User-supplied materials ... 7
Workflow .. 9
Overview

The Amino Acid Analysis for Hydrolysate Samples Protocol enables identification and quantitation of amino acids. The kit provides iTRAQ® Reagent 117 for labeling hydrolysate samples and an iTRAQ Reagent 114-labeled amino acid internal standard.

Product capabilities

Using iTRAQ Reagent to label amino acids allows you to assay amino acid levels in:

- Peptide hydrolysates
- Protein hydrolysates
- Hydrolysates from animal feed

Analysis using the AB SCIEX Amino Acid 20/20 Analyzer system and Cliquid® Software for Routine Amino Acid Analysis (ordered separately) provides easy data interpretation for relative and absolute amino acid quantitation (Figure 1).

\[
\text{Amount}_{\text{sample}} = \frac{\text{Area}_{117}}{\text{Area}_{114}} \times \text{Amount}_{\text{std}}
\]

Note: The retention times of the 117 and 114 peaks are identical (peaks are isobaric).

Figure 1 Representation of LC/MS/MS data showing isobaric peaks and the calculation for absolute quantitation
For more information
Refer to the xTRAQ Family of Amine-Modifying Labeling Reagents for Multiplexed Relative and Absolute Quantification: Chemistry Reference Guide for supplementary information on:

- iTRAQ Reagent chemistry, kits, and kit materials
- How to test, run, and modify the iTRAQ Reagents protocol
- Sample handling guidelines

To order or download a copy of the chemistry guide, see “How to obtain more information” on page xii.

Starter and assay kits and accessories

To order the following kits or accessories, go to

http://www.sciex.com

Kits
- Amino Acid 20/20 Analyzer Starter Kit - Hydrolysate – Provides sufficient material to run 50 iTRAQ Reagent 117-labeled samples with iTRAQ Reagent 114-labeled amino acid internal standard and the standards set.
- iTRAQ® Reagent Application Kit - Amino Acid 20/20 Analyzer (50 Assay) – Provides sufficient material to run 50 iTRAQ Reagent 117-labeled samples with iTRAQ Reagent 114-labeled amino acid internal standard.
- iTRAQ® Reagent Application Kit - Amino Acid 20/20 Analyzer (200 Assay) – Provides sufficient material to run 200 iTRAQ Reagent 117-labeled samples with iTRAQ Reagent 114-labeled amino acid internal standard.

Accessories
- Amino Acid 20/20 Standards Set - Hydrolysate (see Table 1)
- Amino Acid 20/20 Standard - 114 Labeled - Hydrolysate
- Amino Acid Analysis (AAA) C18 Column
Kit materials packaged with the starter kit

The Amino Acid 20/20 Analyzer Starter Kit - Hydrolysate includes the 50-Assay Kit, the standards set, this document, and a quick reference card (Table 1). For recommendations on using the Standards Set, see “Quality control tests” on page 48.

IMPORTANT! When you receive the shipping container, immediately remove the iTRAQ® Reagent Application Kit and the standards set. Store both items at –15 to –25 °C.

Table 1 Amino Acid 20/20 Analyzer Starter Kit - Hydrolysate materials and storage conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>iTRAQ® Reagent Application Kit - Amino Acid 20/20 Analyzer (50 Assay)</td>
<td>One kit. Includes iTRAQ Reagent 117, Certificate of Analysis, buffers, solvents, hydroxylamine, and mobile phase modifiers for performing the labeling protocol. For a detailed list of the materials, see Table 2 on page 6.</td>
</tr>
<tr>
<td>Amino Acid 20/20 Standards Set - Hydrolysate</td>
<td>Dried standard of 20 amino acids (=10 nmol/amino acid) labeled with iTRAQ Reagent 114 and iTRAQ Reagent 117, unlabeled standard, and sample diluent for quality control testing. For information, see “Quality control tests” on page 48.</td>
</tr>
</tbody>
</table>
| | • 1 vial Hydrolysates Standard - 114 Labeled
| | • 1 vial Hydrolysates Standard - 117 Labeled
| | • 1 vial Hydrolysates Standard - Unlabeled
| | • 2 vials Sample Diluent - Amino Acid
| | • Certificate of Analysis
| | The vials of Hydrolysates Standard - 114 Labeled and - 117 Labeled contain the same amino acids (see page 36). The vial of Hydrolysates Standard - Unlabeled contains the same amino acids as the labeled standards, except norvaline. Norvaline is incorporated during labeling. |
Kit materials packaged with the 50-assay and 200-assay kits

Table 1 Amino Acid Analysis for Hydrolysate Samples Protocol (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documentation</td>
<td>This document.</td>
</tr>
<tr>
<td>Amino Acid Analysis Quick Reference Card for Hydrolysate Samples</td>
<td>A laminated card that provides a quick reference to the steps in the Amino Acid Analysis for Hydrolysate Samples iTRAQ® Reagents Labeling Protocol, the LC/MS/MS conditions, and the amino acids in the internal standard.</td>
</tr>
</tbody>
</table>

Kit materials packaged with the 50-assay and 200-assay kits

⚠️ WARNING CHEMICAL HAZARD. Some of the chemicals provided in your reagent kit may be hazardous. Before handling the reagents, read the material safety data sheets (MSDSs) that accompany your first shipment. Always follow the safety precautions (wearing appropriate protective eyewear, clothing, and gloves, etc.) presented in each MSDS. To receive additional copies of MSDSs at no extra cost, see “Obtaining MSDSs” on page viii.

IMPORTANT! When you receive the shipping container, immediately remove the iTRAQ® Reagents Application Kit and the Hydrolysates Standard - 114 Labeled bag. Store both items at –15 to –25 °C.

See Table 2 on page 6 for the materials in each kit.
Table 2 iTRAQ® Reagents Application Kit - Amino Acid 20/20 Analyzer (50 Assay or 200 Assay) materials and storage conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity in kit</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>iTRAQ® Reagents Application Kit - Amino Acid 20/20 Analyzer (50 Assay or 200 Assay)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• iTRAQ Reagent 117</td>
<td>4 vials, 1 unit/vial</td>
<td>14 vials, 1 unit/vial</td>
</tr>
<tr>
<td>• Certificate of Analysis</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>• Labeling Buffer - Amino Acid†</td>
<td>1 vial, 1.8 mL</td>
<td>4 vials, 1.8 mL/vial</td>
</tr>
<tr>
<td>• Hydroxylamine</td>
<td>1 vial, 250 μL</td>
<td>1 vial, 250 μL</td>
</tr>
<tr>
<td>• Sample Diluent - Amino Acid‡</td>
<td>1 vial, 1.8 mL</td>
<td>4 vials, 1.8 mL/vial</td>
</tr>
<tr>
<td>• Mobile Phase Modifier A‡</td>
<td>2 vials, 1.8 mL/vial</td>
<td>6 vials, 1.8 mL/vial</td>
</tr>
<tr>
<td>• Mobile Phase Modifier B‡</td>
<td>1 vial, 200 μL</td>
<td>3 vials, 200 μL/vial</td>
</tr>
<tr>
<td>• Isopropanol†</td>
<td>1 vial, 1.8 mL</td>
<td>1 vial, 1.8 mL</td>
</tr>
<tr>
<td>Hydrolysates Standard - 114 Labeled</td>
<td>1 bag</td>
<td>4 bags</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Store at -15 to -25 °C
User-supplied materials

CHEMICAL HAZARD.
Some of the chemicals referred to in this protocol (such as those in Table 3) are not provided with your kit. When using chemicals not provided by or purchased from us, obtain the material safety data sheet directly from the chemical manufacturer.

Table 3 User-supplied materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity per assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposable gloves</td>
<td>As needed</td>
</tr>
<tr>
<td>Hydrolysate samples, dry, at least 1 µg peptide or protein each</td>
<td>As needed</td>
</tr>
<tr>
<td>Pipetting accessories (gel loader tips, pipettors and tips) suitable for 1-µL to 1-mL volumes, such as P2, P10, P100, P1000 pipettes</td>
<td>As needed</td>
</tr>
<tr>
<td>pH paper, pH range 2.5 to 4.5 and 6.5 to 10 to test the pH of the sample when troubleshooting</td>
<td>As needed</td>
</tr>
<tr>
<td>Milli-Q® water or equivalent (minimum 18.2 MOhms water, conductivity maximum 0.05 µS/0.05 µMho) for mobile phase A</td>
<td>As needed</td>
</tr>
<tr>
<td>Acetonitrile, HPLC-grade for mobile phase B</td>
<td>As needed</td>
</tr>
</tbody>
</table>
Table 3 User-supplied materials (continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity per assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bench-top centrifuge or microcentrifuge</td>
<td>1</td>
</tr>
<tr>
<td>Vortexer</td>
<td>1</td>
</tr>
<tr>
<td>Centrifugal vacuum concentrator</td>
<td>1</td>
</tr>
<tr>
<td>Standard Eppendorf Tubes™, polypropylene, 0.5-mL and 1.5-mL</td>
<td>As needed</td>
</tr>
<tr>
<td>Measuring cylinder, glass, 1000-mL</td>
<td>2</td>
</tr>
<tr>
<td>HPLC bottles, glass, 1000-mL</td>
<td>2</td>
</tr>
<tr>
<td>Autosampler vials and inserts, conical, 220-µL and 1000-µL</td>
<td>As needed</td>
</tr>
<tr>
<td>LC/MS/MS System with a TurbolonSpray® source and required gases. (For information, refer to the AB SCIEX Cliquid® Software for Routine Amino Acid Analysis Site Planning Guide, mass spectrometer configuration.)</td>
<td>—</td>
</tr>
<tr>
<td>PEEK™ tubing, 0.005 in. ID (red)</td>
<td>As needed</td>
</tr>
<tr>
<td>Amino Acid Analysis (AAA) C18 Column, reversed-phase, 5 µm, 4.6 mm x 150 mm</td>
<td>—</td>
</tr>
<tr>
<td>AB SCIEX Cliquid® Software for Routine Amino Acid Analysis</td>
<td>—</td>
</tr>
</tbody>
</table>
Workflow

In the iTRAQ Reagent labeling protocol for amino acid analysis of protein hydrolysate samples, you label your sample with iTRAQ Reagent 117, then add iTRAQ Reagent 114-labeled amino acid standard as an internal standard (Figure 2).

Next you analyze the sample/internal standard mixture using LC/MS/MS. The use of the labeled internal standard of multiple amino acids allows for correction of variations in the detection response as well as in quantitation.

Figure 2 Workflow for amino acid analysis of hydrolysate samples using iTRAQ® Reagents

Run the labeling protocol (Chapter 2)
- Prepare the sample (dry hydrolysate)
- Label the sample with iTRAQ® Reagent 117
- Add iTRAQ Reagent 114-labeled amino acid internal standard

Identify and quantitate amino acids using LC/MS/MS (Chapter 3)
Running the Labeling Protocol

This chapter covers:
Overview ... 12
Labeling the hydrolysate sample with iTRAQ® Reagent 117. 14
Adding the iTRAQ Reagent 114-Labeled Amino Acid Internal
Standard ... 17
Overview

The protocol labels 1 µg of hydrolysate sample (dry, approximately 10 nmol amino acid) with iTRAQ® Reagent 117. The hydrolysate sample can be a peptide hydrolysate, protein hydrolysate, or a hydrolysate from animal feed.

For samples containing more than 1 µg of hydrolysate, maintain the total amino acid amount at no more than 10 nmol and modify the protocol as specified in step 2 on page 15 and step 6 on page 15. Figure 3 summarizes the workflows according to hydrolysate sample size.

If one or more amino acid peaks exhibit saturated signal, dilute the sample with an equal volume of sample diluent. See Table 7, “Recovery Issues,” on page 53.

Assays per vial

One vial of iTRAQ® Reagent 117 labels approximately 15 assays.
Overview

Before you begin

• Allow the reagents and each required vial of iTRAQ Reagent 117 and Hydrolysates Standard - 114 Labeled to reach room temperature. Return the reagents to storage at –15 to –25 °C within 2 hours.

• If necessary, dry the hydrolysate sample.

 IMPORTANT! For optimal labeling, the hydrolysate sample must be completely dry.

• Inspect the vial of Labeling Buffer - Amino Acid. If precipitate is present, vortex the vial, or warm to 37 °C, then vortex.

Pipetting accuracy

Pipetting accuracy is critical for the success of each assay. Review the pipetting recommendations in “Small-volume handling tips to ensure accurate concentrations and volumes” on page 46.

Optional quality-control tests

For optional quality-control tests, see “Quality control tests” on page 48.
Chapter 2 Running the Labeling Protocol

Labeling the hydrolysate sample with iTRAQ® Reagent 117

⚠️ DANGER CHEMICAL HAZARD. Read the MSDS and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

iTRAQ™ Reagent 117 is a flammable liquid and vapor. Keep away from heat, sparks, and flame. May be fatal if inhaled, absorbed through the skin or swallowed. Causes eye, skin, and respiratory tract burns. May cause heart damage, central nervous system depression, liver damage, and kidney damage. Do not breathe vapor. Do not taste or swallow. Do not get in eyes, on skin, or on clothing. Use only with adequate ventilation. Wear appropriate protective eyewear, clothing, and gloves.

Isopropanol is a flammable liquid and vapor. Keep away from heat, sparks, and flame. Exposure may cause eye, skin, and upper respiratory tract irritation. Prolonged or repeated contact may dry skin and cause irritation. Exposure may cause central nervous system effects such as drowsiness, dizziness, and headache.

Labeling Buffer
Causes irritation to skin, eyes and respiratory tract. Affects central nervous system, liver, and kidneys. Harmful by inhalation and if swallowed.

Hydroxylamine
Causes skin and respiratory tract irritation. Causes serious eye irritation. May cause sensitization by skin contact. Harmful if swallowed. Heating may cause an explosion.

Sample Diluent
Corrosive! Causes skin and eye burns. Harmful if swallowed. May cause sensitization by inhalation and skin contact. Combustible liquid and vapor.

Mobile Phase Modifier A
Causes skin and eye burns. Combustible liquid and vapor. Keep away from heat, sparks, and flame. Harmful if swallowed. May cause allergic reactions.

Mobile Phase Modifier B
Causes skin and eye burns. Avoid breathing vapor. Do not get in eyes or on skin. Use only with adequate ventilation.

IMPORTANT! Throughout the procedure, cap each tube promptly to avoid evaporation.
1. If necessary, dry the hydrolysate sample.

IMPORTANT! For optimal labeling, the hydrolysate sample must be completely dry.

2. Add Labeling Buffer - Amino Acid (contains 30 pmol/µL norvaline):
 - To each sample tube containing 1 µg hydrolysate:
 a. Add 5 µL Labeling Buffer - Amino Acid.
 b. Vortex to mix, then spin.
 - To each sample tube containing more than 1 µg hydrolysate:
 a. For every 1 µg of hydrolysate, add 5 µL of Labeling Buffer - Amino Acid. For example, if your sample contains 6 µg of hydrolysate, add 30 µL of Labeling Buffer - Amino Acid.
 b. Vortex to mix, then spin.

3. Spin each required vial of iTRAQ Reagent 117 (at room temperature) to bring the solution to the bottom of the vial.

4. Add 70 µL of isopropanol to each vial of iTRAQ Reagent 117. Mark the vial as “diluted.”

5. Vortex each vial to mix, then spin.

6. Label each hydrolysate sample prepared in step 2 with iTRAQ Reagent 117:
 - To each sample tube containing 1 µg hydrolysate:
 a. Add 5 µL of diluted iTRAQ Reagent 117. Cap the tube promptly to avoid evaporation.
 b. Vortex to mix, then spin.
 - To each sample tube containing more than 1 µg hydrolysate:
 a. Transfer a 5-µL aliquot of the hydrolysate sample/Labeling Buffer - Amino Acid solution to a fresh tube.
 b. To the aliquot, add 5 µL of diluted iTRAQ Reagent 117. Cap the tube promptly to avoid evaporation.
 c. Vortex to mix, then spin.

7. Incubate the sample tubes at room temperature for at least 30 min.
8. Add 1 µL of hydroxylamine to each sample tube.

9. Vortex each sample tube to mix, then spin.

10. Incubate the sample tubes at room temperature for at least 5 min.

11. Dry the samples completely in a centrifugal vacuum concentrator (generally not more than an hour).

IMPORTANT! Unless you immediately continue to the next section (to combine the labeled sample with the internal standard), store the dried labeled samples at −15 to −25 °C. Store unused diluted iTRAQ Reagent 117 at −15 to −25 °C for up to 4 weeks (see “Material storage” on page 47)
Adding the iTRAQ Reagent 114-Labeled Amino Acid Internal Standard

⚠️ WARNING CHEMICAL HAZARD. Read the MSDS and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

iTRAQ® Hydrolysates Standard - 114 Labeled causes respiratory tract and skin irritation.
iTRAQ™ Reagent 117 is a flammable liquid and vapor. Exposure may cause eye and respiratory tract irritation and blood system damage.

1. Prepare a 6-pmol/µL iTRAQ Reagent 114-labeled amino acid internal standard by reconstituting one vial of Hydrolysates Standard - 114 Labeled with Sample Diluent - Amino Acid. The amount of Sample Diluent - Amino Acid to add is indicated on the reagent vial label and Certificate of Analysis (approximately 1.67 mL).

2. Vortex to mix, then spin.
 The iTRAQ Reagent 114-labeled amino acid internal standard can be stored at –15 to –25 °C.

3. Add 25 µL of the iTRAQ Reagent 114-labeled amino acid internal standard to each dried iTRAQ Reagent 117-labeled sample (from step 11 on page 16).

4. Vortex each tube to mix, then spin.

IMPORTANT! This procedure yields enough material for approximately three 5-µL injections for each sample. Discard any remaining material.

LC/MS/MS Analysis

This chapter covers:
Hardware overview ... 20
Overview ... 21
Prepare the HPLC System ... 23
Prepare the MS System .. 25
Prepare the Analyst® Software database 30
Perform the Amino Acid 20/20™ Sample Assay 31
Chapter 3 LC/MS/MS Analysis

Hardware overview

Recommended MS system and software
- API 2000™ System
- Analyst® Software 1.5 or later, using the IntelliQuan integration algorithm and Cliquid® Software for Routine Amino Acid Analysis

IMPORTANT! To update Analyst Software with hotfixes, see the instructions on the software installation CD.

Alternative MS systems
- API 3200™ System
- API 4000™ System
- 3200 QTRAP® System
- 4000 QTRAP® System

Recommended HPLC autosamplers
- Agilent 1100 series, with:
 - Binary pump G1312A
 - Well-plate autosampler G1367A
 - Column oven G1316A
- Agilent 1200 series, with:
 - Binary pump G1312A
 - Well-plate autosampler G1367B
 - Column oven G1316A
- Shimadzu Prominence, with:
 - System controller CBM-20A
 - 2 Isocratic pumps LC-20AD [includes automatic purge (flush) kit and semi-micro gradient mixer SUS-20A]
 - Autosampler SIL-20AC
 - Column oven CTO-20AC

Note: During the Cliquid Software installation, acquisition and quantitation method files that are preconfigured for the above systems are installed.
Overview

Analyst® Software
Analyst Software provides a single point of control for the mass spec and HPLC devices. A user experienced in MS can customize the automated method development, data analysis, review, and reporting features.

Cliquid® Software
The Cliquid Software for Routine Amino Acid Analysis module communicates with the Analyst Software to retrieve and store information, allowing users with minimal MS experience to analyze samples by using an intuitive point-and-click interface. By selecting the corresponding option on the Home page, you can perform the AA20 Sample Assay, AA20 System Suitability Test, and Column Storage and Regeneration. Refer to the Cliquid Software Help System for detailed information on the Cliquid software.

Workflow
The workflow below (Figure 4) outlines analyzing the iTRAQ® Reagent-labeled samples using the recommended MS and HPLC systems.

Prepare the HPLC System
a. Prepare Mobile Phase A and B
b. Set up HPLC System
c. Connect to mass spectrometer

Prepare the MS System
a. Enter the isotope correction factor
b. Perform AA20 System Suitability Test
c. Review test results
d. Update the acquisition method with the period durations

Perform the Assay(s)
a. Create a project folder
b. Perform the AA20 Sample Assay test

Figure 4 HPLC/MS/MS analysis workflow
Before you begin

If necessary, have the lab manager perform the following tasks:

- For HPLC autosamplers other than those recommended on page 20, set up the hardware profile and create customized acquisition and quantitation methods. Appendix C, “Developing an Acquisition Method,” has recommended starting point values for creating the methods.

- If the MS has not been calibrated in 3 to 6 months or if the MS source has been recently cleaned, perform mass calibration. Verify the calibration by performing a system suitability test or analyzing a control sample, then update the retention times in the quantitation method.

Note: If you use the recommended MS and HPLC systems, you can perform the system suitability test on page 27.
Prepare the HPLC System

Review safety warnings

Review the safety warnings in “Safety” on page vii. For the MSDS of any chemical not distributed by us, contact the chemical manufacturer. Before handling any chemicals, refer to the MSDS provided by the manufacturer and observe all relevant precautions.

Prepare the mobile phases

Note: The following procedure yields sufficient mobile phase A (1 L) and B (500 mL) for analysis of up to 75 injections.

⚠️ DANGER CHEMICAL HAZARD. Before handling any chemicals, refer to the MSDS provided by the manufacturer, and observe all relevant precautions. Wear appropriate protective eyewear, clothing, and gloves.

Mobile Phase Modifier A is harmful if swallowed. It causes eye and skin burns, and may cause allergic reactions. It is a combustible liquid and vapor.

Mobile Phase Modifier B Causes skin and eye burns. Avoid breathing vapor. Use with adequate ventilation. Do not get in eyes or on skin.

To prepare mobile phase A:

1. In a 1-L volumetric flask, add approximately 500 mL of Milli-Q® water or equivalent, HPLC-grade.

2. Add:
 - 1.00 mL Mobile Phase Modifier A
 - 50.0 µL Mobile Phase Modifier B

3. Swirl the flask to mix.

4. Bring to volume with Milli-Q water or equivalent, HPLC-grade, then mix.

 For optimal shelf-life, transfer the solution to an amber glass bottle. Label the bottle with the date of preparation (discard unused mobile phase A after a week).
To prepare mobile phase B:

1. In a 500-mL volumetric flask, add approximately 200 mL of acetonitrile, HPLC-grade.
2. Add:
 - 0.50 mL Mobile Phase Modifier A
 - 25.0 µL Mobile Phase Modifier B
3. Gently swirl the flask to mix.
4. Bring to volume with acetonitrile, HPLC-grade, then mix.
5. Transfer the solution to an appropriate bottle.

Set up the HPLC system

1. Set up the HPLC system with mobile phases A and B, and connect the Amino Acid Analysis (AAA) C18 Column according to the documentation provided with your equipment.

 IMPORTANT! Review the safety information provided with your equipment and the safety warnings in “Safety” on page vii.

 IMPORTANT! Use the column only for the Amino Acid Analysis Labeling Protocol. Any other use may compromise the integrity of the column.

2. Flush the system.
3. If necessary, perform column regeneration. To perform column regeneration using Cliquid Software, select **Maintain system** (Figure 7 on page 27; see Help for more information).
Prepare the MS System

Review safety warnings
Review the safety warnings in “Safety” on page vii. For the MSDS of any chemical not distributed by us, contact the chemical manufacturer. Before handling any chemicals, refer to the MSDS provided by the manufacturer and observe all relevant precautions.

Connect the source
For the API 2000 System, connect the source using the three-way split insert as shown in Figure 5.

![Diagram of source plumbing](image)

- **From splitter to source**
 - About 31 cm (12 in.) of red tubing.
- **From splitter to waste**
 - About 49 cm (19 in.) of red tubing.
 - Adjust the length such that waste outflow is about 750 μL/min and LC flow into the TIS is about 250 μL/min.
 - You can lengthen the red tubing going to waste with tubing having a larger ID.

Figure 5 Source plumbing (tubing not drawn to scale) for the API 2000™ System
For the API 3200, API 4000, 3200 QTRAP, and 4000 QTRAP systems, the three-way split insert is not required. For these systems, connect the source as shown in Figure 6.

From grounding plug to source
Approximately 30 to 31 cm (12 in.) of red tubing.

From C18 reversed-phase column to source grounding plug
Approximately 31 cm (12 in.) of red tubing.

Figure 6 Source plumbing (tubing not drawn to scale) for the API 3200™ and API 4000™ systems and the 3200 QTRAP® and 4000 QTRAP® systems

Open Cliquid® Software

1. If Analyst Software is open, close it
2. Open Cliquid Software by clicking on the desktop.
3. Enter your login information, then click **Get Started**. For a lab technician, the Home page that opens is shown in Figure 7. (The Home page for a lab manager displays additional tasks.)

![Figure 7](Image)

Figure 7 Features of the Home page for a lab technician

Perform the system suitability test

The system suitability test warms up the mass spectrometer and peripherals, and it verifies that the entire system (HPLC and mass spectrometer) is working properly. The test also validates the retention times and sensitivity levels.

Perform the system suitability test at least once a day (before running samples), using Hydrolysates Standard - 114 Labeled as your sample. If necessary, flush the system before starting the test.

Repeat the system suitability test until retention times stabilize. For a system with a new column or in use for the first time after storage, perform the test at least three times; for a column that is in standby mode, perform the test at least two times. Equilibrate the column by running the system suitability test with an equilibration time of 15 min.

The system suitability test takes approximately 30 minutes to complete. To perform the test:

1. Prepare a vial of Hydrolysates Standard - 114 Labeled as described on page 17.

2. Place the tube of standard solution in the HPLC autosampler.
 Note the plate code and position (if applicable), rack code, rack position, and sample position of the vial.

3. In the Cliquid Software Home page (Figure 7 on page 27), select **System suitability test**.
4. Proceed through the wizard, clicking **Next** to advance to the next page. When prompted, select or enter the following:

<table>
<thead>
<tr>
<th>System Suitability Test Wizard page</th>
<th>Selection or input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose test</td>
<td>Select AA20 System Suitability.</td>
</tr>
<tr>
<td>Position sample</td>
<td>For the vial of Hydrolysates Standard - 114 Labeled, enter the:</td>
</tr>
<tr>
<td></td>
<td>• Rack code</td>
</tr>
<tr>
<td></td>
<td>• Rack position</td>
</tr>
<tr>
<td></td>
<td>• Sample position</td>
</tr>
<tr>
<td></td>
<td>• If required for your autosampler:</td>
</tr>
<tr>
<td></td>
<td>– Plate code</td>
</tr>
<tr>
<td></td>
<td>– Plate position</td>
</tr>
<tr>
<td></td>
<td>2. Select the report output format.</td>
</tr>
<tr>
<td>Submit sample</td>
<td>Specify an equilibration time. Recommended times for a system that is:</td>
</tr>
<tr>
<td></td>
<td>• Running = 0 min</td>
</tr>
<tr>
<td></td>
<td>• In standby mode = 2 min</td>
</tr>
<tr>
<td></td>
<td>• Being started = 10 min</td>
</tr>
<tr>
<td></td>
<td>• Has new buffers or column = 15 min</td>
</tr>
</tbody>
</table>

5. Click **Submit**. The Home page opens, with the system suitability test added to the sample list.

IMPORTANT! Do not add sample runs to the job list until the system suitability test is complete. You may need to update the acquisition method with the retention times from the System Suitability report.

IMPORTANT! While Cliquid Software is running and/or processing submissions, Analyst software cannot be opened. Before starting Analyst software, wait until all samples are processed, then log out of the Cliquid Software.
Review the system suitability test results

After a green check mark appears in both the Sample Status and Report Status columns next to the test name in the job list, the test and report are complete.

1. Click the test name in the job list to highlight the row, then select the Report List tab.

2. To open the system suitability test report, click the View button beside the report. The MS Word version of the report is displayed.

Note: Although the report is created through Cliquid Software, it is saved in the Analyst Data\Projects directory. To access the report in other formats, go to Analyst Data\Projects\System suitability test\Results folder.

3. Review the report for failed items. If the:
 • Analyte retention times (RT) differ from the expected retention time by more than 0.5, have your lab manager update the retention times in the acquisition and quantitation method files.
 • Analyte peak areas are less than the expected peak areas, reprocess the data. To access the report for reprocessing, go to the Report list, then click the Report button beside the report. After the peak areas are acceptable, repeat the System Suitability Test.

4. Read the diagnosing statement on the report. For additional diagnosing information, see online Help, System Suitability Test.

Continue to troubleshoot and repeat the system suitability test until all compounds pass.
Chapter 3 LC/MS/MS Analysis

Prepare the Analyst® Software database

Enter isotope correction

The isotopic purity of the 114-labeled amino acids is used to adjust the calculated concentration. The purity value appears on the Certificate of Analysis in your Amino Acid 20/20 Analyzer Starter kit.

To specify the isotope correction factor:

1. In the Cliquid Software Home page (Figure 7 on page 27), select Isotope correction. The Isotope page opens.
2. In the 114 Isotope correction factor field, enter the value from the Certificate of Analysis as a whole number.
3. Click Update. The software displays the “Update successful” message.
4. Click Done to return to the Home page.
Perform the Amino Acid 20/20™ Sample Assay

Before you begin

Create a project folder

All data files are associated with a project. A project folder must exist before you use Cliquid Software to build a sample list or customize a report. Although created through Cliquid® Software, the project folder is stored in \[drive]\Analyst Data\Projects.

To create a new project folder for an assay:

1. In the Cliquid Software Home page (Figure 7 on page 27), click **New project** to open the New Project screen.
2. Enter a name for the project folder.
3. Click **Create**.
4. After “Project created successfully” is displayed, click **Done** to open to the Home page.

Review the safety information

IMPORTANT! Refer to the documentation provided with your equipment for safety information. Review the safety warnings in “Safety” on page vii.

Load the Autosampler

Place the sample and control vials in the HPLC rack. Record the corresponding plate code and position (if applicable), rack code, rack position, and sample position of the vials.
AA20 sample assay

1. In the Cliquid Software Home page (Figure 7 on page 27), select **Run samples**.

2. Proceed through the wizard, clicking **Next** to advance to the next page. When prompted, select or enter the following:

Table 4 Run samples selections and input

<table>
<thead>
<tr>
<th>AA20 Sample Assay Wizard page</th>
<th>Selection or input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose test</td>
<td>Select AA20 Sample Assay.</td>
</tr>
</tbody>
</table>
| Build sample list | 1. In the sample list template, select the project
 2. Import a sample list or enter sample list information as follows:
 a. In the Name field, enter the name of your sample.
 b. Press the Tab key or click the first autosampler-specific field that is displayed. The fields are auto-populated with the information from the default autosampler configuration that is set for the system.
 c. In the following fields, specify the values in each drop-down list or enter values as applicable:
 - For category (the reference range against which obtained sample concentrations are compared), select Standard, None, or Control. Additional categories may have been created by the lab managers.
 - For normalization value, leave the field blank or enter 0. Entering a value yields an erroneous results table.
 - For internal standard (IS) amount, enter 30 for each amino acid.
 d. For the remaining fields, leave the field blank or enter 0.
 3. Repeat steps a through c for each sample.
 4. After you complete entering samples, click Next. The software validates the field entries for proper format and flags any formatting errors.
 5. Correct all formatting errors.
 6. (Optional) Click to save the sample list. |

| Customize report | Select the appropriate report-generating option. If you choose to generate a report:
 - After all samples are acquired or after each sample is acquired – Continue on to select report style and report output format
 - Later using the Reprocess samples task – Click Next to proceed to Submit samples |
Perform the Amino Acid 20/20™ Sample Assay

Table 4 Run samples selections and input

<table>
<thead>
<tr>
<th>AA20 Sample Assay Wizard page</th>
<th>Selection or input</th>
</tr>
</thead>
</table>
| Submit samples | 1. Specify an equilibration time. Recommended times for a system that is:
 - Running = 0 min
 - In standby mode = 2 min
 - Being started = 10 min
 - Has new buffers or column = 15 min
 2. Review the HPLC setup summary.
 3. Review the Test, Sample List, and Report Details summary. Correct inaccuracies by navigating to the appropriate screen (by clicking the Back button). Alternatively, click Cancel to return to the Home page.
 IMPORTANT! If you return to the Home page before completing the submission, all entries in the sample list are lost. |

3. After completing the Submit samples page, click Submit. The Home page opens, displaying the test in the job list.
Standard Specifications

This appendix covers:
Amino acids in Hydrolysates Standard - 114 Labeled 36
iTRAQ® Reagent-labeled amino acids in a 5-µL injection. 37
Representative report of the separation of amino acids 37
Amino acid specifications ... 41
Amino acids in Hydrolysates Standard - 114 Labeled

A vial of Hydrolysates Standard - 114 Labeled contains approximately 10 nmol of each of the following amino acids labeled with iTRAQ® Reagent 114. It also contains iTRAQ Reagent 114-labeled ammonium chloride, cysteic acid, taurine, and tryptophan, which are not supported in the Cliquid® Software for Routine Amino Acid Analysis. The precise amount of amino acids in a vial is determined for each lot of standard, and is used to determine the volume of Sample Diluent required to make a 6 pmol/µL solution.

- Alanine
- Arginine
- Aspartic acid
- Cysteine
- Glutamic acid
- Glycine
- Histidine
- Isoleucine
- Leucine
- Lysine
- Methionine
- Methionine sulfoxide
- Norleucine
- Norvaline (also in the Labeling Buffer - Amino Acid [30 pmol/µL])
- Phenylalanine
- Proline
- Serine
- Threonine
- Tyrosine
- Valine
iTRAQ® Reagent-labeled amino acids in a 5-µL injection

A 5-µL aliquot prepared according to the labeling protocol (Chapter 2) contains:

- iTRAQ Reagent 117-labeled amino acids in the sample
- 30 pmol of iTRAQ Reagent 117-labeled norvaline
- 30 pmol of each iTRAQ Reagent 114-labeled amino acid in the standard, including norvaline

iTRAQ Reagent 114-labeled norleucine can be used to monitor recovery/losses during hydrolysis. iTRAQ Reagent 117-labeled norvaline provides an indication of the labeling efficiency.

Each amino acid has one label except for L-lysine, which has two labels.

Representative report of the separation of amino acids

The Cliquid® Software for Routine Amino Acid Analysis allows you to summarize the data of interest using the report feature. For information, access the online Help while in the Cliquid® Software by selecting the Help tab. For additional information, see “How to obtain support” on page xii.

Figure 8 shows a representative chromatogram of amino acid internal standards, with peak identification added. For the Ala, Glu, Arg and Val, Met, Nva peaks, see the report for retention time to identify the individual peaks.

Figures 9 and 10 are a representative report of the analysis of a 5-µL injection of labeled standard that was analyzed using the conditions recommended in Chapter 3, “LC/MS/MS Analysis.”
Figure 8 Representative chromatogram of the amino acids in the internal standard (see Figure 9 on page 39 for retention times)
Representative report of the separation of amino acids

Sample Name: name1 Vial #: 2

Results Summary

<table>
<thead>
<tr>
<th>#</th>
<th>Amino Acid</th>
<th>RT (min)</th>
<th>Area</th>
<th>IS Area</th>
<th>IS Amount (pmol)</th>
<th>Calculated Amount (pmol)</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ser</td>
<td>2.84</td>
<td>4.96e+04</td>
<td>4.53e+04</td>
<td>30.0</td>
<td>29.6</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>Gly</td>
<td>3.12</td>
<td>5.00e+04</td>
<td>4.45e+04</td>
<td>30.0</td>
<td>31.6</td>
<td>5.3</td>
</tr>
<tr>
<td>3</td>
<td>His</td>
<td>3.12</td>
<td>3.53e+04</td>
<td>3.53e+04</td>
<td>30.0</td>
<td>27.6</td>
<td>4.7</td>
</tr>
<tr>
<td>4</td>
<td>Asp</td>
<td>3.40</td>
<td>4.25e+04</td>
<td>4.17e+04</td>
<td>30.0</td>
<td>28.1</td>
<td>4.8</td>
</tr>
<tr>
<td>5</td>
<td>MOx</td>
<td>3.62</td>
<td>3.46e+04</td>
<td>3.26e+04</td>
<td>30.0</td>
<td>29.3</td>
<td>5.0</td>
</tr>
<tr>
<td>6</td>
<td>Thr</td>
<td>3.99</td>
<td>5.90e+04</td>
<td>5.13e+04</td>
<td>30.0</td>
<td>31.7</td>
<td>5.4</td>
</tr>
<tr>
<td>7</td>
<td>Ala</td>
<td>4.52</td>
<td>5.91e+04</td>
<td>5.98e+04</td>
<td>30.0</td>
<td>27.4</td>
<td>4.6</td>
</tr>
<tr>
<td>8</td>
<td>Glu</td>
<td>4.34</td>
<td>4.55e+04</td>
<td>4.95e+04</td>
<td>30.0</td>
<td>26.8</td>
<td>4.6</td>
</tr>
<tr>
<td>9</td>
<td>Arg</td>
<td>4.26</td>
<td>2.61e+04</td>
<td>2.73e+04</td>
<td>30.0</td>
<td>32.0</td>
<td>5.4</td>
</tr>
<tr>
<td>10</td>
<td>Pro</td>
<td>5.83</td>
<td>7.28e+04</td>
<td>6.83e+04</td>
<td>30.0</td>
<td>29.4</td>
<td>5.0</td>
</tr>
<tr>
<td>11</td>
<td>Cys</td>
<td>6.18</td>
<td>3.74e+03</td>
<td>2.93e+03</td>
<td>30.0</td>
<td>35.2</td>
<td>6.0</td>
</tr>
<tr>
<td>12</td>
<td>Lys</td>
<td>6.38</td>
<td>9.43e+03</td>
<td>8.44e+03</td>
<td>30.0</td>
<td>32.3</td>
<td>5.1</td>
</tr>
<tr>
<td>13</td>
<td>Val</td>
<td>7.49</td>
<td>7.26e+04</td>
<td>7.29e+04</td>
<td>30.0</td>
<td>30.1</td>
<td>4.9</td>
</tr>
<tr>
<td>14</td>
<td>Ile</td>
<td>7.82</td>
<td>7.64e+04</td>
<td>1.01e+04</td>
<td>30.0</td>
<td>30.0</td>
<td>5.1</td>
</tr>
<tr>
<td>15</td>
<td>Met</td>
<td>7.83</td>
<td>5.63e+04</td>
<td>8.04e+04</td>
<td>30.0</td>
<td>25.7</td>
<td>4.6</td>
</tr>
<tr>
<td>16</td>
<td>Tyr</td>
<td>8.12</td>
<td>5.86e+04</td>
<td>5.95e+04</td>
<td>30.0</td>
<td>28.7</td>
<td>4.9</td>
</tr>
<tr>
<td>17</td>
<td>Ile</td>
<td>9.09</td>
<td>9.96e+04</td>
<td>9.95e+04</td>
<td>30.0</td>
<td>30.3</td>
<td>5.2</td>
</tr>
<tr>
<td>18</td>
<td>Leu</td>
<td>9.26</td>
<td>9.61e+04</td>
<td>9.21e+04</td>
<td>30.0</td>
<td>28.8</td>
<td>4.9</td>
</tr>
<tr>
<td>19</td>
<td>Val</td>
<td>9.49</td>
<td>9.67e+04</td>
<td>9.13e+04</td>
<td>30.0</td>
<td>25.2</td>
<td>5.0</td>
</tr>
<tr>
<td>20</td>
<td>Phe</td>
<td>9.89</td>
<td>9.44e+04</td>
<td>9.23e+04</td>
<td>30.0</td>
<td>28.2</td>
<td>4.8</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>558.5</td>
</tr>
</tbody>
</table>

Figure 9 Representative report (page 1, results summary and full chromatogram) of the amino acids in the standard
Appendix A Standard Specifications

Sample Name: name1 Vial #: 2

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser</td>
<td>IS</td>
<td>2.84</td>
</tr>
<tr>
<td>Gly</td>
<td>IS</td>
<td>3.12</td>
</tr>
<tr>
<td>His</td>
<td>IS</td>
<td>3.12</td>
</tr>
<tr>
<td>Asp</td>
<td>IS</td>
<td>3.40</td>
</tr>
<tr>
<td>MOx</td>
<td>IS</td>
<td>3.62</td>
</tr>
<tr>
<td>Thr</td>
<td>IS</td>
<td>3.99</td>
</tr>
<tr>
<td>Ala</td>
<td>IS</td>
<td>4.52</td>
</tr>
<tr>
<td>Glu</td>
<td>IS</td>
<td>4.34</td>
</tr>
<tr>
<td>Arg</td>
<td>IS</td>
<td>4.26</td>
</tr>
<tr>
<td>Pro</td>
<td>IS</td>
<td>5.63</td>
</tr>
<tr>
<td>Cys</td>
<td>IS</td>
<td>6.18</td>
</tr>
<tr>
<td>Lys</td>
<td>IS</td>
<td>6.38</td>
</tr>
<tr>
<td>Val</td>
<td>IS</td>
<td>7.49</td>
</tr>
<tr>
<td>Nva</td>
<td>IS</td>
<td>7.82</td>
</tr>
<tr>
<td>Met</td>
<td>IS</td>
<td>7.63</td>
</tr>
<tr>
<td>Tyr</td>
<td>IS</td>
<td>8.12</td>
</tr>
<tr>
<td>Ile</td>
<td>IS</td>
<td>9.00</td>
</tr>
<tr>
<td>Leu</td>
<td>IS</td>
<td>9.26</td>
</tr>
<tr>
<td>Nle</td>
<td>IS</td>
<td>9.49</td>
</tr>
<tr>
<td>Phe</td>
<td>IS</td>
<td>9.69</td>
</tr>
</tbody>
</table>

Figure 10 Representative report (page 2, individual amino acid chromatographs) of the amino acids in the standard.
Amino acid specifications

<table>
<thead>
<tr>
<th>Structure</th>
<th>Name</th>
<th>Abbreviations (three-letter, one-letter)</th>
<th>Formula</th>
<th>MH+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L-serine</td>
<td>Ser, S</td>
<td>C₃H₇NO₃</td>
<td>106.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>glycine</td>
<td>Gly, G</td>
<td>C₂H₅NO₂</td>
<td>76.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>220.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-histidine</td>
<td>His, H</td>
<td>C₆H₉N₃O₂</td>
<td>156.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-aspartic acid</td>
<td>Asp, D</td>
<td>C₄H₇NO₄</td>
<td>134.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>278.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-methionine sulfoxide</td>
<td>MOx</td>
<td>C₃H₁₁NO₃S</td>
<td>166.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>310.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-threonine</td>
<td>Thr, T</td>
<td>C₄H₉NO₃</td>
<td>120.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>264.2</td>
<td></td>
</tr>
</tbody>
</table>
Appendix A Standard Specifications

<table>
<thead>
<tr>
<th>Structure</th>
<th>Name</th>
<th>Abbreviations (three-letter, one-letter)</th>
<th>Formula</th>
<th>MH+ Unlabeled</th>
<th>Labeled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L-alanine</td>
<td>Ala, A</td>
<td>C₃H₇NO₂</td>
<td>90.1</td>
<td>234.2</td>
</tr>
<tr>
<td></td>
<td>L-glutamic acid</td>
<td>Glu, E</td>
<td>C₅H₉NO₄</td>
<td>148.1</td>
<td>292.2</td>
</tr>
<tr>
<td></td>
<td>L-arginine</td>
<td>Arg, R</td>
<td>C₆H₁₄N₂O₂</td>
<td>175.1</td>
<td>319.2</td>
</tr>
<tr>
<td></td>
<td>L-proline</td>
<td>Pro, P</td>
<td>C₆H₈NO₂</td>
<td>116.1</td>
<td>260.2</td>
</tr>
<tr>
<td></td>
<td>L-cysteine</td>
<td>Cys, C</td>
<td>C₅H₇NO₂S</td>
<td>122.0</td>
<td>266.1</td>
</tr>
<tr>
<td></td>
<td>L-lysine (2 tags)</td>
<td>Lys, K</td>
<td>C₇H₁₄N₂O₂</td>
<td>147.1</td>
<td>435.3</td>
</tr>
<tr>
<td>Structure</td>
<td>Name</td>
<td>Abbreviations (three-letter, one-letter)</td>
<td>Formula</td>
<td>MH⁺ Unlabeled</td>
<td>MH⁺ Labeled</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>--</td>
<td>-------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>L-valine</td>
<td>Val, V</td>
<td>C₅H₁₁NO₂</td>
<td>118.1</td>
<td>262.2</td>
</tr>
<tr>
<td></td>
<td>L-norvaline</td>
<td>Nva -</td>
<td>C₅H₁₁NO₂</td>
<td>118.1</td>
<td>262.2</td>
</tr>
<tr>
<td></td>
<td>L-methionine</td>
<td>Met, M</td>
<td>C₅H₁₁NO₂S</td>
<td>150.1</td>
<td>294.2</td>
</tr>
<tr>
<td></td>
<td>L-tyrosine</td>
<td>Tyr, Y</td>
<td>C₉H₁₇NO₃</td>
<td>182.1</td>
<td>326.2</td>
</tr>
<tr>
<td></td>
<td>L-isoleucine</td>
<td>Ile, I</td>
<td>C₆H₁₃NO₂</td>
<td>132.1</td>
<td>276.2</td>
</tr>
<tr>
<td></td>
<td>L-leucine</td>
<td>Leu, L</td>
<td>C₆H₁₃NO₂</td>
<td>132.1</td>
<td>276.2</td>
</tr>
</tbody>
</table>
Appendix A Standard Specifications

<table>
<thead>
<tr>
<th>Structure</th>
<th>Name</th>
<th>Abbreviations (three-letter, one-letter)</th>
<th>Formula</th>
<th>MH+ Unlabeled</th>
<th>MH+ Labeled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L-norleucine</td>
<td>Nle</td>
<td>C₆H₁₃NO₂</td>
<td>132.1</td>
<td>276.2</td>
</tr>
<tr>
<td></td>
<td>L-phenylalanine</td>
<td>Phe, F</td>
<td>C₉H₁₁NO₂</td>
<td>166.1</td>
<td>310.2</td>
</tr>
</tbody>
</table>
This appendix covers:

Small-volume handling tips to ensure accurate concentrations and volumes ... 46
Material storage ... 47
Quality control tests ... 48
Recovery issues ... 51
Resolution and Retention Time Issues 53
Small-volume handling tips to ensure accurate concentrations and volumes

To ensure accurate concentrations throughout the labeling protocol:

- Have all vials of samples and reagents at room temperature
- Capture all material from the sides and cap of the vial by centrifuging (spinning) the vials at 10,000 × g for 2 minutes
- Cap each tube promptly to avoid evaporation
- Store materials according to the recommended conditions

To ensure accurate pipetting:

- Use high-quality disposable tips
- Use a fresh tip for each pipetting step
- For each sample draw, use the same:
 - Pressure on the plunger at the first stop while immersing the tip in the sample
 - Slow and smooth technique when pressing and releasing the plunger
 - Immersion depth (see the pipette manufacturer’s recommendation)
- Avoid air bubbles.
 If an air bubble is trapped in the tip during filling, dispense the sample back into the tube. Pipette again using a fresh tip.
- Each time you dispense the sample:
 - Be consistent when you pause between reaching the first stop and pressing the plunger to the second stop
 - Keep the plunger fully depressed while withdrawing the pipette from the tube, sliding the tip along the wall of the tube

IMPORTANT! Never lay a pipette on its side or invert a pipette with sample in the tip.
Material storage

Hydroxylamine, iTRAQ® Reagent, and iTRAQ Reagent-labeled materials must be stored at −15 to −25 °C (Table 5). Improperly stored materials may result in inaccurate assays.

Table 5 Recommended storage conditions

<table>
<thead>
<tr>
<th>Store at −15 to −25 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrolysates Standard - 114 Labeled, as shipped</td>
</tr>
<tr>
<td>Hydrolysates Standard - 114 Labeled, reconstituted (iTRAQ Reagent 114-labeled amino acid internal standard)</td>
</tr>
<tr>
<td>iTRAQ Reagent 117, as shipped</td>
</tr>
<tr>
<td>Diluted iTRAQ Reagent 117 (isopropanol solution, for up to 4 weeks)</td>
</tr>
<tr>
<td>Dried iTRAQ Reagent 117-labeled sample</td>
</tr>
<tr>
<td>iTRAQ Reagent 117-labeled sample, reconstituted For optimal results, reconstitute the labeled sample at the time of assay. Some reconstituted samples can be stored at 4 °C for up to 1 week.</td>
</tr>
<tr>
<td>Hydrolysates Standard - 117 Labeled, as shipped</td>
</tr>
<tr>
<td>Hydrolysates Standard - Unlabeled, as shipped</td>
</tr>
<tr>
<td>Hydroxylamine, as shipped</td>
</tr>
<tr>
<td>Can store at room temperature‡</td>
</tr>
<tr>
<td>Isopropanol, as shipped</td>
</tr>
<tr>
<td>Labeling Buffer - Amino Acid, as shipped</td>
</tr>
<tr>
<td>Mobile Phase Modifier A, as shipped</td>
</tr>
<tr>
<td>Mobile Phase Modifier B, as shipped</td>
</tr>
<tr>
<td>Sample Diluent - Amino Acid, as shipped</td>
</tr>
</tbody>
</table>

‡ These materials can be kept in the iTRAQ Reagent Application Kit and stored at −15 to −25 °C, or they can be stored at room temperature.
Quality control tests

The Amino Acid 20/20 Analyzer Starter Kit - Hydrolysate provides three standards:

- **Hydrolysates Standard - 114 Labeled** – To verify the performance of the chromatographic separation and that the sensitivity is acceptable. In conjunction with Hydrolysates Standard - 117 Labeled, to verify the quantitation performance of the system.

- **Hydrolysates Standard - 117 Labeled** – In conjunction with Hydrolysates Standard - 114 Labeled, to test the chromatographic and quantitation performance of the system.

- **Hydrolysates Standard - Unlabeled** – To verify the performance of the entire methodology (labeling protocol, separation, and quantitation).

To verify chromatographic performance, run the System Suitability test using iTRAQ Reagent 114-Labeled Standard. The System suitability test detects potential shifts in the peak retention times. The software then adjusts the MRM experiment period windows to accommodate the shifts.

The System suitability test for an AB SCIEX instrument is performed by:

- An AB SCIEX field service engineer at installation
- An AB SCIEX field application specialist while troubleshooting, if necessary
- The system owner or operator:
 - After configuring the system for another use (changing the source and plumbing), then reconfiguring with the TurboIonSpray® source as recommended in “Set up the HPLC system” on page 24.
 - To correct for the changes in retention times due to the column aging and variations in batches of mobile phase.
 - Before any new batch of samples.
Quality control tests

Testing quantitation performance

⚠️ WARNING CHEMICAL HAZARD. iTRAQ® Reagents (114, 117) are flammable liquids and vapors. Exposure may cause eye and respiratory tract irritation and blood system damage. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

To test the quantitation performance of the system, substitute iTRAQ Reagent 117-labeled amino acid standard for your labeled sample as follows:

1. Prepare a 6-pmol/µL iTRAQ Reagent 117-labeled amino acid standard solution by reconstituting one vial of Hydrolysates Standard - 117 Labeled with Sample Diluent - Amino Acid. The amount of Sample Diluent - Amino Acid to use is indicated on the reagent vial label and the Certificate of Analysis (approximately 1.67 mL).

2. Prepare a 6-pmol/µL iTRAQ Reagent 114-labeled amino acid internal standard by reconstituting one vial of Hydrolysates Standard - 114 Labeled with Sample Diluent - Amino Acid. The amount of Sample Diluent - Amino Acid to use is indicated on the vial label or the Certificate of Analysis (approximately 1.67 mL).

3. Transfer a 12-µL aliquot of the iTRAQ Reagent 117-labeled amino acid internal standard solution to a fresh tube.

4. To the aliquot, add 12 µL of iTRAQ Reagent 114-labeled amino acid internal standard. Cap the tube promptly to avoid evaporation.

5. Vortex to mix, then spin.

Analyzing the samples

A 5-µL injection contains 15 pmol of each iTRAQ Reagent 114-labeled amino acid and 15 pmol of each iTRAQ Reagent 117-labeled amino acid.

Analyze the sample by LC/MS/MS (see Chapter 3, LC/MS/MS Analysis). In the Cliquid® Software, step 2, Build sample list, change the amount of internal standard to 15 pmole for each amino acid.

For most amino acids in the standards, verify that the calculated amount (pmol) of iTRAQ Reagent 117-labeled amino acid is within 20% of the internal standard amount (15 pmol).
Testing the protocol

When you run the protocol for the first time, it is strongly recommended that you perform the protocol to label the vial of Hydrolysates Standard - Unlabeled. Analyzing the practice samples provides information about the proficiency of sample handling and the efficiency of the labeling protocol for each amino acid.

Follow the labeling protocol, substituting 1 µL of Hydrolysates Standard - Unlabeled for a hydrolysate sample containing 1 µg of hydrolysate.

The 1-µL aliquot of Hydrolysates Standard - Unlabeled contains 500 pmol of each amino acid, excluding norvaline. Norvaline is incorporated when diluting the sample with Labeling Buffer - Amino Acid (30 pmol/µL).

Analyzing the samples

After labeling with iTRAQ Reagent 117, the Hydrolysates Standard - Unlabeled contains the same amino acids as the vial of Hydrolysates Standard - 114 Labeled (see page 36).

After labeling with iTRAQ Reagent 117 and adding iTRAQ Reagent 114-labeled amino acid internal standard, a 5-µL injection contains:

- 30 pmol of each iTRAQ Reagent 114-labeled amino acid
- 100 pmol of each iTRAQ Reagent 117-labeled amino acid (except norvaline, 30 pmol).

Analyze the sample by LC/MS/MS (see Chapter 3, “LC/MS/MS Analysis”). Verify that peaks display at m/z 114 and 117. For most amino acids in the standard, verify that the calculated amount (pmol) is within 20% of the expected amount (100 pmol for each amino acid except norvaline, 30 pmol).
Recovery issues

Table 6 Recovery issues

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low recovery of amino acids</td>
<td>The sample amount is too large.</td>
<td>Prepare a fresh sample, maintaining the total amino acid at no more than 10 nmol. For samples larger than 1 µg of hydrolysate, modify the protocol as described in step 2 on page 15 and step 6 on page 15.</td>
</tr>
<tr>
<td></td>
<td>The hydrolysate contains moisture.</td>
<td>Completely dry the hydrolysate and sample tube before adding Labeling Buffer - Amino Acid.</td>
</tr>
<tr>
<td></td>
<td>The iTRAQ® Reagent 117 concentration is too low.</td>
<td>Precisely dilute a fresh vial of iTRAQ Reagent 117 with 70 µL of isopropanol.</td>
</tr>
<tr>
<td></td>
<td>The mixing of diluted iTRAQ Reagent 117 is incomplete.</td>
<td>Vortex the tube.</td>
</tr>
</tbody>
</table>
| | If the tube was open too long, evaporation occurred and the iTRAQ Reagent 114-labeled amino acid internal standard became concentrated. | • Dilute a fresh vial of Hydrolysates Standard - 114 Labeled. Rerun the protocol.
• If you know the concentration of each amino acid, enter it in the Cliquid® Software sample list, then resubmit. |
| High recovery of amino acids | Inaccurate dilution caused a low concentration of iTRAQ Reagent 114-labeled amino acid internal standard. | • Precisely dilute a fresh vial of Hydrolysates Standard - 114 Labeled. Rerun the protocol.
• If you know the concentration of each amino acid, enter it in the Cliquid® Software sample list, then resubmit. |
| Inaccurate recovery of any or all amino acids | The pipette tips were contaminated. | Use a fresh tip for each pipetting step. |
Table 6 Recovery issues *(continued)*

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inaccurate recovery of:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanine or arginine</td>
<td>Aged iTRAQ Reagent 114-labeled amino acid internal standard yielded an artifact peak. If an artifact peak elutes slightly before the true peak, the software integrates on the artifact peak.</td>
<td>Manually integrate using the true peak.</td>
</tr>
<tr>
<td>Cysteine</td>
<td>Cysteine oxidized to its dimeric form, cystine.</td>
<td>The accuracy of cysteine quantitation may be lower than the other amino acids because of the instability of the monomeric form. Verify that sufficient hydroxylamine was added in step 8 on page 16. The hydroxylamine stabilizes monomeric cysteine.</td>
</tr>
<tr>
<td>Proline</td>
<td>The sample amount is too large.</td>
<td>Prepare a fresh sample, maintaining the total amino acid at no more than 10 nmol. For samples larger than 1 µg of hydrolysate, modify the protocol as described in step 2 on page 15 and step 6 on page 15.</td>
</tr>
<tr>
<td>Serine</td>
<td>Excessive loss occurs during hydrolysis.</td>
<td>Hydrolyze a fresh sample using the appropriate conditions.</td>
</tr>
<tr>
<td>Lysine</td>
<td>• The autosampler injected too small a volume of sample.</td>
<td>• Adjust the autosampler injection volume.</td>
</tr>
<tr>
<td></td>
<td>• The MS detector sensitivity decreased.</td>
<td>• Clean the source and sprayer tip.</td>
</tr>
<tr>
<td></td>
<td>• The column is contaminated or leaking.</td>
<td>• Wash the column and stop the leak.</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>The phenolic hydroxyl group was partial labelled.</td>
<td>Check that sufficient hydroxylamine was added in step 8 on page 16. The hydroxylamine reverses partial labeling of the phenolic hydroxyl group.</td>
</tr>
</tbody>
</table>
Resolution and Retention Time Issues

Table 7 Recovery Issues

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of resolution between Val/NorVal and lleu/Leu/NorLeu</td>
<td>• The column is not conditioned</td>
<td>• Condition the column by making at least two injections of iTRAQ Reagent 114- or 117-labeled Standard before running samples.</td>
</tr>
<tr>
<td></td>
<td>• The starting mobile phase condition has excess Mobile phase B</td>
<td>• Correct the percentage of Mobile phase B in the starting phase.</td>
</tr>
<tr>
<td></td>
<td>• The column has exceeded its useful life span</td>
<td>• Discard the column and replace it with a fresh column.</td>
</tr>
<tr>
<td>An acceptable chromatogram has the following resolution of the peak pairs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Val/NorVal: $\geq 90%$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• lleu/Leu/NorLeu: $\geq 75%$</td>
<td></td>
</tr>
<tr>
<td>General increase in retention times</td>
<td>• Incorrect mobile phase concentration</td>
<td>Carefully prepare fresh mobile phase (see “Prepare the mobile phases” on page 23).</td>
</tr>
<tr>
<td></td>
<td>• Excess Mobile Phase Modifier B concentration</td>
<td></td>
</tr>
<tr>
<td>General decrease in retention times</td>
<td>• Incorrect mobile phase concentration</td>
<td>Carefully prepare fresh mobile phase (see “Prepare the mobile phases” on page 23).</td>
</tr>
<tr>
<td></td>
<td>• Insufficient Mobile Phase Modifier B concentration</td>
<td></td>
</tr>
<tr>
<td>The first few samples of a batch exhibit a shift in retention time and unstable chromatography</td>
<td>The column is not conditioned</td>
<td>Condition the column by making at least two injections of iTRAQ Reagent 114- or 117-labeled Standard before running samples.</td>
</tr>
<tr>
<td>Certain amino acids with masses close to the period borders are not detected</td>
<td>The retention times drifted out of the periods</td>
<td>Run the System Suitability test using iTRAQ Reagent 114-labeled amino acid internal standard (page 48). The System Suitability test automatically adjusts the periods.</td>
</tr>
<tr>
<td>One or more amino acid peaks show a saturated signal (an intensity or peak height in cps greater than 1.5e6 cps).</td>
<td>The sample concentration is too high.</td>
<td>Dilute the sample with an equal volume of Sample Diluent - Amino Acid. Analyze the diluted sample, then in the Cliquid® Software, step 2, Build sample list, enter 15 pmole as the amount of internal standard for each amino acid.</td>
</tr>
</tbody>
</table>
This appendix covers:

MRM Overview .. 56
Developing a customized Amino Acid 20/20™ sample assay acquisition method .. 57
MRM Overview

The preconfigured acquisition and quantitation method files provided with the Cliquid® Software define a multiple reaction monitoring (MRM) mass spectrometry experiment.

MRM allows you to set:

- The first quadropole filter to select the labeled amino acid of interest (precursor ion) for fragmentation and
- Another quadropole filter to select the cleaved iTRAQ® Reagent label of interest (product ion) for detection.

You also select the amount of time (dwell) that the mass spectrometer continues to detect the iTRAQ Reagent label of interest.

For an AA20 sample assay, the MRM scan has one experiment with four periods scanned in positive polarity. Organizing the experiment into three periods in which specific amino acids are monitored allows for collecting more data points per peak and more accurate quantitation. The fourth period is an equilibration period.
Developing a customized Amino Acid 20/20™ sample assay acquisition method

The values in Tables 8 through 10 are the values used in the preconfigured acquisition and quantitation method files. These values can be used as starting points for a lab manager to create customized methods for non-supported autosamplers.

HPLC conditions

The recommended flow rate is 1.0 mL/min, split in the source to 200 to 250 μL/min. Table 8 shows the recommended LC gradient.

Table 8 Recommended LC gradient for the AA20 sample assay

<table>
<thead>
<tr>
<th>Total time (min)</th>
<th>%Mobile phase A</th>
<th>%Mobile phase B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>98.0</td>
<td>2.0</td>
</tr>
<tr>
<td>10.0</td>
<td>72.0</td>
<td>28.0</td>
</tr>
<tr>
<td>10.1</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>16.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>16.1</td>
<td>98.0</td>
<td>2.0</td>
</tr>
<tr>
<td>25.0</td>
<td>98.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
TIS values

Table 9 shows the TurboIonSpray® (TIS) source Source/Gas and Compound values.

Table 9 Recommended TIS values

<table>
<thead>
<tr>
<th>Gas or compound</th>
<th>LC/MS/MS systems</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>API 2000™</td>
<td>API 3200™ or API 4000™</td>
<td>3200 or 4000 Q TRAP® system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TurboIonSpray® source/gas values</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUR</td>
<td>25</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>CAD</td>
<td>6</td>
<td>3</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>IS (Positive)</td>
<td>5500</td>
<td>1500</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>TEM</td>
<td>375</td>
<td>600</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>GS 1</td>
<td>35</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>GS 2</td>
<td>45</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>ihe</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP (Positive)</td>
<td>45</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>FP</td>
<td>400</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>CXP</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
MRM values Table 10 shows the Q1 (precursor ion) and Q3 (product ion) masses.

Table 10 MRM transitions for the AA20 assay

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Q1 mass (amu) (labeled amino acid)</th>
<th>Q3 mass (amu) (ITRAQ® Reagent label)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-serine</td>
<td>250.15 250.16</td>
<td>117.11 114.11</td>
</tr>
<tr>
<td>L-serine internal standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>glycine</td>
<td>220.14 220.15</td>
<td>117.11 114.11</td>
</tr>
<tr>
<td>glycine internal standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-histidine</td>
<td>300.18 300.18</td>
<td>117.11 114.11</td>
</tr>
<tr>
<td>L-histidine internal standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-aspartic acid</td>
<td>278.15 278.15</td>
<td>117.11 114.11</td>
</tr>
<tr>
<td>L-aspartic acid internal standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-methionine sulfoxide</td>
<td>310.16 310.16</td>
<td>117.11 114.11</td>
</tr>
<tr>
<td>L-methionine sulfoxide internal standard</td>
<td>310.16</td>
<td></td>
</tr>
<tr>
<td>L-threonine</td>
<td>264.17 264.17</td>
<td>117.11 114.11</td>
</tr>
<tr>
<td>L-threonine internal standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-alanine</td>
<td>234.16 234.16</td>
<td>117.11 114.11</td>
</tr>
<tr>
<td>L-alanine internal standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-glutamic acid</td>
<td>292.16 292.17</td>
<td>117.11 114.11</td>
</tr>
<tr>
<td>L-glutamic acid internal standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-arginine</td>
<td>319.22 319.23</td>
<td>117.11 114.11</td>
</tr>
<tr>
<td>L-arginine internal standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-proline</td>
<td>260.17 260.18</td>
<td>117.11 114.11</td>
</tr>
<tr>
<td>L-proline internal standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-cysteine</td>
<td>265.12 265.13</td>
<td>117.11 114.11</td>
</tr>
<tr>
<td>L-cysteine internal standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-lysine</td>
<td>435.32 435.33</td>
<td>117.11 114.11</td>
</tr>
<tr>
<td>L-lysine internal standard (2 tags)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-valine</td>
<td>262.19 262.19</td>
<td>117.11 114.11</td>
</tr>
<tr>
<td>L-valine internal standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-norvaline</td>
<td>262.19 262.19</td>
<td>117.11 114.11</td>
</tr>
<tr>
<td>L-norvaline internal standard</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10 MRM transitions for the AA20 assay

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Q1 mass (amu) (labeled amino acid)</th>
<th>Q3 mass (amu) (iTRAQ® Reagent label)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-methionine</td>
<td>294.16</td>
<td>117.11</td>
</tr>
<tr>
<td>L-methionine internal standard</td>
<td>294.16</td>
<td>114.11</td>
</tr>
<tr>
<td>L-tyrosine</td>
<td>326.18</td>
<td>117.11</td>
</tr>
<tr>
<td>L-tyrosine internal standard</td>
<td>326.19</td>
<td>114.11</td>
</tr>
<tr>
<td>L-isoleucine</td>
<td>276.20</td>
<td>117.11</td>
</tr>
<tr>
<td>L-isoleucine internal standard</td>
<td>276.21</td>
<td>114.11</td>
</tr>
<tr>
<td>L-leucine</td>
<td>276.20</td>
<td>117.11</td>
</tr>
<tr>
<td>L-leucine internal standard</td>
<td>276.21</td>
<td>114.11</td>
</tr>
<tr>
<td>L-norleucine</td>
<td>276.20</td>
<td>117.11</td>
</tr>
<tr>
<td>L-norleucine internal standard</td>
<td>276.21</td>
<td>114.11</td>
</tr>
<tr>
<td>L-phenylalanine</td>
<td>310.19</td>
<td>117.11</td>
</tr>
<tr>
<td>L-phenylalanine internal standard</td>
<td>310.19</td>
<td>114.11</td>
</tr>
</tbody>
</table>