https://sciex.com/content/SCIEX/na/us/en


Full, partial and empty capsid ratios for AAV analysis: What’s the big deal?

May 7, 2020 | Biopharma, Blogs, Pharma | 0 comments

For many of you working to develop gene therapy drugs, you know that the time to market the drug is critical. Because gene therapeutics cure diseases by targeting specific genes, it is a constant race to see who develops the drug first. Unlike other classes of drugs where multiple medications can be used to treat a disease, whoever is first to develop a gene therapy drug wins.

When it comes to adeno-associated virus-based gene therapies, there is a lack of reliable and reproducible methods to consistently produce them. One of the key challenges you face when analyzing AAVs is determining whether the therapeutic transgene payload has been successfully incorporated into the AAV vector product.

During the manufacturing of AAV vectors, capsids containing the full payload of transgenes are produced. There is also a high percentage of capsids that might not incorporate any of the transgenes (empty), or contain fragments of the transgene (partial), that are produced as well. The presence of these impurities could increase immunogenicity or inhibit transduction of full capsids by competing for vector binding sites on cells. That is why successful incorporation of the transgene is critical for the efficacy and safety of gene therapies.

SCIEX has developed a breakthrough analytical method that is able to detect with great precision whether the AAV capsids are full, partially full or empty.

You will discover:

  • A platform method that is well-suited for the separation of full, empty and partial capsids in AAV samples across multiple serotypes
  • High resolving power: separating full and empty AAVs with very small isoelectric point (pI) differences of ≤ 0.1 pH unit
  • Rapid analysis time: less than 1 hour per sample

This is instrumental in improving and streamlining the development and production process for your AAV-based therapeutics. By giving you the right analytics, you will be able to develop better quality and safer products, all while reducing the cost to manufacture.

With the prospect of shorter analysis time and better analytics, request a copy of our technical note dedicated to teaching you all about our novel method. Find out how you can improve your drug development process with this method now.

Supporting new CRISPR gene editing systems

Prime editing (PE) is a next-generation gene editing technology that utilizes a Cas9 protein fused to a prime editing guide ribonucleic acid (pegRNA) to achieve high CRISPR/Cas9 editing efficiency and precision. However, the length requirement of pegRNAs at 120–250 nucleotides (nt) and their high level of secondary structure formation present analytical challenges for the purity analysis of chemically synthesized pegRNAs during development and quality control (QC).

A new approach for comprehensive AAV evaluation including full and empty analysis

Certain next-gen vaccines and gene therapy applications rely on the usage of adeno-associated viruses (AAV) as a delivery vehicle. To ensure the safety and efficacy of viral vector drugs, multiple critical quality attributes (CQAs) need to be well characterized.

The rising tide of food allergies: Common questions and crucial insights

Allergy policies for nut-free commercial flights and nut-free childcare settings are not a rare occurrence nowadays—the reason is a rise in food allergies. Nuts are the most potent allergenic foods in terms of the amount that is required to elicit an allergic reaction and the severity of those reactions.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial