QTRAP® Functionality: Is it useful to toxicology labs?

For Research Use Only. Not for use in diagnostic procedures
Overview

• QTRAP® technology
 – Hardware overview and scan functions
 – QTRAP® vs. triple quadrupole

• Increasing confidence in compound identification
 – Unique QTRAP® MRM-EPI with library searching

• Increasing selectivity for quantitation
 – Unique QTRAP® MRM³ to remove interferences

• More information to identify unknown compounds
 – Combining the power of high sensitivity and fast MS, MS/MS, MS³ and enhanced resolution scanning
Why talking about QTRAP® Technology Almost 10 Years After First Launch?

• Technical improvements in hardware and software throughout the years, i.e. *Scheduled MRM™* algorithm, Linear Accelerator™ trap technology...

• Leading forensic laboratories increasingly employ QTRAP® based methods
 – Shift from pure target quantitation to multi-target screening and non-target screening
 – Availability of MS/MS libraries, increasing number of compounds in libraries, improving spectral quality, optimized library search algorithm
 – Need for increased selectivity for quantitation
Technology Overview
QTRAP® Technology
Hybrid Triple Quadrupole Linear Ion Trap (LIT)

Turbo V™ source
Curtain Gas™ interface

Q0 Q1 LINAC® collision cell Q2 Q3

Ion production
Ion filtering
Ion filtering

Ion transport
Fragmentation
Ion detection

Trapping / Scanning
QTRAP® Scan Functions
QTRAP® Features

• A QTRAP® system is two different mass spectrometers under one hood.
 – All triple quadrupole scan functions (i.e. MRM, Scheduled MRM™ algorithm, precursor scan, neutral loss scan)
 – No compromise in triple quadrupole performance, no loss in sensitivity and no loss in selectivity

• A QTRAP® system offers additional features.
 – Fast and sensitive MS scan
 – Fast and sensitive MS/MS scan
 – Fast and sensitive MS/MS/MS scan
 – Highly selective MRM³
 – Enhanced Resolution scan for high selectivity quantitation
 – All scan types can be combined in Information Dependent Acquisition (IDA) methods to maximize information per sample
Multiple Reaction Monitoring (MRM)
Multiple Reaction Monitoring (MRM)

- Highest selectivity and sensitivity for quantitation
 - Mass filtering in both Q1 and Q3: *fast, sensitive and selective*
 - LINAC® collision cell (Linear Accelerator): *shortest dwell times per MRM transition without cross talk*
 - Scheduled MRM™ algorithm: *maximum number of MRM transitions and optimal accuracy and reproducibility*
Identical MRM Performance (Signal and S/N) using Triple Quad and QTRAP® Systems
Enhanced Product Ion (EPI) Scan
Trapping and Scanning in a Linear Ion Trap

(1) Trapping

(2) Scanning
Enhanced Product Ion Scan (EPI)

- Fast and sensitive MS/MS scan
 - Precursor ion filtering in Q1
 - Fragmentation in the LINAC® collision cell
 - Trapping in Q3 (fixed or dynamic fill time)
 - Scanning of fragment ions at 4000 Da/s and up to 20,000 Da/s (QTRAP® 5500 systems)
Linear Accelerator™ Trap Technology

- **Addition of axial fields within the linear ion trap**
 - Move ions towards the extraction region just before the mass scan
 - Increased ion trap sensitivity
 - Faster scan speeds
 - Overall reduction of cycle time

- **Pulsed gas supply at the end of the linear ion trap**
 - More efficient in-trap fragmentation
 - Reduced cooling time
 - Shorter MRM³ and MS³ cycle time
 - More Efficient In-Trap Fragmentation
Example MS/MS QTRAP® vs. QqQ
Higher Sensitivity Maintaining the Characteristic Fragmentation Pattern

QTRAP® system - EPI
970000cps

Triple Quadrupole - PI
4010cps
Information Dependent Acquisition (IDA)

MRM \rightarrow EPI
Information Dependent Acquisition (IDA)
Multi-Target Screening and Quantitation with MS/MS Identification

Scheduled MRM™ survey

EPI

Threshold

Library Search

intensity threshold

© 2014 AB SCIEX - RUO-MKT-11-1723-A
Advantage of QTRAP® Technology for Multi-Target Screening with Identification

- **Triple Quad**
 - Quantitation
 - ID with MRM ratio

- **QTRAP® system**
 - Quantitation
 - ID with MRM ratio
 - ID with MS/MS library searching

Increasing confidence in compound ID
MRM-EPI to Quantify and Identify
Molecular Fingerprint for Highest Confidence in Compound Identification

MRM to quantify

EPI to confirm by library search
Example 1: Detection/identification

MS/MS Library Search at Low Levels

Good Library Match Although only 3400 cps in MRM Mode

Retention Time: 2.56 minutes
Q1/Q3: 267.05/241.000 0 e
Fit (%): 100.0 FRT (%): 83.2

Acquired Spectrum

Collision Energy = 35 ± 15 eV

Library Spectrum

MRM of Oxazepam 287.1/241.0

(Detection)

Acquired spectrum

(Identification)

Library spectrum of Oxazepam

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>Peak Area</th>
<th>Purity (%)</th>
<th>Visual Check?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Oxazepam</td>
<td>1.40e+004</td>
<td>83.2</td>
<td></td>
</tr>
</tbody>
</table>
Detection and identification of 700 drugs by multi-target screening with a 3200 Q TRAP® LC-MS/MS system and library searching

S. Dresen • N. Ferreirós • H. Gnann • R. Zimmermann • W. Weinmann

The EPI scans were performed at a scan range of 50 to 700 amu after a fixed fill time of 50 ms with a scan rate of 4,000 amu/s applying a CES of 35±15 eV. Q0 trapping was activated to accumulate ions in Q0 while concurrently scanning ions from the linear ion trap and the pause time after the EPI scans was set to 5 ms. The declustering potential, entrance potential, gas values, and source temperature were the same as used for the MRM mode. Analyst® version 1.5 and Cliquid® 2.0 (both Applied Biosystems/MDS Sciex) were used to operate the LC-MS/MS system.

The LC-MS/MS system consisted of a 3200 Q TRAP® triple-quadrupole linear ion trap mass spectrometer fitted with a TurboIonSpray interface (Applied Biosystems/MDS Sciex) in a survey scan and an IDA-triggered dependent scan. As a survey scan an MRM method with 700 transitions in positive ionization mode for 700 analytes was established by using our MS/MS library and the MRM catalogue of Cliquid® 2.0 to automatically select the precursor mass, the most intensive product ion, and its corresponding collision energy. The MRM transitions were only analyzed at a time window of ±60 s and the total cycle time of the MRM mode was 2.1 s including the pause time between the MRM transitions of 2 ms. The compounds with corresponding MRM transitions and retention times are shown in Table S1.
QTRAP® Acquisition and Data Processing Workflow with MasterView™

• Screening and identification followed by quantitation and confirmation
 1. MRM-EPI: MasterView™ (single MRM only?)
 2. Scheduled MRM™ Pro: MultiQuant™

For Research Use Only. Not for use in diagnostic procedures
Method Verification: 40 Drugs at 10 ng/mL

MS/MS spectra collected for all drugs with corresponding matching library spectra
Unknown – Screening and Identification

Alprazolam positive identification; RT and Library Hit
Quick Single Point Calibration Quantification - 72ng/mL

Unknown 1

Control - standard 10 ng/mL

Methadone acquired MS/MS spectrum

Methadone Library MS/MS spectrum
Enhanced MS (EMS) Scan
Advantage of QTRAP® Technology for Unknown Screening and Identification

Triple Quad
- MRM Quantitation
- ID with MRM ratio
- Low sensitivity and slow MS and MS/MS

QTRAP® system
- MRM Quantitation
- ID with MRM ratio
- High sensitivity and fast MS, MS/MS, MS/MS/MS, and ER

information to detect and identify compounds
Enhanced MS Scan (EMS)

- Fast and sensitive MS scan
 - No Precursor ion filtering in Q1
 - No Fragmentation in the LINAC® collision cell
 - Trapping in Q3 (fixed or dynamic fill time)
 - Scanning of fragment ions at 4000 Da/s and up to 20,000 Da/s (QTRAP® 5500 systems)
Information Dependent Acquisition (IDA)
Non-Target Screening MS/MS Identification
General Unknown Screening on QTRAP®

Example: EMS-EPI

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>Peak Area (counts)</th>
<th>Purity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dextromethorphan</td>
<td>1.37e+008</td>
<td>85.6</td>
</tr>
</tbody>
</table>

Acquired spectrum (Identification)

Library spectrum of Dextromethorphan

XIC of EMS peak (272.2-272.8) (Detection)
MRM³ Quantitation
Advantage of with QTRAP® Technology for Quantitation and Identification

Triple Quad

- MRM Quantitation
- ID with MRM ratio

QTRAP® system

- MRM Quantitation
- ID with MRM ratio
- MRM³ Quantitation

increasing selectivity for quantitation
MRM³

- Precursor selection in Q1.
- Collisional activation in the Q2 Qurved LINAC collision cell
- Trapping of first-generation fragment ions in the Linear Accelerator Trap
- Isolation of 2nd precursor in the LIT by RF/DC isolation.
- Collisional activation of 2nd precursor by Single Frequency Excitation
- 2nd generation fragments are scanned out of the Linear Accelerator Trap
- During steps 3-6, ions for the next cycle are accumulated in Q0 for enhanced sensitivity (Q0 Trapping).
Example 1: THC-COOH in hair

MRM vs. MRM3 – THC-COOH in Human Hair
100 pg/mL Solvent vs. Matrix

XIC of -MRM (3 pairs): 343.1/299.2 Da from...
Max. 6706.3 cps.

MRM
343.1/299.2
100 pg/mL in solvent

S/N = 37.8
Peak Int.(Subt.)=6.3e+3
3xStd.Dev.(Noise)=1.7e+2

TIC of -MS3 (343.10),(299.20): from Sample...
Max. 3.4e6 cps.

MRM3
343.1/299.2/245.1
100 pg/mL in solvent

S/N = 59.7
Peak Int.(Subt.)=3.4e+6
3xStd.Dev.(Noise)=5.7e+4

XIC of -MRM (3 pairs): 343.1/299.2 Da from...
Max. 2.6e4 cps.

MRM
343.1/299.2
100 pg/mL in matrix

S/N = 26.1
Peak Int.(Subt.)=2.6e+6
3xStd.Dev.(Noise)=9.9e+4

TIC of -MS3 (343.10),(299.20): from Sample...
Max. 2.6e6 cps.

MRM3
343.1/299.2/245.1
100 pg/mL in matrix

For Research Use Only. Not for use in diagnostic procedures
Example 2: THC-COOH in oral fluid

Top: 10 pg/mL; Bottom: 30 pg/mL

MRM

MRM³

For Research Use Only. Not for use in diagnostic procedures
Trademarks

For Research Use Only. Not for use in diagnostic procedures. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license.

© 2014 AB SCIEX.
Thank You