Estimation of (R)-Isomer and Other Impurities of Zolmitriptan API by Capillary Zone Electrophoresis

Prashant Dour, Abel Shalom, Dilip Reddy, Manoj Pillai
SCIEX, 121, Udyog Vihar, Phase IV, Gurgaon, Haryana, India

Overview

Who Should Read This: Senior Scientists, Lab Directors

Focus: Measurement of the (R)-isomer and impurities of zolmitriptan by capillary zone electrophoresis (CZE).

Problem: Zolmitriptan, (4S)-4-[3-[2-dimethyl aminoethyl]-1H-5-indolyl-methyl]-1,3-oxazolan-2-one, is a serotonin receptor agonist that is highly effective in the acute treatment of migraines.\(^1\) Zolmitriptan is synthesized as the (S)-isomer because (S)-zolmitriptan is pharmacologically more potent than (R)-zolmitriptan and because (R)-zolmitriptan is toxic. Due to this toxicity, the allowed limit of the (R)-isomer has been established by the USP as 0.15% w/w.\(^2\) As such, an accurate and robust method is needed to evaluate the enantiomeric purity of zolmitriptan.

Results: The system met the suitability standards established by the United States Pharmacopoeia. Obtained relative migration times (RMTs) were comparable to USP RMTs and consistent over multiple runs.

Key Challenges:

- The developed analytical method must be able to resolve the enantiomers of zolmitriptan as well as related impurities
- The developed analytical method must be accurate and reproducible

Key Features:

- Capillary zone electrophoresis is highly effective at separating enantiomers
- In many cases, capillary zone electrophoresis provides greater resolution than liquid chromatography
- The P/ACE™ MDQ Plus Capillary Electrophoresis (CE) System features, as standard, temperature control of both the sample and capillary. This greatly enhances the analytical reproducibility that is crucial for quality control applications.
Experimental Design

Materials

Table 1. Chemical supplies

<table>
<thead>
<tr>
<th>Reagent/material</th>
<th>Catalog Number</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zolmitriptan</td>
<td>1727009</td>
<td>United States Pharmacopoeia (USP)</td>
</tr>
<tr>
<td>Zolmitriptan (R)-isomer</td>
<td>1727018</td>
<td>United States Pharmacopoeia (USP)</td>
</tr>
<tr>
<td>Zolmitriptan Related Compound F</td>
<td>1727075</td>
<td>United States Pharmacopoeia (USP)</td>
</tr>
<tr>
<td>Zolmitriptan Related Compound GS</td>
<td>1727086</td>
<td>United States Pharmacopoeia (USP)</td>
</tr>
<tr>
<td>Sodium borate</td>
<td>B3545</td>
<td>Sigma</td>
</tr>
<tr>
<td>Tryptamine HCl-A030</td>
<td>F1101-RMBB</td>
<td>www.tcichemicals.com</td>
</tr>
<tr>
<td>Hydroxypropyl β-cyclodextrin</td>
<td>XFR3G-MS</td>
<td>www.tcichemicals.com</td>
</tr>
<tr>
<td>Orthophosphoric acid, 88%</td>
<td>ECOA600144</td>
<td>Merck</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>HK3H530649</td>
<td>Merck</td>
</tr>
<tr>
<td>Water, Purified – Type 1</td>
<td>Milli-Q</td>
<td>Millipore</td>
</tr>
</tbody>
</table>

Table 2: Vials, parts, and other supplies

<table>
<thead>
<tr>
<th>Material</th>
<th>Catalog Number</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal vials (pkg of 100)</td>
<td>A62251</td>
<td>SCIEX</td>
</tr>
<tr>
<td>Universal vial caps (pkg of 100)</td>
<td>A62250</td>
<td>SCIEX</td>
</tr>
<tr>
<td>nanoVial (qty 100)</td>
<td>5043467</td>
<td>SCIEX</td>
</tr>
<tr>
<td>Capillary – 75 μm ID, 111 cm total length (qty 3)</td>
<td>360800</td>
<td>SCIEX</td>
</tr>
<tr>
<td>Cartridge assembly kit, blank</td>
<td>144738</td>
<td>SCIEX</td>
</tr>
<tr>
<td>15 & 50 mL conical bottom tubes</td>
<td>NA</td>
<td>Appropriate third party</td>
</tr>
<tr>
<td>Assorted pipettes and corresponding tips</td>
<td>NA</td>
<td>Appropriate third party</td>
</tr>
<tr>
<td>Microcentrifuge vials</td>
<td>NA</td>
<td>Appropriate third party</td>
</tr>
<tr>
<td>3 mL syringe with needle</td>
<td>NA</td>
<td>Appropriate third party</td>
</tr>
<tr>
<td>0.5 mL centrifuge vials</td>
<td>NA</td>
<td>Appropriate third party</td>
</tr>
<tr>
<td>0.45 μm syringe filters</td>
<td>4497</td>
<td>Pall Corporation</td>
</tr>
</tbody>
</table>

Reagent and Sample Preparation

Stock Solutions

Internal standard stock solution
Tryptamine was used as the internal standard (IS). The tryptamine internal standard stock solution was prepared by dissolving 2.0 mg of tryptamine in 0.02 M HCl made to a total volume of 10 mL.

Zolmitriptan stock solutions
The zolmitriptan stock solution was prepared by dissolving 2 mg of zolmitriptan in 0.02 M HCl made to a total volume of 1 mL. Similarly, zolmitriptan F, G, and (R)-isomer stock solutions were each prepared (separately) by dissolving 1 mg of the compound in 1 mL of 0.02 M HCl.

Working Solutions

System suitability solution (0.01 mg/mL tryptamine, zolmitriptan F, zolmitriptan G, and zolmitriptan (R)-isomer + 1 mg/mL zolmitriptan)
The system suitability solution was prepared by adding 10 μL of each stock solution (zolmitriptan F, G, and (R)-isomer), 50 μL of tryptamine (IS) stock solution, and 500 μL of zolmitriptan RS stock solution to a 2 mL microcentrifuge tube. The volume was made up to 1000 μL using 0.02 M HCl solution. The final mixture contained 1.0 mg/mL of zolmitriptan, 0.01 mg/mL of zolmitriptan F, G and (R)-isomer impurities and 0.01 mg/mL of tryptamine (IS).
Standard solution (0.01 mg/mL of tryptamine, 0.001 mg/mL zolmitriptan)
The standard solution was prepared by first diluting 50 µL of zolmitriptan stock solution (2 mg/mL) with 950 µL of 0.02 M HCl to produce a 0.1 mg/mL zolmitriptan solution. 10 µL of the 0.1 mg/mL zolmitriptan solution and 50 µL of the tryptamine (IS) stock (0.2 mg/mL) were then aliquoted into a microcentrifuge tube, to which was added 940 µL of 0.02 M HCl. The solution was gently vortexed for uniform mixing.

Sample solution (0.01 mg/mL of tryptamine, 1.0 mg/mL zolmitriptan sample)
1 mg of sample was weighed into a 1.5 mL Eppendorf tube. 950 µL of 0.02 M HCl and 50 µL of tryptamine (IS) stock solution were added and briefly vortexed to dissolve.

CZE running buffer
286.5 mg sodium borate decahydrate and 7 mL of water were combined in a 15 mL polypropylene tube and briefly vortexed to dissolve the mixture. The pH was adjusted to 2.2 with 1 N orthophosphoric acid. 750 mg of β-cyclodextrin was added to the mixture and vortexed to dissolve. Water was added to bring the total solution volume to 15 mL. The solution was filtered through a 0.45 µm syringe filter.

System Set Up and Configuration
All experiments were performed on a P/ACE™ MDQ Plus Capillary Electrophoresis (CE) System (SCIEX, Framingham, USA), equipped with a UV detector and 200 nm filter. The capillary was a 75 µm ID bare fused silica capillary with 50 cm effective length. The cartridge detection window aperture was 100 x 200 µm. The instrument was controlled by 32 Karat™ software version 10.1.33.

Initial Conditions
The initial conditions were the same for all methods:

Capillary/Sample Storage/Peak Detection Initial Conditions (see also Figure 2)
- Voltage maximum: 30.0 kV
- Current maximum: 300 µA
- Cartridge temperature: 20.0° C
- Sample storage: 15.0° C
- Peak detection threshold: 2
- Peak width: 9
- Analog output scaling: 1

UV Detector Initial Conditions (see also Figure 3)
- Acquisition: Enabled
- Wavelength of 200 nm
- Data rate: 4 Hz
- Filter: Normal
- Peak width (points): 16–25
- Absorbance signal: Direct

Current
The current generated throughout the separation was between 70 µA and 90 µA.
Separation Methods

Three methods were created in 32 Karat™ software. They were: capillary equilibration, zolmitriptan separation, and shutdown (programs depicted in Figures 4, 5, and 6, respectively).

Capillary equilibration was performed as follows:
1. 30 min rinse at 20 psi of 0.1 N NaOH
2. 60 min rinse at 20 psi of 0.1 N HCl
3. 60 min rinse at 20 psi of 0.1 N orthophosphoric acid
4. 60 min rinse at 20 psi of running buffer
5. Voltage equilibrium of 15 kV for 6 hours

Zolmitriptan separation was achieved as follows:
1. 3 min rinse at 20 psi of water
2. 5 min rinse at 20 psi of 0.1 N orthophosphoric acid
3. 5 min rinse at 20 psi with 0.1 N HCl
4. 7 min rinse and fill at 20 psi using running buffer
5. Hydrodynamic sample introduction at 1.0 psi for 5 secs
6. Buffer plug at 0.5 psi for 5 sec
7. Separation at 15.0 kV for 40 min (250 V/cm)
Peak Integration

To take full advantage of the software’s ability to analyze data as it is acquired, a few parameters need to be set in the 32 Karat™ software. The integration parameters optimized for the analysis of Zolmitriptan are shown in Figure 7.

![Figure 7: Peak integration parameters for analysis of zolmitriptan](image)

Results and Discussion

System Suitability

Per United States Pharmacopoeia, the system suitability solution must be run with a minimum of 3 replicates and standard solution with a minimum of 6 replicates in each sequence or batch.

Resolution should be not less than 1.5 between zolmitriptan and zolmitriptan (R)-isomer peaks in all of the system suitability solution injections.

Relative standard deviation should be not more than 5% for the peak response ratio of zolmitriptan and tryptamine peaks in the replicate standard solution injections.

Figure 8 shows an electropherogram generated by analysis of the system suitability solution – 0.01 mg/mL, zolmitriptan (R)-isomer, zolmitriptan related compound F, zolmitriptan related compound G, tryptamine; 1 mg/mL zolmitriptan.

![Figure 8: Electropherogram of system suitability solution](image)

The Peak ID table was set as shown in Figure 9 so the software could annotate the peaks.

![Figure 9: Peak ID table.](image)
Table 3 lists the resolution between zolmitriptan, zolmitriptan (R)-isomer, zolmitriptan related compounds, and the internal standard. The system passed the USP system suitability requirements.

<table>
<thead>
<tr>
<th>Name</th>
<th>Migration Time (MT)</th>
<th>Relative MT</th>
<th>Resolution (USP)</th>
<th>Area</th>
<th>Corrected Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zolmitriptan Related Compound F</td>
<td>17.183</td>
<td>0.611</td>
<td>0.000</td>
<td>140359</td>
<td>5473</td>
</tr>
<tr>
<td>Zolmitriptan Related Compound G</td>
<td>17.738</td>
<td>0.631</td>
<td>2.824</td>
<td>86931</td>
<td>3284</td>
</tr>
<tr>
<td>Tryptamine</td>
<td>21.262</td>
<td>0.756</td>
<td>15.095</td>
<td>281104</td>
<td>88858</td>
</tr>
<tr>
<td>Zolmitriptan</td>
<td>28.108</td>
<td>1.000</td>
<td>4.306</td>
<td>22747153</td>
<td>542209</td>
</tr>
<tr>
<td>Zolmitriptan (R)-Isomer</td>
<td>32.779</td>
<td>1.166</td>
<td>2.12</td>
<td>275765</td>
<td>5637</td>
</tr>
</tbody>
</table>

Table 3: Result table of system suitability injections. Highlighted (bold) is the resolution of zolmitriptan (R)-isomer with respect to zolmitriptan. USP minimum is 1.5.

Figure 10 shows an overlay of 6 replicates of standard solution injections. Table 4 presents the numerical results. The system passed the USP requirements.

Table 4: Results from 6 replicate injections of standard solution. Area and corrected area %RSDs are highlighted (bold). USP maximum is 5%.
Sample Analysis

Data from the standard solution and sample solution were processed using the following formula to calculate the corrected peak responses:

Corrected Peak Response = \(\frac{r}{m} \)

Where:
- \(r \) = peak response
- \(m \) = migration time of the peak (min)

The percentage of each impurity was calculated by:

\[
\% \text{ Impurity} = \left(\frac{R_u}{R_s} \right) \times \frac{C_s}{C_u} \times (1/F) \times 100
\]

Where:
- \(R_u \) = corrected peak response ratio of the impurity to the internal standard from the sample solution
- \(R_s \) = corrected peak response ratio of zolmitriptan to the internal standard from the standard solution
- \(C_s \) = concentration of USP zolmitriptan in the standard solution (mg/mL)
- \(C_u \) = concentration of zolmitriptan in the sample solution (mg/mL)
- \(F \) = relative response factor for the corresponding impurity peak

<table>
<thead>
<tr>
<th>Name</th>
<th>Relative Migration Time</th>
<th>Relative Response Factor</th>
<th>Acceptance Criteria NMT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zolmitriptan Related Compound F</td>
<td>0.68*</td>
<td>0.39</td>
<td>1.2</td>
</tr>
<tr>
<td>Zolmitriptan Related Compound G</td>
<td>0.71*</td>
<td>0.63</td>
<td>0.1</td>
</tr>
<tr>
<td>Tryptamine</td>
<td>0.78*</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>Zolmitriptan</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zolmitriptan (R)-Isomer</td>
<td>1.07*</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Any individual unspecified impurity</td>
<td>-</td>
<td>1.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

* RMTs will vary depending on the pH, concentration of separation buffer, conditioning and length of capillary.
Disregard peak due to Zolmitriptan related compound E.
Disregard peaks less than 0.10% of the area of the principal peak from the sample solution.

Table 5: Acceptance criteria as per USP 39–NF 34 (8184)

Conclusion

Separation and measurement of zolmitriptan enantiomers are necessary for quality control and for related pharmaceutical and biological study of this drug. Capillary electrophoresis technology can be readily applied to determine enantiomeric purity of zolmitriptan, even in the presence of its potential process-related impurities. Using the United States Pharmacopoeia CZE method, the P/ACE™ MDQ Plus System provided the resolution and reproducibility needed to separate the zolmitriptan enantiomers and meet USP requirements.
References

Who is SCIEX? SCIEX company’s global leadership and world-class service and support in the capillary electrophoresis and liquid chromatography-mass spectrometry industry have made it a trusted partner to thousands of the scientists and lab analysts worldwide who are focused on basic research, drug discovery and development, food and environmental testing, forensics and clinical research.

Contact Us: sciex.com/contact-us