

Separation of Native Proteins and Protein Complexes Using CESI-MS

James A. Wilkins Ph.D. Mass Spectrometry Facility

ASMS 2016

Native Protein Separations by CESI-MS Monitored by Mass Spectrometry

Advantages

- Direct coupling of capillary electrophoresis separation with mass spectrometry detection
- Separations by charge and size
- Greatly expanded molecular weight range compared to alternative approaches such as size exclusion chromatography
- Potential for "fine-tuning" separations using novel capillary coating chemistries

Native Protein Separations by CESI-MS Monitored by Mass Spectrometry

Examples

- 1. Cytochrome P450 (Cyp 124)
 - Represents one of <u>20</u> different enzymes present in *Mycobacterium tuberculosis*
 - Cytochrome P450s represent potential therapeutic targets in treatment of Tuberculosis

Use CESI-MS to detect interactions of Cyp 124 with ligand

Cyp 124 (a Cytochrome P450 Derived From *Mycobacterium tuberculosis*)

Cyp 124 Deconvoluted Spectrum

Cyp 124 Ligands

Compound	Chemical structure	Dissociation constant K _D , µM	Specific activity*	Michaelis constant K _M , µM
Lauric acid	H02	>100*	n.d.	n.d.
Palmitic acid	ной	>100 ⁺	0.07 ± 0.03 ⁺	n.a.
15-Methyl palmitic acid	Holmman	1.01 ± 0.07	7.6 ± 1.5	9 ± 4
Phytanic acid	Holdertal	0.22 ± 0.006	9.9 ± 2.7	54 ± 8
Arachidic acid	"	n.d.	n.d.	n.d.
Phytane	Jululul	205 ± 14	n.d.	n.d.
Pristane	helder	178 ± 18	n.d.	n.d.
Geraniol	Hondrich	25 ± 1.8	n.d.	n.d.
Farnesol	HONON	1.04 ± 0.05	15.5 ± 2.8	36 ± 3
Geranylgeraniol	HONDING	0.48 ± 0.06	9.6 ± 3.1	32 ± 4
Farnesyl diphosphate		90 ± 13	4.8 ± 0.9	n.a.

From Johnston et el (2009) PNAS 106, 20687-20692

Cyp 124: Farnesol-induced Dimer Separation From Monomer BGE: 100 mM Ammonium Acetate, pH 7

Examples

1. Cytochrome P450 (Cyp 124): represents one of <u>20</u> different enzymes present in *Mycobacterium tuberculosis*. Cyp's represent potential therapeutic targets in treatment of Tuberculosis

2. GroEL

- A molecular chaperone, 14-subunit protein complex from *E. coli* and other bacteria.
- Native mass is approximately <u>800 kDa</u>.
- Use CESI-MS to probe conformational changes.

GroEL (side view)

GroEL Infusion

CESI-MS Run – GroEL BGE: 100 mM Ammonium Acetate, pH 7

GroEL Deconvoluted Spectrum From CESI-MS Peak

Examples

- 1. Cytochrome P450 (Cyp 124): represents one of <u>20</u> different enzymes present in *Mycobacterium tuberculosis*. Cyp's represent potential therapeutic targets in treatment of Tuberculosis
- 2. GroEL: a molecular chaparone, 14-subunit protein complex from *E. coli* and other bacteria. Native mass is approximately <u>800 kDa.</u>

3. Alpha-synuclein

- A presynaptic ~14kDa protein, strongly implicated in the pathology of Parkinsons Disease (PD).
- Aggregated forms are found associated with Lewy Bodies, the hallmark lesions in PD.
- Use CESI to detect and separate aggregate forms of the protein.

Total Ion Electropherogram of Partially Aggregated Alpha Synuclein Sample

CESI shows separation of <u>multimeric</u> and <u>monomeric</u> forms of the amyloidogenic protein *a*synuclein <u>under native conditions</u> (100 mM ammonium acetate, pH 7) as detected by mass spectrometry

Decamer peak (6 - 6.8 min)

Monomer Peak (7.2 - 7.6 min)

Alpha-synuclein CESI-MS study: Conclusions

- First to demonstrate clear separation of discrete aggregated species of alpha synuclein under native conditions
- Data suggests that starting sample contains a complex mixture of molecular forms
- Method offers the opportunity to study kinetics of alpha-synuclein self-association in detail

Summary

- CESI-MS enables direct coupling of CE with the mass spectrometer in nanospray mode
- Native protein separations offer the ability to study protein conformational states, ligand binding and protein-protein interactions
- Large proteins and protein complexes can be analyzed in contrast to conventional chromatographic & infusion approaches

