ABSTRACT

Chiral separation of drug enantiomers is essential in order to show that the active enantiomer is indeed present in biological specimens. This work describes a methodological approach in chiral electrophoresis, the analysis of chiral separation (MHC)-based chiral samples via the instrument-documented strategy. The method was validated using the Partial Filling Technique (PFT) under conditions described in Figure 2.

INTRODUCTION

In 2005, Rudaz and Veuthey (2) showed that adequate chiral separations and identification of enantiomers could be done using a sheath liquid CE-MS technique. Their Partial Filling Technique (PFT) under conditions described in Figure 2 was used to interface CE and MS, providing the required sensitivity on line from VWR Int. HS Cerilliant Corporation, Round Rock, TX, USA. The standard solutions in methanol were diluted and spiked into volunteer urine samples. Standard solutions for mass spectrometry and extractions were prepared by Cerilliant Corporation, Round Rock, TX, USA. The standard solutions in methanol were diluted and spiked into volunteer urine samples. Standard solutions for mass spectrometry and extractions were prepared by Cerilliant Corporation, Round Rock, TX, USA. The standard solutions in methanol were diluted and spiked into volunteer urine samples. Standard solutions for mass spectrometry and extractions were prepared by Cerilliant Corporation, Round Rock, TX, USA.

MATERIAL AND METHODS

Chromatography:

- All chemicals were Regent Grade and were purchased on line from VWR Int. HS Cerilliant Corporation, Round Rock, TX, USA.

Drug and Metabolite Standards:

- Methamphetamine
derivatives with highly sulfated cyclodextrin, migrating in the counter direction of the analytes, facilitates the separation with ultra high resolution of important enatiomeric compounds.

CONCLUSIONS

The highly sulfated cyclodextrin, migrating in the counter direction of the analytes, facilitates the separation with ultra high resolution of important enatiomeric compounds.

This work was made possible by the use of a Partial Filling Technique (PFT) adapted to a low flow Capillary Electrophoresis Electrospray Interface for Mass Spectrometry (Chiral CE-MS). The method was validated using the Partial Filling Technique (PFT) under conditions described in Figure 2. The Chiral CESI-MS separation for the 0.5 ng/mL spiked urine extract is shown in Figure 6. LOD/LOQ was the lowest calibration 0.5 ng/mL of each enantiomer.

REFERENCES

TRADEMARKS/LICENSEING

For Research Use Only. Not for use in diagnostic procedures.