https://sciex.com/content/SCIEX/na/us/en


Unraveling the Metabolome

Jun 18, 2018 | Blogs, Life Science Research, Metabolomics | 0 comments

Dr. David Wishart, Departments of Biological Sciences and Computing Science, University of Alberta

Canada’s TMIC is an internationally-recognized leader in metabolomics, providing tools and resources that are used by laboratories around the world. The center offers metabolomic profiling and screening services to support a wide range of studies – from biomedical research to nutrient and environmental testing – and relies on SCIEX QTRAP® systems for both routine testing and research.

The Metabolomics Innovation Centre (TMIC) is Canada’s nationally-funded core facility for metabolomics research. Led by Professor David Wishart from the University of Alberta’s Departments of Biological Sciences and Computing Science, it offers a unique combination of equipment and personnel, capable of performing a wide range of studies aimed at understanding metabolic pathways and the effect or fate of compounds introduced into animals, plants, and insects. TMIC has access to more than $26 million in state-of-the-art infrastructure designed to identify over 2,000 chemicals in biological samples, including a number of SCIEX QTRAP instruments to perform quantitative MS analysis.

David explained: “TMIC is made up of several ‘nodes’ across Canada, with the majority of these located at the University of Alberta. We use a diverse range of MS-based analytical techniques, including GC-MS, LC-MS, CE-MS, and ICPMS – as well as NMR – to look at different analytes, sample types, and sample volumes. We process 5,000 to 10,000 samples a year from across Canada and the USA, as well as for a number of international studies, and our SCIEX QTRAP instruments are our ‘go to’ machines for quantitative metabolic assays; they’re the workhorses of the center.”

“We originally chose the QTRAP systems about 10 years ago. I’d had experience with MS instruments from a variety of manufacturers in a previous role but, coming from an NMR spectroscopy background; I was surprised how delicate they seemed; we spent as much time fixing them as running them. In comparison, our SCIEX QTRAPs are very robust, running almost constantly and requiring only minimal maintenance. This kind of reliability is essential when you’re a core facility offering a service to external clients. The instruments in the QTRAP range are also quite compact – they’re very much benchtop systems – which obviously makes it easier to fit them into the lab, and many of the commercially available metabolomics assays are configured for QTRAP systems, making them the logical choice.”

“OUR SCIEX QTRAP INSTRUMENTS ARE OUR ‘GO TO’ MACHINES FOR QUANTITATIVE METABOLIC ASSAYS; THEY’RE THE WORKHORSES OF THE CENTER.”

“We currently have six QTRAP systems across TMIC, including two 4000 QTRAP Systems in my lab that perform over half of all our quantitative sample analysis. We use a combination of commercial kits and in-house developed assays, and one of the benefits of having a number of instruments from the same manufacturer – and based on the same technology – is that it makes it easier to transfer assays and protocols between labs. To further simplify things, we have developed a number of internal assay kits which, combined with SCIEX’s fairly intuitive software, make it very easy to run the same assay at different nodes within TMIC. This is particularly useful given our fairly high turnover of researchers – a natural consequence of being a university-based facility – making it easier for new users to learn to operate the systems efficiently.”

“Due to the number of external samples we receive for profiling, both 4000 QTRAP instruments are running at full capacity, and so we have recently purchased a QTRAP 5500 System to increase our service capacity and provide more instrument time for research. We will also be using this system to expand our lipid analysis capabilities. Lipids play a central role in metabolomics, but identification and quantification can be very complex. SCIEX’s recent developments in this area – with the Lipidyzer Platform and a number of related protocols – are a real benefit for this work. We have had a number of very positive interactions with the SCIEX team on this subject, and this increased focus on lipid analysis is one of our main reasons for choosing the QTRAP 5500,” David concluded.

Find out more about TMIC >

This article is from the 2018 edition of the SCIEX VISION journal. You can download the full version of the journal which includes over 10 customer research stories.

Download Now >

Supporting new CRISPR gene editing systems

Prime editing (PE) is a next-generation gene editing technology that utilizes a Cas9 protein fused to a prime editing guide ribonucleic acid (pegRNA) to achieve high CRISPR/Cas9 editing efficiency and precision. However, the length requirement of pegRNAs at 120–250 nucleotides (nt) and their high level of secondary structure formation present analytical challenges for the purity analysis of chemically synthesized pegRNAs during development and quality control (QC).

A new approach for comprehensive AAV evaluation including full and empty analysis

Certain next-gen vaccines and gene therapy applications rely on the usage of adeno-associated viruses (AAV) as a delivery vehicle. To ensure the safety and efficacy of viral vector drugs, multiple critical quality attributes (CQAs) need to be well characterized.

The rising tide of food allergies: Common questions and crucial insights

Allergy policies for nut-free commercial flights and nut-free childcare settings are not a rare occurrence nowadays—the reason is a rise in food allergies. Nuts are the most potent allergenic foods in terms of the amount that is required to elicit an allergic reaction and the severity of those reactions.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial