

Ionenquelle

SCIEX Triple Quad[™]-, QTRAP[®]- und TripleTOF[®]-Systeme

Tests, Spezifikationen und Datenprotokoll

Dieses Dokument wird Käufern eines SCIEX-Geräts für dessen Gebrauch zur Verfügung gestellt. Dieses Dokument ist urheberrechtlich geschützt und jegliche Vervielfältigung dieses Dokuments, im Ganzen oder in Teilen, ist strengstens untersagt, sofern keine schriftliche Genehmigung von SCIEX vorliegt.

Die in diesem Dokument beschriebene Software unterliegt einer Lizenzvereinbarung. Das Kopieren, Ändern oder Verbreiten der Software auf einem beliebigen Medium ist rechtswidrig, sofern dies nicht ausdrücklich durch die Lizenzvereinbarung genehmigt wird. Darüber hinaus kann es nach der Lizenzvereinbarung untersagt sein, die Software zu disassemblieren, zurückzuentwickeln oder zurückzuübersetzen. Es gelten die aufgeführten Garantien.

Teile dieses Dokuments können sich auf andere Hersteller und/oder deren Produkte beziehen, die wiederum Teile enthalten können, deren Namen als Marken eingetragen sind und/oder die Marken ihrer jeweiligen Inhaber darstellen. Jede Nennung solcher Marken dient ausschließlich der Bezeichnung von Produkten eines Herstellers, die von SCIEX für den Einbau in die eigenen Geräte bereitgestellt werden, und bedeutet nicht, dass eigene oder fremde Nutzungsrechte und/oder -lizenzen zur Verwendung derartiger Hersteller- und/oder Produktnamen als Marken vorliegen.

Die Garantien von SCIEX beschränken sich auf die zum Verkaufszeitpunkt oder bei Erteilung der Lizenz für die eigenen Produkte ausdrücklich zuerkannten Garantien und sind die von SCIEX alleinig und ausschließlich zuerkannten Zusicherungen, Garantien und Verpflichtungen. SCIEX gibt keinerlei andere ausdrückliche oder implizite Garantien wie beispielsweise Garantien zur Marktgängigkeit oder Eignung für einen bestimmten Zweck, unabhängig davon, ob diese auf gesetzlichen oder sonstigen Rechtsvorschriften beruhen oder aus Geschäftsbeziehungen oder Handelsbrauch entstehen, und lehnt alle derartigen Garantien ausdrücklich ab; zudem übernimmt SCIEX keine Verantwortung und Haftungsverhältnisse, einschließlich solche in Bezug auf indirekte oder nachfolgend entstehenden Schäden, die sich aus der Nutzung durch den Käufer oder daraus resultierende widrige Umstände ergeben.

Nur für Forschungszwecke. Nicht zur Verwendung bei Diagnoseverfahren.

AB Sciex tätigt Geschäfte als SCIEX.

Die hier erwähnten Marken sind Eigentum von AB Sciex Pte. Ltd. oder ihrer jeweiligen Inhaber.

AB SCIEX[™] wird unter Lizenz verwendet.

© 2019 AB Sciex

AB Sciex Pte. Ltd. Blk33, #04-06 Marsiling Industrial Estate Road 3 Woodlands Central Industrial Estate, Singapore 739256

Inhalt

1 IonDrive [™] Turbo V-Ionenquellen-Tests	5
Versuchsvorbereitungen	6
Testen der TurbolonSpray -Sonde	7
Testen der APCI-Sonde	9
2 Tests an Turbo V [™] -Ionenquellen	12
Versuchsvorbereitungen	13
Testen der Ionenquelle auf Systemen des Typs Triple-Quadrupole und QTRAP	15
Testen der TurbolonSpray -Sonde	15
Testen der APCI-Sonde	17
Testen der Ionenquelle auf Systemen des Typs TripleTOF [®]	18
Vorbereitung der Testlösung	19
Testen der TurbolonSpray -Sonde	
Testen der APCI-Sonde	21
3 Tests an DuoSpray TM -Ionenquellen	24
Versuchsvorbereitungen	25
Testen der Ionenquelle für TripleTOF [®] -Systeme	27
Vorbereitung der Testlösung	27
Testen der TurbolonSpray -Sonde	28
Testen der APCI-Sonde	
Testen der Ionenquelle auf Systemen des Typs Triple-Quadrupole und QTRAP	
Testen der TurbolonSpray -Sonde	
Testen der APCI-Sonde	
4 OptiFlow TM Turbo V-Ionenquellen-Tests	39
Versuchsvorbereitungen	40
Testen der Ionenquelle auf Systemen des Typs Triple-Quadrupole und QTRAP	41
Testen einer SteadySpray-Sonde	41
Testen der Ionenquelle auf TripleTOF [°] -Systemen	42
Testen einer SteadySpray-Sonde	43
5 Tests an NanoSpray [®] -Ionenquellen	45
Versuchsvorbereitungen	46
Vorbereitung der verdünnten [Glu ¹]-Fibrinopeptid-B-Lösung	48
Testen der Ionenquelle auf TripleTOF [®] -Systemen	49
Testen und Kalibrieren im TOF-MS-Modus	50
Testen und Kalibrieren im Produkt-Ionen-Modus (hohe Empfindlichkeit)	
(nur Systeme des Typs 5600/5600+ und 6600/6600+)	57
Testen und Kalibrieren im Produkt-Ionen-Modus	61
Testen der Ionenquelle auf Systemen des Typs Triple-Quadrupole und QTRAP	64
Test im Q1-Modus	65
Test im Q3-Modus	71
Iesten und Kalibrieren im EPI-Modus (ausschließlich QTRAP oder	
QIRAP -aktivierte Triple Quad 5500+-Systeme)	72

Inhalt

Testen der Ionenquelle in Systemen der Serie 3200	
Zubereitung von 2 ml einer Reninmischung (500 fmol/µl)	
Tests in Gen QT- und MSZ-MOGI	80 82
Abschluss	
6 Tosts on PhotoSprov [®] Iononguellon	Q./
Versuchsvorbereitungen	04 85
Testen der Ionenquelle	
7 Tipps zur Fehlerbehebung	89
A Datenprotokoll: IonDrive TM Turbo V-Ionenguelle	
Systeminformation	
Unterschrift	94
Kommentare und Ausnahmen	
B Datenprotokoll: Turbo V TM -Ionenquelle	96
Systeminformation	
Unterschrift	
C Datenprotokoll: DuoSpray ¹¹¹ -Ionenquelle	
Systemmoniation	
Kommentare und Ausnahmen	
D Datenprotokoll: OptiFlow TM Turbo V-Ionenguelle	
Systeminformation	
Unterschrift	
Kommentare und Ausnahmen	104
E Datenprotokoll: NanoSpray -lonenquelle	105
Systeminformation	105
Kommentare und Ausnahmen	
E Datenprotokoll: PhotoSpray	112
Systeminformation	
Únterschrift	113
Kommentare und Ausnahmen	114
G TripleTOF [®] -Systemparameter	115
H Parameter für Systeme der Serien 6500 und 6500+	119
I Parameter für Systeme der Serien 5500 und 5500+	125
J API 5000 [™] -Systemparameter	130
K Parameter für Systeme der Serie 4500	134
L Parameter für Systeme der Serie 4000	139
M Parameter für Systeme des Typs SCIEX Triple Quad TM 3500	144
N Parameter für Systeme der Serie 3200	148
O Massen für [Glu ¹]-Fibrinopeptid B	155
P Zubereitung einer verdünnten Reserpin-Lösung 60:1 (10 pg/µl)	157

IonDrive[™] Turbo V-Ionenquellen-Tests

Diese Tests gelten für eine in einem System der Serie 6500 oder 6500+ installierten IonDrive[™] Turbo V-Ionenquelle.

Führen Sie diese Tests in einer der folgenden Situationen durch:

- wenn eine neue Ionenquelle installiert wird.
- nach größeren Wartungsarbeiten an der Ionenquelle.
- wann immer die Leistung der Ionenquelle überprüft werden muss, entweder vor Beginn eines Projektes oder als Teil einer standardisierten Vorgehensweise.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Verwenden Sie die Ionenquelle nur, wenn Sie Kenntnisse über die ordnungsgemäße Verwendung, Eingrenzung und Entsorgung von mit der Ionenquelle verwendeten toxischen oder schädlichen Materialien haben und darin geschult wurden.

WARNHINWEIS! Gefahr von Stichverletzungen, Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Verwenden Sie die Ionenquelle nicht weiter, wenn das Fenster gesprungen oder zerbrochen ist, und wenden Sie sich an einen SCIEX-Außendienstmitarbeiter. Alle giftigen oder schädlichen Stoffe, die dem Gerät zugeführt werden, sind in der Abluft der Ionenquelle vorhanden. Aus dem Gerät stammende Abluft muss aus dem Raum abgeführt werden. Befolgen Sie bei der Entsorgung von scharfen und spitzen Gegenständen die Sicherheitsvorschriften Ihres Labors.

WARNHINWEIS! Toxisch-chemische Gefahren. Tragen Sie persönliche Schutzausrüstung, wie z. B. Laborkittel, Schutzhandschuhe und eine Schutzbrille, um Haut- oder Augenkontakt zu vermeiden.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Überprüfen Sie bei einem Chemieunfall die Sicherheitsdatenblätter auf spezifische Anweisungen. Vergewissern Sie sich, dass sich das System im Standby-Modus befindet, bevor Sie ausgelaufene Flüssigkeiten in der Nähe der Ionenquelle entfernen. Verwenden Sie geeignete persönliche Schutzausrüstung und Absorptionstücher, um ausgelaufene Flüssigkeiten aufzunehmen, und entsorgen Sie die ausgelaufenen Materialien entsprechend den örtlichen Vorschriften.

Tests, Spezifikationen und Datenprotokoll RUO-IDV-05-7280-DE-C

Erforderliche Materialien

- Lösungsmittel für mobile Phase: 70:30 Acetonitril-Wasserlösung
- Testlösung: 0,0167 pmol/µl (entspricht 10 pg/µl) Reserpin. Verwenden Sie die vorverdünnte Reserpin-Lösung mit 0,0167 pmol/µl aus dem SCIEX Standard-Chemie-Kit (Art.-Nr. 4406127).
- Für TripleTOF[®]-Systeme stellen Sie die Testlösung aus der 0,167 pmol/µl Reserpin-Lösung und dem Standard-Verdünnungsmittel aus dem SCIEX TripleTOF[®] System-Chemie-Kit (Art.-Nr. 4456736) her.
- HPLC-Pumpe (für mobile Phase)
- Manueller Injektor (8125 Rheodyne oder gleichwertig) mit einer 5-µl-Schleife oder einem Autosampler mit Einrichtung für 5-µl-Injektionen
- PEEK-Kapillare, 1/16 Zoll Außendurchmesser (AD), 0,005 Zoll Innendurchmesser (ID)
- Ionenquelle mit einer installierten Sonde
- Spritze 250 bis 1000 µl
- Puderfreie Handschuhe (es werden Neopren- bzw. Nitrilhandschuhe empfohlen)
- Schutzbrille
- Kittel

Hinweis: Alle Testlösungen müssen kühl gelagert werden. Wenn sie länger als 48 Stunden nicht in einem Kühlraum gekühlt wurden, müssen sie entsorgt und neue Lösungen verwendet werden.

Versuchsvorbereitungen

WARNHINWEIS! Stromschlaggefahr. Vermeiden Sie Kontakt mit der Hochspannung, die während des Betriebs an der Ionenquelle anliegt. Schalten Sie das System in den Standby-Modus, bevor Sie Anpassungen oder Einstellungen am Probenschlauch oder an anderen Komponenten in der Nähe der Ionenquelle vornehmen.

- Vergewissern Sie sich vor dem Installieren einer neuen Ionenquelle, dass das Massenspektrometer mit der vorhandenen Ionenquelle entsprechend den Spezifikationen funktioniert.
- Installieren Sie die Ionenquelle am Massenspektrometer.
- Stellen Sie sicher, dass die Ionenquelle vollständig optimiert ist. Informationen zur Ionenquelle finden Sie im *Bedienerhandbuch*.
- Bevor Sie mit chemischen Lösungen oder Lösungsmitteln arbeiten, informieren Sie sich in den entsprechenden Sicherheitsdatenblättern über eventuell notwendige Vorsichtsmaßnahmen.
- Stellen Sie sicher, dass die Anwender ausreichend in der Bedienung von Massenspektrometern und in den entsprechenden Sicherheitsmaßnahmen geschult worden sind.
- Installieren Sie die zu testende Sonde.

• Verbinden Sie den Erdungsanschluss der Ionenquelle über einen manuellen Injektor, der mit einer 5-µl-Schleife ausgerüstet ist, mit der Pumpe oder schließen Sie ihn an einen Autosampler an.

Siehe Abbildung 1-1.

Abbildung 1-1 LC-Pumpenkonfiguration

Position	Beschreibung
1	Pumpe für den Flusseinlass
2	Injektor oder Autosampler
3	Ionenquelle

Testen der TurbolonSpray[®]-Sonde

WARNHINWEIS! Gefahr durch heiße Oberflächen. Lassen Sie die Ionenquelle vor Beginn der Wartungsarbeiten mindestens 90 Minuten Iang abkühlen. Die Oberflächen der Ionenquelle werden im Betrieb heiß.

VORSICHT: Mögliche Schäden am System. Lassen Sie keinerlei Lösungsmittel fließen, bis die Ionenquelle die richtige Temperatur erreicht hat.

Informationen zur Installation oder Optimierung der Ionenquelle finden Sie im *Bedienerhandbuch* der Ionenquelle.

- 1. Konfigurieren Sie die HPLC-Pumpe so, dass sie die mobile Phase mit einem Volumenstrom von 0,5 ml/min bereitstellt.
- 2. Doppelklicken Sie in der Analyst[®]-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 3. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Parameter	Wert
MS-Parameter	
Scan Mode	MRM
Q1	609,3
Q3	195,1
Scan Time (seconds)	0,200
Duration (minutes)	10
Source/Gas-Parameter	
Curtain Gas [™] flow (CUR)	30 (oder wie optimiert)
Temperature (TEM)	700 (oder wie optimiert)
lon Source Gas 1 (GS1)	60 (oder wie optimiert)
lon Source Gas 2 (GS2)	70 (oder wie optimiert)
IonSpray Voltage (IS)	4500 (oder wie optimiert)
Compound-Parameter	
Declustering Potential (DP)	100 (oder wie optimiert)
Collision Energy (CE)	45 (oder wie optimiert)
Collision Exit Potential (CXP)	wie optimiert

Tabelle 1-1 Methodenparameter

4. Klicken Sie auf **Start**, um die Methode auszuführen.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Stellen Sie sicher, dass die Elektrode aus der Spitze der Sonde herausragt, damit gefährliche Dämpfe nicht aus der Quelle entweichen können. Die Elektrode darf nicht in die Sonde eingelassen sein. VORSICHT: Mögliche Schäden am System. Verwenden Sie optimalerweise den höchstmöglichen Wert für die Curtain Gas[™] Flussrate, um eine Verunreinigung des Massenspektrometers zu vermeiden.

- 5. Klicken Sie auf **Acquire**, um mit der Datenerfassung zu beginnen.
- 6. Führen Sie drei 5-µl-Injektionen mit Reserpin-Lösung durch.

Tipp! Wir empfehlen, dass Sie die 5-µl-Schleife mit 30 µl bis 40 µl Lösung überfüllen.

- 7. Drucken Sie die Ergebnisse aus.
- 8. Ermitteln Sie den Durchschnitt der drei Intensitäten der Ionen und halten Sie das Ergebnis im Datenprotokoll fest.
- 9. Prüfen Sie, ob die durchschnittliche Intensität akzeptabel ist. Siehe Datenprotokoll: IonDrive[™] Turbo V-Ionenquelle.

Wenn das Ergebnis nicht akzeptabel ist, siehe Tipps zur Fehlerbehebung.

10. Nach Abschluss der Tests stoppen Sie die LC-Pumpe. Setzen Sie **TEM** auf 0 und lassen Sie die Sonde abkühlen.

Testen der APCI-Sonde

WARNHINWEIS! Gefahr durch heiße Oberflächen. Lassen Sie die Ionenquelle vor Beginn der Wartungsarbeiten mindestens 90 Minuten Iang abkühlen. Die Oberflächen der Ionenquelle werden im Betrieb heiß.

VORSICHT: Mögliche Schäden am System. Lassen Sie keinerlei Lösungsmittel fließen, bis die Ionenquelle die richtige Temperatur erreicht hat.

Informationen zur Installation oder Optimierung der Ionenquelle finden Sie im *Bedienerhandbuch* der Ionenquelle.

- 1. Konfigurieren Sie die HPLC-Pumpe so, dass sie die mobile Phase mit einem Volumenstrom von 1 ml/min bereitstellt.
- 2. Doppelklicken Sie in der Analyst[®]-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 3. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Parameter	Wert
MS-Parameter	
Scan Mode	MRM
Q1	609,3
Q3	195,1
Scan Time (seconds)	0,200
Duration (minutes)	10
Source/Gas-Parameter	
Curtain Gas [™] flow (CUR)	30 (oder wie optimiert)
CAD Gas	9 (oder wie optimiert)
Nebulizer Current (NC)	3 (oder wie optimiert)
Temperature (TEM)	425
lon Source Gas 1 (GS1)	70 (oder wie optimiert)
Compound-Parameter	
Declustering Potential (DP)	100 (oder wie optimiert)
Collision Energy (CE)	45 (oder wie optimiert)
Collision Exit Potential (CXP)	wie optimiert

Tabelle 1-2 Methodenparameter

4. Klicken Sie auf **Start**, um die Methode auszuführen.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Stellen Sie sicher, dass die Elektrode aus der Spitze der Sonde herausragt, damit gefährliche Dämpfe nicht aus der Quelle entweichen können. Die Elektrode darf nicht in die Sonde eingelassen sein.

VORSICHT: Mögliche Schäden am System. Verwenden Sie optimalerweise den höchstmöglichen Wert für die Curtain Gas[™] Flussrate, um eine Verunreinigung des Massenspektrometers zu vermeiden.

- 5. Klicken Sie auf **Acquire**, um mit der Datenerfassung zu beginnen.
- 6. Führen Sie drei 5-µl-Injektionen mit Reserpin-Lösung durch.

Tipp! Wir empfehlen, dass Sie die 5-µl-Schleife mit 30 µl bis 40 µl Lösung überfüllen.

- 7. Drucken Sie die Ergebnisse aus.
- 8. Ermitteln Sie den Durchschnitt der drei Intensitäten der Ionen und halten Sie das Ergebnis im Datenprotokoll fest.
- 9. Prüfen Sie, ob die durchschnittliche Intensität akzeptabel ist. Siehe Datenprotokoll: IonDrive[™] Turbo V-Ionenquelle.

Wenn das Ergebnis nicht akzeptabel ist, siehe Tipps zur Fehlerbehebung.

10. Nach Abschluss der Tests stoppen Sie die LC-Pumpe. Setzen Sie **TEM** auf 0 und lassen Sie die Sonde abkühlen.

Führen Sie diese Tests in einer der folgenden Situationen durch:

- wenn eine neue Ionenquelle installiert wird.
- nach größeren Wartungsarbeiten an der Ionenquelle.
- wann immer die Leistung der Ionenquelle überprüft werden muss, entweder vor Beginn eines Projektes oder als Teil einer standardisierten Vorgehensweise.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Verwenden Sie die Ionenquelle nur, wenn Sie Kenntnisse über die ordnungsgemäße Verwendung, Eingrenzung und Entsorgung von mit der Ionenquelle verwendeten toxischen oder schädlichen Materialien haben und darin geschult wurden.

WARNHINWEIS! Gefahr von Stichverletzungen, Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Verwenden Sie die Ionenquelle nicht weiter, wenn das Fenster gesprungen oder zerbrochen ist, und wenden Sie sich an einen SCIEX-Außendienstmitarbeiter. Alle giftigen oder schädlichen Stoffe, die dem Gerät zugeführt werden, sind in der Abluft der Ionenquelle vorhanden. Aus dem Gerät stammende Abluft muss aus dem Raum abgeführt werden. Befolgen Sie bei der Entsorgung von scharfen und spitzen Gegenständen die Sicherheitsvorschriften Ihres Labors.

WARNHINWEIS! Toxisch-chemische Gefahren. Tragen Sie persönliche Schutzausrüstung, wie z. B. Laborkittel, Schutzhandschuhe und eine Schutzbrille, um Haut- oder Augenkontakt zu vermeiden.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Überprüfen Sie bei einem Chemieunfall die Sicherheitsdatenblätter auf spezifische Anweisungen. Vergewissern Sie sich, dass sich das System im Standby-Modus befindet, bevor Sie ausgelaufene Flüssigkeiten in der Nähe der Ionenquelle entfernen. Verwenden Sie geeignete persönliche Schutzausrüstung und Absorptionstücher, um ausgelaufene Flüssigkeiten aufzunehmen, und entsorgen Sie die ausgelaufenen Materialien entsprechend den örtlichen Vorschriften.

Erforderliche Materialien

- Lösungsmittel f
 ür mobile Phase: 70:30 Acetonitril-Wasserlösung
- Testlösung:
 - Für 4500, 5500, 5500+, 6500 und 6500+ Systeme verwenden Sie die vorverdünnte 0,0167 pmol/µl Reserpin-Lösung im SCIEX Standard-Chemie-Kit (Art.-Nr. 4406127).
 - Für die Systeme 3200 und 3500 verwenden Sie die vorverdünnte Reserpin-Lösung mit 0,167 pmol/µl aus dem SCIEX Standard-Chemie-Kit (Art.-Nr. 4406127).
 - Für TripleTOF[®]-Systeme stellen Sie die Testlösung aus der 0,167 pmol/µl Reserpin-Lösung und dem Standard-Verdünnungsmittel aus dem SCIEX TripleTOF[®] System-Chemie-Kit (Art.-Nr. 4456736) her.

Dazu ist ein Vortex-Mixer erforderlich.

- HPLC-Pumpe (für mobile Phase)
- Manueller Injektor (8125 Rheodyne oder gleichwertig) mit einer 5-µl-Schleife oder einem Autosampler mit Einrichtung für 5-µl-Injektionen
- PEEK-Kapillare, 1/16 Zoll Außendurchmesser (AD), 0,005 Zoll Innendurchmesser (ID)
- Ionenquelle mit einer installierten Sonde
- Spritze 250 bis 1000 µl
- Puderfreie Handschuhe (es werden Neopren- bzw. Nitrilhandschuhe empfohlen)
- Schutzbrille
- Kittel

Hinweis: Alle Testlösungen müssen kühl gelagert werden. Wenn sie länger als 48 Stunden nicht in einem Kühlraum gekühlt wurden, müssen sie entsorgt und neue Lösungen verwendet werden.

VORSICHT: Potenziell falsches Ergebnis. Verwenden Sie keine Lösungen mit abgelaufenem Verwendungsdatum.

Versuchsvorbereitungen

WARNHINWEIS! Stromschlaggefahr. Vermeiden Sie Kontakt mit der Hochspannung, die während des Betriebs an der Ionenquelle anliegt. Schalten Sie das System in den Standby-Modus, bevor Sie Anpassungen oder Einstellungen am Probenschlauch oder an anderen Komponenten in der Nähe der Ionenquelle vornehmen.

- Vergewissern Sie sich vor dem Installieren einer neuen Ionenquelle, dass das Massenspektrometer mit der vorhandenen Ionenquelle entsprechend den Spezifikationen funktioniert.
- Installieren Sie die Ionenquelle am Massenspektrometer.

- Stellen Sie sicher, dass die Ionenquelle vollständig optimiert ist. Informationen zur Ionenquelle finden Sie im *Bedienerhandbuch*.
- Bevor Sie mit chemischen Lösungen oder Lösungsmitteln arbeiten, informieren Sie sich in den entsprechenden Sicherheitsdatenblättern über eventuell notwendige Vorsichtsmaßnahmen.
- Installieren Sie die zu testende Sonde.
- Verbinden Sie den Erdungsanschluss der Ionenquelle über einen manuellen Injektor, der mit einer 5-µl-Schleife ausgerüstet ist, mit der Pumpe oder schließen Sie ihn an einen Autosampler an.

Siehe Abbildung 2-1.

Abbildung 2-1 LC-Pumpenkonfiguration

Position	Beschreibung
1	Pumpe für den Flusseinlass
2	Injektor oder Autosampler
3	Ionenquelle

Testen der Ionenquelle auf Systemen des Typs Triple-Quadrupole und QTRAP[®]

Testen der TurbolonSpray[®]-Sonde

WARNHINWEIS! Gefahr durch heiße Oberflächen. Lassen Sie die Ionenquelle vor Beginn der Wartungsarbeiten mindestens 30 Minuten Iang abkühlen. Die Oberflächen der Ionenquelle werden im Betrieb heiß.

VORSICHT: Mögliche Schäden am System. Lassen Sie keinerlei Lösungsmittel fließen, bis die Ionenquelle die richtige Temperatur erreicht hat.

Informationen zur Installation oder Optimierung der Ionenquelle finden Sie im *Bedienerhandbuch* der Ionenquelle.

- 1. Konfigurieren Sie die HPLC-Pumpe so, dass sie die mobile Phase mit einem Volumenstrom von 0,2 ml/min bereitstellt.
- 2. Doppelklicken Sie in der Analyst[®]-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 3. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Parameter	Wert
MS-Parameter	
Scan Mode	MRM
Q1	609,3 (oder wie optimiert)
Q3	195,1 (oder wie optimiert)
Scan Time (seconds)	0,200
Duration (minutes)	10
Source/Gas-Parameter	
Curtain Gas [™] flow (CUR)	20 (oder wie optimiert)
Temperature (TEM)	700 (oder wie optimiert)
lon Source Gas 1 (GS1)	60 (oder wie optimiert)
lon Source Gas 2 (GS2)	70 (oder wie optimiert)
IonSpray [™] Voltage (IS)	4500 (oder wie optimiert)

Tabelle 2-1 Methodenparameter

Tabelle 2-1 Methodenparameter (Fortsetzung)

Parameter	Wert
Compound-Parameter	
Declustering Potential (DP)	100 (oder wie optimiert)
Collision Energy (CE)	45 (oder wie optimiert)
Collision Exit Potential (CXP)	wie optimiert

4. Klicken Sie auf **Start**, um die Methode auszuführen.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Stellen Sie sicher, dass die Elektrode aus der Spitze der Sonde herausragt, damit gefährliche Dämpfe nicht aus der Quelle entweichen können. Die Elektrode darf nicht in die Sonde eingelassen sein.

VORSICHT: Mögliche Schäden am System. Verwenden Sie optimalerweise den höchstmöglichen Wert für die Curtain Gas[™] Flussrate, um eine Verunreinigung des Massenspektrometers zu vermeiden.

- 5. Führen Sie mehrere 5-µl-Injektionen mit Reserpin-Lösung durch und optimieren Sie gleichzeitig Folgendes, um eine maximale Signalstärke und Signalstabilität zu erzielen:
 - die vertikale und horizontale Position der Sonde
 - den Elektrodenspitzenüberstand
 - CUR, TEM, GS1, GS2 und IS.
- 6. Klicken Sie auf Acquire, um mit der Datenerfassung zu beginnen.
- 7. Führen Sie drei 5-µl-Injektionen mit Reserpin-Lösung durch.

Tipp! Wir empfehlen, dass Sie die 5-µl-Schleife mit 30 µl bis 40 µl Lösung überfüllen.

- 8. Drucken Sie die Ergebnisse aus.
- 9. Ermitteln Sie den Durchschnitt der drei Intensitäten der Ionen und halten Sie das Ergebnis im Datenprotokoll fest.
- 10. Prüfen Sie, ob die durchschnittliche Intensität akzeptabel ist. Siehe Datenprotokoll: Turbo VTM-Ionenquelle.

Wenn das Ergebnis nicht akzeptabel ist, beachten Sie Tipps zur Fehlerbehebung.

11. Nach Abschluss der Tests stoppen Sie die LC-Pumpe. Setzen Sie **TEM** auf 0 und lassen Sie die Sonde abkühlen.

Testen der APCI-Sonde

WARNHINWEIS! Gefahr durch heiße Oberflächen. Lassen Sie die Ionenquelle vor Beginn der Wartungsarbeiten mindestens 30 Minuten Iang abkühlen. Die Oberflächen der Ionenquelle werden im Betrieb heiß.

VORSICHT: Mögliche Schäden am System. Lassen Sie keinerlei Lösungsmittel fließen, bis die Ionenquelle die richtige Temperatur erreicht hat.

Informationen zur Installation oder Optimierung der Ionenquelle finden Sie im *Bedienerhandbuch* der Ionenquelle.

- 1. Konfigurieren Sie die HPLC-Pumpe so, dass sie die mobile Phase mit einem Volumenstrom von 1 ml/min bereitstellt.
- 2. Doppelklicken Sie in der Analyst[®]-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 3. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Parameter	Wert		
MS-Parameter	MS-Parameter		
Scan Mode	MRM		
Q1	609,3 (oder wie optimiert)		
Q3	195,1 (oder wie optimiert)		
Scan Time (seconds)	0,200		
Duration (minutes)	10		
Source/Gas-Parameter			
Curtain Gas [™] flow (CUR)	20 (oder wie optimiert)		
CAD Gas	9 (oder wie optimiert)		
Nebulizer Current (NC)	3 (oder wie optimiert)		
Temperature (TEM)	425		
lon Source Gas 1 (GS1)	70 (oder wie optimiert)		
Compound-Parameter			
Declustering Potential (DP)	100 (oder wie optimiert)		
Collision Energy (CE)	45 (oder wie optimiert)		
Collision Exit Potential (CXP)	wie optimiert		

Tabelle 2-2 Methodenparameter

4. Klicken Sie auf **Start**, um die Methode auszuführen.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Stellen Sie sicher, dass die Elektrode aus der Spitze der Sonde herausragt, damit gefährliche Dämpfe nicht aus der Quelle entweichen können. Die Elektrode darf nicht in die Sonde eingelassen sein.

VORSICHT: Mögliche Schäden am System. Verwenden Sie optimalerweise den höchstmöglichen Wert für die Curtain Gas[™] Flussrate, um eine Verunreinigung des Massenspektrometers zu vermeiden.

- 5. Führen Sie mehrere 5-µl-Injektionen mit Reserpin-Lösung durch und optimieren Sie gleichzeitig Folgendes, um eine maximale Signalstärke und Signalstabilität zu erzielen:
 - die vertikale und horizontale Position der Sonde
 - den Elektrodenspitzenüberstand
 - CUR, GS1 und NC
- 6. Klicken Sie auf Acquire, um mit der Datenerfassung zu beginnen.
- 7. Führen Sie drei 5-µl-Injektionen mit Reserpin-Lösung durch.

Tipp! Wir empfehlen, dass Sie die 5-µl-Schleife mit 30 µl bis 40 µl Lösung überfüllen.

- 8. Drucken Sie die Ergebnisse aus.
- 9. Ermitteln Sie den Durchschnitt der drei Intensitäten der Ionen und halten Sie das Ergebnis im Datenprotokoll fest.
- 10. Prüfen Sie, ob die durchschnittliche Intensität akzeptabel ist. Siehe Datenprotokoll: Turbo VTM-Ionenquelle.

Wenn das Ergebnis nicht akzeptabel ist, beachten Sie Tipps zur Fehlerbehebung.

11. Nach Abschluss der Tests stoppen Sie die LC-Pumpe. Setzen Sie **TEM** auf 0 und lassen Sie die Sonde abkühlen.

Testen der Ionenquelle auf Systemen des Typs TripleTOF[®]

Hinweis: Für das System TripleTOF[®] 4600 sind keine Spezifikationen verfügbar. Die empfohlene Ionenquelle für Systeme des Typs TripleTOF[®]DuoSpray[™]-Ionenquelle.

Vorbereitung der Testlösung

- 1. Mischen Sie 100 μL der 0,167-pmol/μL-Reserpin-Lösung und 900 μL des Standard-Verdünnungsmittels.
- 2. Mischen Sie alles 30 Sekunden lang mit einem Vortex-Mixer.

Dieser Schritt ergibt die 0,0167-pmol/µL-Reserpin-Lösung.

Testen der TurbolonSpray[®]-Sonde

WARNHINWEIS! Gefahr durch heiße Oberflächen. Lassen Sie die Ionenquelle vor Beginn der Wartungsarbeiten mindestens 30 Minuten Iang abkühlen. Die Oberflächen der Ionenquelle werden im Betrieb heiß.

VORSICHT: Mögliche Schäden am System. Lassen Sie keinerlei Lösungsmittel fließen, bis die Ionenquelle die richtige Temperatur erreicht hat.

Informationen zur Installation oder Optimierung der Ionenquelle finden Sie im *Bedienerhandbuch* der Ionenquelle.

- 1. Konfigurieren Sie die HPLC-Pumpe so, dass sie die mobile Phase mit einem Volumenstrom von 0,2 ml/min bereitstellt.
- 2. Doppelklicken Sie in der Analyst[®] TF-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 3. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Parameter	Wert	
MS-Parameter		
Scan Mode	Produkt-Ion	
High Sensitivity (nur Systeme 5600/5600+ und 6600/ 6600+)	Ein	
Product Of	609,2807	
TOF Masses (Da)	150 bis 650	
Accumulation time (seconds)	0,200	
Duration (minutes)	10	
Source/Gas-Parameter		
Curtain Gas [™] flow (CUR)	20	
Temperature (TEM)	700	

Tabelle 2-3 Methodenparameter

Parameter	Wert
Ion Source Gas 1 (GS1)	50
Ion Source Gas 2 (GS2)	50
IonSpray Voltage Floating (ISVF)	5000
Compound-Parameter	
Declustering Potential (DP)	100
Collision Energy (CE)	45
Resolution-Parameter	
Q1 Resolution	Einheit

4. Klicken Sie auf **Start**, um die Methode auszuführen.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Stellen Sie sicher, dass die Elektrode aus der Spitze der Sonde herausragt, damit gefährliche Dämpfe nicht aus der Quelle entweichen können. Die Elektrode darf nicht in die Sonde eingelassen sein.

VORSICHT: Mögliche Schäden am System. Verwenden Sie optimalerweise den höchstmöglichen Wert für die Curtain Gas[™] Flussrate, um eine Verunreinigung des Massenspektrometers zu vermeiden.

- 5. Führen Sie mehrere 5-µl-Injektionen mit 0,0167-pmol/µl-Reserpin-Lösung durch und optimieren Sie gleichzeitig Folgendes, um eine maximale Signalstärke und Signalstabilität zu erzielen:
 - die vertikale und horizontale Position der Sonde
 - den Elektrodenspitzenüberstand
 - CUR, TEM, GS1, GS2 und ISVF.
- 6. Klicken Sie auf **Acquire**, um mit der Datenerfassung zu beginnen.
- 7. Führen Sie drei 5-µl-Injektionen mit Reserpin-Lösung durch.

Tipp! Wir empfehlen, dass Sie die 5-µl-Schleife mit 30 µl bis 40 µl Lösung überfüllen.

- 8. Drucken Sie die Ergebnisse aus.
- 9. Ermitteln Sie den Durchschnitt der drei Intensitäten der Ionen und halten Sie das Ergebnis im Datenprotokoll fest.

10. Prüfen Sie, ob die durchschnittliche Intensität akzeptabel ist. Siehe Datenprotokoll: Turbo VTM-Ionenquelle.

Wenn das Ergebnis nicht akzeptabel ist, siehe Tipps zur Fehlerbehebung.

11. Nach Abschluss der Tests stoppen Sie die LC-Pumpe. Setzen Sie **TEM** auf 0 und lassen Sie die Sonde abkühlen.

Testen der APCI-Sonde

WARNHINWEIS! Gefahr durch heiße Oberflächen. Lassen Sie die Ionenquelle vor Beginn der Wartungsarbeiten mindestens 30 Minuten Iang abkühlen. Die Oberflächen der Ionenquelle werden im Betrieb heiß.

VORSICHT: Mögliche Schäden am System. Lassen Sie keinerlei Lösungsmittel fließen, bis die Ionenquelle die richtige Temperatur erreicht hat.

Informationen zur Installation oder Optimierung der Ionenquelle finden Sie im *Bedienerhandbuch* der Ionenquelle.

- 1. Konfigurieren Sie die HPLC-Pumpe so, dass sie die mobile Phase mit einem Volumenstrom von 1 ml/min bereitstellt.
- 2. Doppelklicken Sie in der Analyst[®] TF-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 3. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Parameter	Wert	
MS-Parameter		
Scan Mode	Produkt-Ion	
High Sensitivity (nur Systeme 5600/5600+ und 6600/ 6600+)	Ein	
Product Of	609,2807	
TOF Masses (Da)	150 bis 650	
Accumulation time (seconds)	0,200	
Duration (minutes)	10	
Source/Gas-Parameter		
Curtain Gas [™] flow (CUR)	20 (oder wie optimiert)	
Temperature (TEM)	425	
Ion Source Gas 1 (GS1)	70 (oder wie optimiert)	

Tabelle 2-4 Methodenparameter

Tabelle 2-4 Methodenparameter (Fortsetzung)

Parameter	Wert
Nebulizer Current (NC)	3 (oder wie optimiert)
Compound-Parameter	
Declustering Potential (DP)	100
Collision Energy (CE)	45
Resolution-Parameter	
Q1 Resolution	Einheit

4. Klicken Sie auf **Start**, um die Methode auszuführen.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Stellen Sie sicher, dass die Elektrode aus der Spitze der Sonde herausragt, damit gefährliche Dämpfe nicht aus der Quelle entweichen können. Die Elektrode darf nicht in die Sonde eingelassen sein.

VORSICHT: Mögliche Schäden am System. Verwenden Sie optimalerweise den höchstmöglichen Wert für die Curtain Gas[™] Flussrate, um eine Verunreinigung des Massenspektrometers zu vermeiden.

- 5. Führen Sie mehrere 5-µl-Injektionen mit Reserpin-Lösung durch und optimieren Sie gleichzeitig Folgendes, um eine maximale Signalstärke und Signalstabilität zu erzielen:
 - die vertikale und horizontale Position der Sonde
 - den Elektrodenspitzenüberstand
 - CUR, GS1 und NC
- 6. Klicken Sie auf **Acquire**, um mit der Datenerfassung zu beginnen.
- 7. Führen Sie drei 5-µl-Injektionen mit Reserpin-Lösung durch.

Tipp! Wir empfehlen, dass Sie die 5-µl-Schleife mit 30 µl bis 40 µl Lösung überfüllen.

- 8. Drucken Sie die Ergebnisse aus.
- 9. Ermitteln Sie den Durchschnitt der drei Intensitäten der Ionen und halten Sie das Ergebnis im Datenprotokoll fest.
- 10. Prüfen Sie, ob die durchschnittliche Intensität akzeptabel ist. Siehe Datenprotokoll: Turbo VTM-Ionenquelle.

Wenn das Ergebnis nicht akzeptabel ist, siehe Tipps zur Fehlerbehebung.

11. Nach Abschluss der Tests stoppen Sie die LC-Pumpe. Setzen Sie **TEM** auf 0 und lassen Sie die Sonde abkühlen.

Tests an DuoSpray[™]-Ionenquellen

Führen Sie diese Tests in einer der folgenden Situationen durch:

- wenn eine neue Ionenquelle installiert wird.
- nach größeren Wartungsarbeiten an der Ionenquelle.
- wann immer die Leistung der Ionenquelle überprüft werden muss, entweder vor Beginn eines Projektes oder als Teil einer standardisierten Vorgehensweise.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Verwenden Sie die Ionenquelle nur, wenn Sie Kenntnisse über die ordnungsgemäße Verwendung, Eingrenzung und Entsorgung von mit der Ionenquelle verwendeten toxischen oder schädlichen Materialien haben und darin geschult wurden.

WARNHINWEIS! Gefahr von Stichverletzungen, Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Verwenden Sie die Ionenquelle nicht weiter, wenn das Fenster gesprungen oder zerbrochen ist, und wenden Sie sich an einen SCIEX-Außendienstmitarbeiter. Alle giftigen oder schädlichen Stoffe, die dem Gerät zugeführt werden, sind in der Abluft der Ionenquelle vorhanden. Aus dem Gerät stammende Abluft muss aus dem Raum abgeführt werden. Befolgen Sie bei der Entsorgung von scharfen und spitzen Gegenständen die Sicherheitsvorschriften Ihres Labors.

WARNHINWEIS! Toxisch-chemische Gefahren. Tragen Sie persönliche Schutzausrüstung, wie z. B. Laborkittel, Schutzhandschuhe und eine Schutzbrille, um Haut- oder Augenkontakt zu vermeiden.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Überprüfen Sie bei einem Chemieunfall die Sicherheitsdatenblätter auf spezifische Anweisungen. Vergewissern Sie sich, dass sich das System im Standby-Modus befindet, bevor Sie ausgelaufene Flüssigkeiten in der Nähe der Ionenquelle entfernen. Verwenden Sie geeignete persönliche Schutzausrüstung und Absorptionstücher, um ausgelaufene Flüssigkeiten aufzunehmen, und entsorgen Sie die ausgelaufenen Materialien entsprechend den örtlichen Vorschriften.

Erforderliche Materialien

- Lösungsmittel f
 ür mobile Phase: 70:30 Acetonitril-Wasserlösung
- Testlösung:
 - Für 4500, 5500, 5500+, 6500 und 6500+ Systeme verwenden Sie die vorverdünnte 0,0167 pmol/µl Reserpin-Lösung im SCIEX Standard-Chemie-Kit (Art.-Nr. 4406127).
 - Für die Systeme 3200 und 3500 verwenden Sie die vorverdünnte Reserpin-Lösung mit 0,167 pmol/µl aus dem SCIEX Standard-Chemie-Kit (Art.-Nr. 4406127).
 - Für TripleTOF[®]-Systeme stellen Sie die Testlösung aus der 0,167 pmol/µl Reserpin-Lösung und dem Standard-Verdünnungsmittel aus dem SCIEX TripleTOF[®] System-Chemie-Kit (Art.-Nr. 4456736) her.

Dazu ist ein Vortex-Mixer erforderlich.

- HPLC-Pumpe (für mobile Phase)
- Manueller Injektor (8125 Rheodyne oder gleichwertig) mit einer 5-µl-Schleife oder einem Autosampler mit Einrichtung für 5-µl-Injektionen
- PEEK-Kapillare, 1/16 Zoll Außendurchmesser (AD), 0,005 Zoll Innendurchmesser (ID)
- Ionenquelle mit einer installierten Sonde
- Spritze 250 bis 1000 µl
- Puderfreie Handschuhe (es werden Neopren- bzw. Nitrilhandschuhe empfohlen)
- Schutzbrille
- Kittel

Hinweis: Alle Testlösungen müssen kühl gelagert werden. Wenn sie länger als 48 Stunden nicht in einem Kühlraum gekühlt wurden, müssen sie entsorgt und neue Lösungen verwendet werden.

VORSICHT: Potenziell falsches Ergebnis. Verwenden Sie keine Lösungen mit abgelaufenem Verwendungsdatum.

Versuchsvorbereitungen

WARNHINWEIS! Stromschlaggefahr. Vermeiden Sie Kontakt mit der Hochspannung, die während des Betriebs an der Ionenquelle anliegt. Schalten Sie das System in den Standby-Modus, bevor Sie Anpassungen oder Einstellungen am Probenschlauch oder an anderen Komponenten in der Nähe der Ionenquelle vornehmen.

- Vergewissern Sie sich vor dem Installieren einer neuen Ionenquelle, dass das Massenspektrometer mit der vorhandenen Ionenquelle entsprechend den Spezifikationen funktioniert.
- Installieren Sie die Ionenquelle am Massenspektrometer.

- Stellen Sie sicher, dass die Ionenquelle vollständig optimiert ist. Informationen zur Ionenquelle finden Sie im *Bedienerhandbuch*.
- Bevor Sie mit chemischen Lösungen oder Lösungsmitteln arbeiten, informieren Sie sich in den entsprechenden Sicherheitsdatenblättern über eventuell notwendige Vorsichtsmaßnahmen.
- Verbinden Sie den Erdungsanschluss der Ionenquelle über einen manuellen Injektor, der mit einer 5-µl-Schleife ausgerüstet ist, mit der Pumpe oder schließen Sie ihn an einen Autosampler an.

Siehe Abbildung 3-1 und Abbildung 3-2.

Abbildung 3-1 LC-Pumpenkonfiguration: TurbolonSpray[®] Probe

Abbildung 3-2 Pumpenkonfiguration: APCI-Probe

Position	Beschreibung
1	LC-Pumpe
2	Injektor oder Autosampler
3	Ionenquelle

Testen der Ionenquelle für TripleTOF[®]-Systeme

Vorbereitung der Testlösung

- 1. Mischen Sie 100 μL der 0,167-pmol/μL-Reserpin-Lösung und 900 μL des Standard-Verdünnungsmittels.
- 2. Mischen Sie alles 30 Sekunden lang mit einem Vortex-Mixer.

Dieser Schritt ergibt die 0,0167-pmol/µL-Reserpin-Lösung.

Testen der TurbolonSpray[®]-Sonde

WARNHINWEIS! Gefahr durch heiße Oberflächen. Lassen Sie die Ionenquelle vor Beginn der Wartungsarbeiten mindestens 30 Minuten Iang abkühlen. Die Oberflächen der Ionenquelle werden im Betrieb heiß.

VORSICHT: Mögliche Schäden am System. Lassen Sie keinerlei Lösungsmittel fließen, bis die Ionenquelle die richtige Temperatur erreicht hat.

Informationen zur Installation oder Optimierung der Ionenquelle finden Sie im *Bedienerhandbuch* der Ionenquelle.

- 1. Konfigurieren Sie die HPLC-Pumpe so, dass sie die mobile Phase mit einem Volumenstrom von 0,2 ml/min bereitstellt.
- 2. Doppelklicken Sie in der Analyst[®] TF-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 3. Passen Sie die Sondenpositionen wie in der folgenden Tabelle gezeigt an.

Tabelle 3-1 Sondenpositionen

Sonde	Vertikale Position	Horizontale Position	Elektrodenspitzen- überstand
APCI	5	—	0,5 mm
TurbolonSpray	5	5	0,5 mm

4. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Tabelle 3-2 Methodenparameter

Parameter	Wert
MS-Parameter	
Scan Mode	Produkt-Ion
High Sensitivity (nur Systeme 5600/5600+ und 6600/ 6600+)	Ein
Product Of	609,2807
TOF Masses (Da)	150 bis 650
Accumulation time (seconds)	0,200
Duration (minutes)	10

Parameter	Wert	
Source/Gas-Parameter		
Curtain Gas [™] flow (CUR)	20	
Temperature (TEM)	650	
lon Source Gas 1 (GS1)	50	
lon Source Gas 2 (GS2)	70	
IonSpray Voltage Floating (ISVF)	5500	
Compound-Parameter		
Declustering Potential (DP)	100	
Collision Energy (CE)	45	
Resolution-Parameter		
Q1 Resolution	Einheit	

Tabelle 3-2 Methodenparameter (Fortsetzung)

5. Klicken Sie auf **Start**, um die Methode auszuführen.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Stellen Sie sicher, dass die Elektrode aus der Spitze der Sonde herausragt, damit gefährliche Dämpfe nicht aus der Quelle entweichen können. Die Elektrode darf nicht in die Sonde eingelassen sein.

VORSICHT: Mögliche Schäden am System. Verwenden Sie optimalerweise den höchstmöglichen Wert für die Curtain Gas[™] Flussrate, um eine Verunreinigung des Massenspektrometers zu vermeiden.

- 6. Führen Sie mehrere 5-µl-Injektionen mit 0,0167-pmol/µl-Reserpin-Lösung durch und optimieren Sie gleichzeitig Folgendes, um eine maximale Signalstärke und Signalstabilität zu erzielen:
 - die vertikale und horizontale Position der Sonde
 - den Elektrodenspitzenüberstand
 - CUR, TEM, GS1, GS2 und ISVF.
- 7. Klicken Sie auf **Acquire**, um mit der Datenerfassung zu beginnen.
- 8. Führen Sie drei 5-µl-Injektionen mit Reserpin-Lösung durch.

Tipp! Wir empfehlen, dass Sie die 5-µl-Schleife mit 30 µl bis 40 µl Lösung überfüllen.

- Generieren Sie nach der Erfassung f
 ür jede Injektion ein XIC des Fensters von 50 mDa zentriert auf m/z 195,0652 (oder die beobachtete Masse, wie kalibriert). Zeichnen Sie die Intensit
 ät (Peak-H
 öhe) jeder Injektion auf.
- 10. Drucken Sie die Ergebnisse aus.

Die Ergebnisse sollten denen der folgenden Abbildung ähneln.

Abbildung 3-3 XIC für das Fenster von 50 mDa um den Massenschwerpunkt bei m/ z 195

- 11. Ermitteln Sie den Durchschnitt der drei Intensitäten der Ionen und halten Sie das Ergebnis im Datenprotokoll fest.
- 12. Prüfen Sie, ob die durchschnittliche Intensität akzeptabel ist. Siehe Datenprotokoll: DuoSpray[™]-Ionenquelle.

Wenn das Ergebnis nicht akzeptabel ist, siehe Tipps zur Fehlerbehebung.

13. Nach Abschluss der Tests stoppen Sie die LC-Pumpe. Setzen Sie **TEM** auf 0 und lassen Sie die Sonde abkühlen.

Testen der APCI-Sonde

WARNHINWEIS! Gefahr durch heiße Oberflächen. Lassen Sie die Ionenquelle vor Beginn der Wartungsarbeiten mindestens 30 Minuten Iang abkühlen. Die Oberflächen der Ionenquelle werden im Betrieb heiß.

VORSICHT: Mögliche Schäden am System. Lassen Sie keinerlei Lösungsmittel fließen, bis die Ionenquelle die richtige Temperatur erreicht hat.

Informationen zur Installation oder Optimierung der Ionenquelle finden Sie im *Bedienerhandbuch* der Ionenquelle.

1. Konfigurieren Sie die HPLC-Pumpe so, dass sie die mobile Phase mit einem Volumenstrom von 1 ml/min bereitstellt.

- 2. Doppelklicken Sie in der Analyst[®] TF-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 3. Passen Sie die Sondenpositionen wie in der folgenden Tabelle gezeigt an.

Tabelle 3-3 Sondenpositionen

Sonde	Vertikale Position	Horizontale Position	Elektrodenspitzen- überstand
APCI	5	—	0,5 mm
TurbolonSpray	5	5	0,5 mm

4. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Tabelle 3-4 Methodenparameter

Parameter	Wert	
MS-Parameter		
Scan Mode	Produkt-Ion	
High Sensitivity (nur Systeme 5600/5600+ und 6600/ 6600+)	Ein	
Product Of	609,2807	
TOF Masses (Da)	150 bis 650	
Accumulation time (seconds)	0,200	
Duration (minutes)	10	
Source/Gas-Parameter		
Curtain Gas [™] flow (CUR)	20	
Temperature (TEM)	650	
lon Source Gas 2 (GS2)	70	
IonSpray Voltage Floating (ISVF)	5500	
Compound-Parameter		
Declustering Potential (DP)	100	
Collision Energy (CE)	45	
Resolution-Parameter		
Q1 Resolution	Einheit	

5. Klicken Sie auf **Start**, um die Methode auszuführen.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Stellen Sie sicher, dass die Elektrode aus der Spitze der Sonde herausragt, damit gefährliche Dämpfe nicht aus der Quelle entweichen können. Die Elektrode darf nicht in die Sonde eingelassen sein.

VORSICHT: Mögliche Schäden am System. Verwenden Sie optimalerweise den höchstmöglichen Wert für die Curtain Gas[™] Flussrate, um eine Verunreinigung des Massenspektrometers zu vermeiden.

- 6. Führen Sie mehrere 5-µl-Injektionen mit 0,0167-pmol/µl-Reserpin-Lösung durch und optimieren Sie gleichzeitig Folgendes, um eine maximale Signalstärke und Signalstabilität zu erzielen:
 - die vertikale Position der Sonde
 - den Elektrodenspitzenüberstand
 - CUR, TEM, GS2 und ISVF
- 7. Klicken Sie auf **Acquire**, um mit der Datenerfassung zu beginnen.
- 8. Führen Sie drei 5-µl-Injektionen mit Reserpin-Lösung durch.

Tipp! Wir empfehlen, dass Sie die 5-µl-Schleife mit 30 µl bis 40 µl Lösung überfüllen.

- Generieren Sie nach der Erfassung f
 ür jede Injektion ein XIC des Fensters von 50 mDa zentriert auf m/z 195,0652 (oder die beobachtete Masse, wie kalibriert). Zeichnen Sie die Intensit
 ät (Peak-H
 öhe) jeder Injektion auf.
- 10. Drucken Sie die Ergebnisse aus.

Die Ergebnisse sollten denen der folgenden Abbildung ähneln.

Abbildung 3-4 XIC für das Fenster von 50 mDa um den Massenschwerpunkt bei m/z 195

11. Prüfen Sie, ob die durchschnittliche Intensität akzeptabel ist. Siehe Datenprotokoll: DuoSpray[™]-Ionenquelle.

Wenn das Ergebnis nicht akzeptabel ist, siehe Tipps zur Fehlerbehebung.

12. Nach Abschluss der Tests stoppen Sie die LC-Pumpe. Setzen Sie **TEM** auf 0 und lassen Sie die Sonde abkühlen.

Testen der Ionenquelle auf Systemen des Typs Triple-Quadrupole und QTRAP[®]

Testen der TurbolonSpray[®]-Sonde

WARNHINWEIS! Gefahr durch heiße Oberflächen. Lassen Sie die Ionenquelle vor Beginn der Wartungsarbeiten mindestens 30 Minuten Iang abkühlen. Die Oberflächen der Ionenquelle werden im Betrieb heiß.

VORSICHT: Mögliche Schäden am System. Lassen Sie keinerlei Lösungsmittel fließen, bis die Ionenquelle die richtige Temperatur erreicht hat.

Informationen zur Installation oder Optimierung der Ionenquelle finden Sie im *Bedienerhandbuch* der Ionenquelle.

- 1. Konfigurieren Sie die HPLC-Pumpe so, dass sie die mobile Phase mit einem Volumenstrom von 0,2 ml/min bereitstellt.
- 2. Doppelklicken Sie in der Analyst[®]-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 3. Wählen Sie in der Registerkarte Source/Gas TIS aus der Liste aus

4. Passen Sie die Sondenpositionen wie in der folgenden Tabelle gezeigt an.

Sonde	Vertikale Position	Horizontale Position	Elektrodenspitzen- überstand
APCI	5	—	0,5 mm
TurbolonSpray	5	5	0,5 mm

Tabelle 3-5 Sondenpositionen

5. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Tabelle 3-6 Methodenparameter

Parameter	Wert	
MS-Parameter	Produkt-Ion	
Scan Mode	MRM	
Q1	609,3	
Q3	195,1	
Scan Time (ms)	200	
Duration (minutes)	10	
Source/Gas-Parameter		
Curtain Gas [™] flow (CUR)	20 (oder wie optimiert)	
IonSpray Voltage (IS)	4500 (oder wie optimiert)	
Temperature (TEM)	700 (oder wie optimiert)	
lon Source Gas 1 (GS1)	60 (oder wie optimiert)	
lon Source Gas 2 (GS2)	70 (oder wie optimiert)	
Compound-Parameter		
Declustering Potential (DP)	100 (oder wie optimiert)	
Collision Energy (CE)	45 (oder wie optimiert)	
Collision Exit Potential (CXP)	wie optimiert	

6. Klicken Sie auf **Start**, um die Methode auszuführen.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Stellen Sie sicher, dass die Elektrode aus der Spitze der Sonde herausragt, damit gefährliche Dämpfe nicht aus der Quelle entweichen können. Die Elektrode darf nicht in die Sonde eingelassen sein.

VORSICHT: Mögliche Schäden am System. Verwenden Sie optimalerweise den höchstmöglichen Wert für die Curtain Gas[™] Flussrate, um eine Verunreinigung des Massenspektrometers zu vermeiden.

- 7. Führen Sie mehrere 5-µl-Injektionen mit Reserpin-Lösung durch und optimieren Sie gleichzeitig Folgendes, um eine maximale Signalstärke und Signalstabilität zu erzielen:
 - die vertikale und horizontale Position der Sonde
 - den Elektrodenspitzenüberstand
 - CUR, TEM, GS1, GS2 und IS.
- 8. Klicken Sie auf Acquire, um mit der Datenerfassung zu beginnen.
- 9. Führen Sie drei Injektionen mit 5 µl der 10-pg/µl-Testlösung durch, während Sie gleichzeitig das Fenster von 50 mDa um den Massenschwerpunkt bei m/z 195 überwachen.

Tipp! Wir empfehlen, dass Sie die 5-µl-Schleife mit 30 µl bis 40 µl Lösung überfüllen.

10. Drucken Sie die Ergebnisse aus.

Die Ergebnisse sollten denen der folgenden Abbildung ähneln.

Abbildung 3-5 Reserpin

11. Ermitteln Sie den Durchschnitt der drei Intensitäten der Ionen und halten Sie das Ergebnis im Datenprotokoll fest.

Tests, Spezifikationen und Datenprotokoll RUO-IDV-05-7280-DE-C 12. Prüfen Sie, ob die durchschnittliche Intensität akzeptabel ist. Siehe Datenprotokoll: DuoSpray[™]-Ionenquelle.

Wenn das Ergebnis nicht akzeptabel ist, siehe Tipps zur Fehlerbehebung.

13. Nach Abschluss der Tests stoppen Sie die LC-Pumpe. Setzen Sie **TEM** auf 0 und lassen Sie die Sonde abkühlen.

Testen der APCI-Sonde

WARNHINWEIS! Gefahr durch heiße Oberflächen. Lassen Sie die Ionenquelle vor Beginn der Wartungsarbeiten mindestens 30 Minuten Iang abkühlen. Die Oberflächen der Ionenquelle werden im Betrieb heiß.

VORSICHT: Mögliche Schäden am System. Lassen Sie keinerlei Lösungsmittel fließen, bis die Ionenquelle die richtige Temperatur erreicht hat.

Informationen zur Installation oder Optimierung der Ionenquelle finden Sie im *Bedienerhandbuch* der Ionenquelle.

- 1. Konfigurieren Sie die HPLC-Pumpe so, dass sie die mobile Phase mit einem Volumenstrom von 1 ml/min bereitstellt.
- 2. Doppelklicken Sie in der Analyst[®]-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 3. Passen Sie die Sondenpositionen wie in der folgenden Tabelle gezeigt an.

Tabelle 3-7 Sondenpositionen

Sonde	Vertikale Position	Horizontale Position	Elektrodenspitzen- überstand
APCI	5	—	0,5 mm
TurbolonSpray	5	5	0,5 mm

4. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Tabelle 3-8 Methodenparameter

Parameter	Wert				
MS-Parameter					
Scan Mode	MRM				
Q1	609,3				
Q3	195,1				
Scan Time (ms)	200				
Parameter	Wert				
-------------------------------------	--------------------------	--	--	--	--
Duration (minutes)	10				
Source/Gas-Parameter	·				
Curtain Gas [™] flow (CUR)	20 (oder wie optimiert)				
Nebulizer Current (NC)	3 (oder wie optimiert)				
Temperature (TEM)	350 (oder wie optimiert)				
Ion Source Gas 2 (GS2)	70 (oder wie optimiert)				
Compound-Parameters	·				
Declustering Potential (DP)	100 (oder wie optimiert)				
Collision Energy (CE)	45 (oder wie optimiert)				
Collision Exit Potential (CXP)	wie optimiert				

Tabelle 3-8 Methodenparameter (Fortsetzung)

5. Klicken Sie auf **Start**, um die Methode auszuführen.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Stellen Sie sicher, dass die Elektrode aus der Spitze der Sonde herausragt, damit gefährliche Dämpfe nicht aus der Quelle entweichen können. Die Elektrode darf nicht in die Sonde eingelassen sein.

VORSICHT: Mögliche Schäden am System. Verwenden Sie optimalerweise den höchstmöglichen Wert für die Curtain Gas[™] Flussrate, um eine Verunreinigung des Massenspektrometers zu vermeiden.

- 6. Führen Sie mehrere 5-µl-Injektionen mit Reserpin-Lösung durch und optimieren Sie gleichzeitig Folgendes, um eine maximale Signalstärke und Signalstabilität zu erzielen:
 - die vertikale und horizontale Position der Sonde
 - den Elektrodenspitzenüberstand
 - CUR, GS1 und NC
- 7. Klicken Sie auf **Acquire**, um mit der Datenerfassung zu beginnen.
- 8. Führen Sie drei 5-µl-Injektionen mit Reserpin-Lösung durch.

Tipp! Wir empfehlen, dass Sie die 5-µl-Schleife mit 30 µl bis 40 µl Lösung überfüllen.

- Generieren Sie nach der Erfassung f
 ür jede Injektion ein XIC des Fensters von 50 mDa zentriert auf m/z 195,0652 (oder die beobachtete Masse, wie kalibriert). Zeichnen Sie die Intensit
 ät (Peak-H
 öhe) jeder Injektion auf.
- 10. Drucken Sie die Ergebnisse aus.
- 11. Prüfen Sie, ob die durchschnittliche Intensität akzeptabel ist. Siehe Datenprotokoll: DuoSpray[™]-Ionenquelle.

Wenn das Ergebnis nicht akzeptabel ist, siehe Tipps zur Fehlerbehebung.

12. Nach Abschluss der Tests stoppen Sie die LC-Pumpe. Setzen Sie **TEM** auf 0 und lassen Sie die Sonde abkühlen.

OptiFlow[™] Turbo V-Ionenquellen-Tests

Führen Sie diese Tests in einer der folgenden Situationen durch:

- wenn eine neue Ionenquelle installiert wird.
- nach größeren Wartungsarbeiten an der Ionenquelle.
- wann immer die Leistung der Ionenquelle überprüft werden muss, entweder vor Beginn eines Projektes oder als Teil einer standardisierten Vorgehensweise.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Verwenden Sie die Ionenquelle nur, wenn Sie Kenntnisse über die ordnungsgemäße Verwendung, Eingrenzung und Entsorgung von mit der Ionenquelle verwendeten toxischen oder schädlichen Materialien haben und darin geschult wurden.

WARNHINWEIS! Gefahr von Stichverletzungen, Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Verwenden Sie die Ionenquelle nicht weiter, wenn das Fenster gesprungen oder zerbrochen ist, und wenden Sie sich an einen SCIEX-Außendienstmitarbeiter. Alle giftigen oder schädlichen Stoffe, die dem Gerät zugeführt werden, sind in der Abluft der Ionenquelle vorhanden. Aus dem Gerät stammende Abluft muss aus dem Raum abgeführt werden. Befolgen Sie bei der Entsorgung von scharfen und spitzen Gegenständen die Sicherheitsvorschriften Ihres Labors.

WARNHINWEIS! Toxisch-chemische Gefahren. Tragen Sie persönliche Schutzausrüstung, wie z. B. Laborkittel, Schutzhandschuhe und eine Schutzbrille, um Haut- oder Augenkontakt zu vermeiden.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Überprüfen Sie bei einem Chemieunfall die Sicherheitsdatenblätter auf spezifische Anweisungen. Vergewissern Sie sich, dass sich das System im Standby-Modus befindet, bevor Sie ausgelaufene Flüssigkeiten in der Nähe der Ionenquelle entfernen. Verwenden Sie geeignete persönliche Schutzausrüstung und Absorptionstücher, um ausgelaufene Flüssigkeiten aufzunehmen, und entsorgen Sie die ausgelaufenen Materialien entsprechend den örtlichen Vorschriften.

Erforderliche Materialien

 Testlösung hergestellt aus der 0,167 pmol/µl Reserpin-Lösung und dem Standard-Verdünnungsmittel aus dem SCIEX TripleTOF[®] System-Chemie-Kit (Art.-Nr. 4456736).

Hinweis: Diese Lösung wird auch für das Testen der OptiFlowTM Turbo V-Ionenquelle an Massenspektrometer des Typs SCIEX Triple QuadTM und QTRAP[®] verwendet.

- PEEK-Kapillare, 1/16 Zoll Außendurchmesser (AD), 0,005 Zoll Innendurchmesser (ID)
- Ionenquelle mit installierter MICRO-Sonde mit einer Low-Microflow-Elektrode.
- Spritze 250 bis 1000 µl
- Puderfreie Handschuhe (es werden Neopren- bzw. Nitrilhandschuhe empfohlen)
- Schutzbrille
- Kittel

Hinweis: Alle Testlösungen müssen kühl gelagert werden. Wenn sie länger als 48 Stunden nicht in einem Kühlraum gekühlt wurden, müssen sie entsorgt und neue Lösungen verwendet werden.

VORSICHT: Potenziell falsches Ergebnis. Verwenden Sie keine Lösungen mit abgelaufenem Verwendungsdatum.

Versuchsvorbereitungen

WARNHINWEIS! Stromschlaggefahr. Vermeiden Sie Kontakt mit der Hochspannung, die während des Betriebs an der Ionenquelle anliegt. Schalten Sie das System in den Standby-Modus, bevor Sie Anpassungen oder Einstellungen am Probenschlauch oder an anderen Komponenten in der Nähe der Ionenquelle vornehmen.

- Vergewissern Sie sich vor dem Installieren einer neuen Ionenquelle, dass das Massenspektrometer mit der vorhandenen Ionenquelle entsprechend den Spezifikationen funktioniert.
- Installieren Sie die Ionenquelle am Massenspektrometer.
- Stellen Sie sicher, dass die Ionenquelle vollständig optimiert ist. Informationen zur Ionenquelle finden Sie im *Bedienerhandbuch*.
- Bevor Sie mit chemischen Lösungen oder Lösungsmitteln arbeiten, informieren Sie sich in den entsprechenden Sicherheitsdatenblättern über eventuell notwendige Vorsichtsmaßnahmen.
- Installieren Sie die zu testende Sonde.

Testen der Ionenquelle auf Systemen des Typs Triple-Quadrupole und QTRAP[®]

Testen einer SteadySpray-Sonde

WARNHINWEIS! Gefahr durch heiße Oberflächen. Lassen Sie die Ionenquelle vor Beginn der Wartungsarbeiten mindestens 60 Minuten Iang abkühlen. Die Oberflächen der Ionenquelle werden im Betrieb heiß.

VORSICHT: Mögliche Schäden am System. Lassen Sie keinerlei Lösungsmittel fließen, bis die Ionenquelle die richtige Temperatur erreicht hat.

Hinweis: Die OptiFlow[™] Turbo V-Ionenquelle ist nur für Systeme des Typs 5500, 5500+, 6500 und 6500+ verfügbar.

Hinweis: Dieser Test gilt nur für die MICRO-Sonde und die Low-Microflow-Elektrode.

Informationen zur Installation oder Optimierung der Ionenquelle finden Sie im *Bedienerhandbuch* der Ionenquelle.

- 1. Infundieren Sie die Reserpin-Lösung mit einem Volumenstrom von 5 µl/min.
- 2. Doppelklicken Sie in der Analyst[®]-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 3. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Tabelle 4-1 Methodenparameter

Parameter	Wert				
MS-Parameter					
Scan Mode	MRM				
Q1	609,3 (oder wie optimiert)				
Q3	195,1 (oder wie optimiert)				
Scan Time (seconds)	0,200				
Duration (minutes)	10				
Source/Gas-Parameter					
Curtain Gas [™] flow (CUR)	20 (oder wie optimiert)				
Temperature (TEM)	350 (optimiert mit maximal 350°C)				
lon Source Gas 1 (GS1)	25 (oder optimiert)				

Tests, Spezifikationen und Datenprotokoll RUO-IDV-05-7280-DE-C

Tabelle 4-1 Methodenparameter (Fortsetzung)

Parameter	Wert				
lon Source Gas 2 (GS2)	65 (oder wie optimiert)				
IonSpray [™] Voltage (IS)	4500 (4500 max.)				
Compound-Parameter					
Declustering Potential (DP)	100 (oder wie optimiert)				
Collision Energy (CE)	45 (oder wie optimiert)				
Syringe Pump Method-Parameter					
Flow rate (µL/min)	5				
Syringe Size (µL)	250 μl bis 1000 μl				

4. Klicken Sie auf **Start**, um die Methode auszuführen.

VORSICHT: Mögliche Schäden am System. Verwenden Sie optimalerweise den höchstmöglichen Wert für die Curtain Gas[™] Flussrate, um eine Verunreinigung des Massenspektrometers zu vermeiden.

- 5. Infundieren Sie mindestens 5 Minuten lang die Reserpin-Lösung mit einem Volumenstrom von 5 μl/min bei gleichzeitiger Optimierung von CUR, TEM, GS1, GS2 und IS für maximale Signalstärke und -stabilität.
- 6. Klicken Sie auf **Acquire**, um mit der Datenerfassung zu beginnen.
- 7. Drucken Sie die Ergebnisse aus.
- 8. Zeichnen Sie das Ergebnis im Datenprotokoll auf.
- 9. Ermitteln Sie den Durchschnitt der drei Intensitäten der Ionen und halten Sie das Ergebnis im Datenprotokoll fest.
- 10. Prüfen Sie, ob die durchschnittliche Intensität akzeptabel ist. Siehe Datenprotokoll: OptiFlow[™] Turbo V-Ionenquelle.

Wenn das Ergebnis nicht akzeptabel ist, beachten Sie Tipps zur Fehlerbehebung.

Testen der Ionenquelle auf TripleTOF[®]-Systemen

Hinweis: Die OptiFlow[™] Turbo V-Ionenquelle ist nur für Systeme des Typs TripleTOF[®] 6600+ und Systeme des Typs TripleTOF[®] 6600, die für die Verwendung der OptiFlow[™] Turbo V-Ionenquelle aufgerüstet wurden, verfügbar.

Testen einer SteadySpray-Sonde

WARNHINWEIS! Gefahr durch heiße Oberflächen. Lassen Sie die Ionenquelle vor Beginn der Wartungsarbeiten mindestens 60 Minuten Iang abkühlen. Die Oberflächen der Ionenquelle werden im Betrieb heiß.

VORSICHT: Mögliche Schäden am System. Lassen Sie keinerlei Lösungsmittel fließen, bis die Ionenquelle die richtige Temperatur erreicht hat.

Informationen zur Installation oder Optimierung der Ionenquelle finden Sie im *Bedienerhandbuch* der Ionenquelle.

Hinweis: Dieser Test gilt nur für die MICRO-Sonde und die Low-Microflow-Elektrode.

- 1. Infundieren Sie die Reserpin-Lösung mit einem Volumenstrom von 5 µl/min.
- 2. Doppelklicken Sie in der Analyst[®] TF-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 3. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Tabelle	4-2	Methoden	parameter

Parameter	Wert					
MS-Parameter						
Scan Mode	Produkt-Ion					
High Sensitivity	Ein					
Product Of	609,2807					
TOF Masses (Da)	150 bis 650					
Accumulation time (seconds)	0,200					
Duration (minutes)	10					
Source/Gas-Parameter						
Curtain Gas [™] flow (CUR)	20 (oder optimiert)					
Temperature (TEM)	350 (optimiert mit maximal 350°C)					
lon Source Gas 1 (GS1)	25 (oder optimiert)					
lon Source Gas 2 (GS2)	65 (oder wie optimiert)					
IonSpray Voltage Floating (ISVF)	4500 (4500 max.)					
Compound-Parameter						
Declustering Potential (DP)	100 (oder optimiert)					

Tabelle 4-2 Methodenparameter (Fortsetzung)

Parameter	Wert					
Collision Energy (CE)	45 (oder optimiert)					
Resolution-Parameter						
Q1 Resolution	Einheit					
Syringe Pump Method-Parameter						
Flow rate (µL/min)	5					
Syringe Size (μL)	250 µl bis 1000 µl					

4. Klicken Sie auf **Start**, um die Methode auszuführen.

VORSICHT: Mögliche Schäden am System. Verwenden Sie optimalerweise den höchstmöglichen Wert für die Curtain Gas[™] Flussrate, um eine Verunreinigung des Massenspektrometers zu vermeiden.

- 5. Infundieren Sie die 0,167 pmol/µl Reserpin-Lösung bei gleichzeitiger Optimierung von CUR, TEM, GS1, GS2 und ISVF für maximale Signalstärke und -stabilität.
- 6. Klicken Sie auf **Acquire** und erfassen Sie mindestens 5 Minuten lang Daten.
- 7. Drucken Sie die Ergebnisse aus.
- 8. Prüfen Sie, ob die durchschnittliche Intensität akzeptabel ist. Siehe Datenprotokoll: Turbo VTM-Ionenquelle.

Wenn das Ergebnis nicht akzeptabel ist, siehe Tipps zur Fehlerbehebung.

Die Tests in diesem Abschnitt gelten für die NanoSpray III Ionenquelle. Im *Installationshandbuch* für das neue Objektiv finden Sie die Tests für die DPV-450 Digital PicoView[®] Nanospray-Ionenquelle für SCIEX Massenspektrometer.

Führen Sie diese Tests in einer der folgenden Situationen durch:

- wenn eine neue Ionenquelle installiert wird.
- nach größeren Wartungsarbeiten an der Ionenquelle.
- wann immer die Leistung der Ionenquelle überprüft werden muss, entweder vor Beginn eines Projektes oder als Teil einer standardisierten Vorgehensweise.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Verwenden Sie die Ionenquelle nur, wenn Sie Kenntnisse über die ordnungsgemäße Verwendung, Eingrenzung und Entsorgung von mit der Ionenquelle verwendeten toxischen oder schädlichen Materialien haben und darin geschult wurden.

WARNHINWEIS! Stromschlaggefahr. Die NanoSpray[®]-Ionenquelle darf grundsätzlich nur mit einer ordnungsgemäß installierter Beleuchtung, Kamera, Anschlägen und Abdeckungen betrieben werden. Berühren Sie auf keinen Fall die Curtain-Platte und vermeiden Sie jede Berührung zwischen Emitterspitze und Curtain-Platte. Wenn das Massenspektrometer betriebsbereit und die Ionenquelle installiert ist, liegt an der Curtain-Platte Hochspannung an, selbst wenn die X-Y-Z-Positioniereinheit von der Schnittstelle entfernt wurde.

WARNHINWEIS! Toxisch-chemische Gefahren. Tragen Sie persönliche Schutzausrüstung, wie z. B. Laborkittel, Schutzhandschuhe und eine Schutzbrille, um Haut- oder Augenkontakt zu vermeiden.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Überprüfen Sie bei einem Chemieunfall die Sicherheitsdatenblätter auf spezifische Anweisungen. Vergewissern Sie sich, dass sich das System im Standby-Modus befindet, bevor Sie ausgelaufene Flüssigkeiten in der Nähe der Ionenquelle entfernen. Verwenden Sie geeignete persönliche Schutzausrüstung und Absorptionstücher, um ausgelaufene Flüssigkeiten aufzunehmen, und entsorgen Sie die ausgelaufenen Materialien entsprechend den örtlichen Vorschriften.

Versuchsvorbereitungen

WARNHINWEIS! Stromschlaggefahr. Vermeiden Sie Kontakt mit der Hochspannung, die während des Betriebs an der Ionenquelle anliegt. Schalten Sie das System in den Standby-Modus, bevor Sie Anpassungen oder Einstellungen am Probenschlauch oder an anderen Komponenten in der Nähe der Ionenquelle vornehmen.

- Vergewissern Sie sich vor dem Installieren einer neuen Ionenquelle, dass das Massenspektrometer mit der vorhandenen Ionenquelle entsprechend den Spezifikationen funktioniert.
- Installieren Sie die Ionenquelle am Massenspektrometer.
- Stellen Sie sicher, dass die Ionenquelle vollständig optimiert ist. Informationen zur Ionenquelle finden Sie im *Bedienerhandbuch*.
- Bevor Sie mit chemischen Lösungen oder Lösungsmitteln arbeiten, informieren Sie sich in den entsprechenden Sicherheitsdatenblättern über eventuell notwendige Vorsichtsmaßnahmen.

Abbildung 5-1 Testablauf

Vorbereitung der verdünnten [Glu¹]-Fibrinopeptid-B-Lösung

Erforderliches Material

- [Glu1]-Fibrinopeptid B, im LC/MS-Peptid-Kalibriersatz enthalten (Art.-Nr.4465867)
- Standard-Verdünnungsmittel, im LC/MS-Peptid-Kalibriersatz enthalten
- Puderfreie Handschuhe (es werden Neopren- bzw. Nitrilhandschuhe empfohlen)
- Schutzbrille
- Kittel

Eine Liste der Massen von [Glu¹]-Fibrinopeptid B finden Sie unter Massen für [Glu¹]-Fibrinopeptid B.

Hinweis: Bereiten Sie die Verdünnung stets erst kurz vor dem Durchführen des Tests vor.

Hinweis: Das [Glu¹]-Fibrinopeptid B kann sich im Gummi-Septum des Fläschchens ablagern. Klopfen Sie vor dem Öffnen des Fläschchens vorsichtig dagegen oder schütteln Sie es. Entfernen Sie anschließend das Septum teilweise, um einen Schlitz freizugeben. Füllen Sie das verdünnte Lösungsmittel durch den Schlitz ein. Drücken Sie das Septum wieder zu und mischen Sie alles gut, damit die Auflösung erfolgt.

VORSICHT: Potenziell falsches Ergebnis. Verwenden Sie keine Lösungen mit abgelaufenem Verwendungsdatum.

- 1. Fügen Sie 900 μl Standard-Verdünnungsmittel (0,1 % Ameisensäure, 10 % Acetonitril) in die bernsteinfarbene Glasflasche, in der 0,1 mg [Glu¹]-Fibrinopeptid B enthalten ist.
- 2. Verschließen Sie die Glasflasche sicher, schütteln Sie diese und mischen Sie die Lösung anschließend mindestens zwei Minuten lang in einem Vortex-Mixer, damit das Peptid vollständig aufgelöst wird.

Hinweis: Die Peptidkonzentration kann je nach Gesamtpeptidgehalt und Peptidreinheit der Standardlösung variieren. Weitere Informationen finden Sie im vom Anbieter mitgelieferten Analysezertifikat. Bei einer 100% igen Reinheit entsteht mit 0,1 mg [Glu¹]-Fibrinopeptid B, das wie in den vorhergehenden Schritten beschrieben aufgelöst wurde, eine Stammlösung mit einer Konzentration von ca. 66,67 pmol/µl.

- 3. Aliquotieren Sie jeweils 50 µl der Stammlösung in saubere Röhrchen. Frieren Sie nicht verbrauchte Aliquote bei –20 °C für den zukünftigen Gebrauch ein.
- 4. Geben Sie 50 μl der Stammlösung in ein sauberes Röhrchen und fügen Sie dann 450 μl des Standard-Verdünnungsmittels hinzu.
- 5. Mischen Sie das Röhrchen 30 Sekunden lang in einem Vortex-Mixer.

Dies ist eine 1:10-Lösung, die 500µl einer 6.7-pmol/µl-Lösung ergibt.

- 6. Geben Sie 50 µl der 6,7-pmol/µl-Lösung in ein weiteres sauberes Röhrchen.
- 7. Fügen Sie 450 µl des Standard-Verdünnungsmittels hinzu.
- 8. Mischen Sie das Röhrchen 30 Sekunden lang in einem Vortex-Mixer.

Dies ist eine 1:10-Verdünnung, die 500 µl der 667-fmol/µl-Lösung ergibt.

- 9. Geben Sie 50 µl der 667-fmol/µl-Lösung in ein weiteres sauberes Röhrchen.
- 10. Fügen Sie 450 µl des Standard-Verdünnungsmittels hinzu.
- 11. Mischen Sie das Röhrchen 30 Sekunden lang in einem Vortex-Mixer.

Dies eine 1:10-Lösung, die 500 μ l der finalen 66,7-fmol/ μ l-Lösung für die Verwendung beim Infusionstest ergibt.

Testen der Ionenquelle auf TripleTOF[®]-Systemen

WARNHINWEIS! Stromschlaggefahr. Die NanoSpray[®]-Ionenquelle darf grundsätzlich nur mit einer ordnungsgemäß installierter Beleuchtung, Kamera, Anschlägen und Abdeckungen betrieben werden. Berühren Sie auf keinen Fall die Curtain-Platte und vermeiden Sie jede Berührung zwischen Emitterspitze und Curtain-Platte. Wenn das Massenspektrometer betriebsbereit und die Ionenquelle installiert ist, liegt an der Curtain-Platte Hochspannung an, selbst wenn die X-Y-Z-Positioniereinheit von der Schnittstelle entfernt wurde.

WARNHINWEIS! Gefahr durch heiße Oberflächen. Hochspannungsschiene oder Emitterspitze nicht berühren.

Eine Übersicht über die erforderlichen Aufgaben finden Sie in Abbildung 5-1.

Führen Sie im Fall von Systemen des Typs TripleTOF[®] 4600 diese Aufgaben durch:

- Vorbereitung der verdünnten [Glu¹]-Fibrinopeptid-B-Lösung
- Testen und Kalibrieren im TOF-MS-Modus
- Testen und Kalibrieren im Produkt-Ionen-Modus

Führen Sie im Fall von Systemen des Typs TripleTOF[®] 5600/5600+ und 6600/6600+ diese Aufgaben durch:

- Vorbereitung der verdünnten [Glu¹]-Fibrinopeptid-B-Lösung
- Testen und Kalibrieren im TOF-MS-Modus
- Testen und Kalibrieren im Produkt-Ionen-Modus (hohe Empfindlichkeit) (nur Systeme des Typs 5600/5600+ und 6600/6600+)
- Testen und Kalibrieren im Produkt-Ionen-Modus. Dieser Test wird im Modus "High Resolution" durchgeführt.

Erforderliche Materialien

- Verdünnte [Glu1]-Fibrinopeptid-B-Lösung. Siehe Vorbereitung der verdünnten [Glu¹]-Fibrinopeptid-B-Lösung.
- Eine 100 μl-Spritze (Innendurchmesser 1,46 mm) oder ein vergleichbares Gerät für Infusionen im Zusammenhang mit der NanoSpray[®]-Ionenquelle
- (Optional) 1-ml-Spritze (Innendurchmesser 4,61 mm) oder ein vergleichbares Gerät für Infusionen im Zusammenhang mit der DuoSpray[™]-Ionenquelle
- Puderfreie Handschuhe (es werden Neopren- bzw. Nitrilhandschuhe empfohlen)
- Schutzbrille
- Kittel

Testen und Kalibrieren im TOF-MS-Modus

(Optional) Durchführung des TOF-MS-Tests mit der DuoSpray[™]-Ionenquelle

Mit diesem Verfahren wird die Integrität der verdünnten Lösung bestätigt.

Hinweis: Spülen Sie die Spritze drei Mal mit der Waschlösung, bevor Sie sie mit der [Glu¹]-Fibrinopeptid-B-Lösung füllen. Schließen Sie die Spritze dann an den passenden Schlauch an und spülen Sie sie erneut, bevor Sie sie an das Verbindungsstück an der Hochspannungsschiene anschließen. Spülen Sie den Schlauch dann mit der [Glu¹]-Fibrinopeptid-B-Lösung durch.

- 1. Installieren Sie die DuoSpray[™]-Ionenquelle am Massenspektrometer. Siehe DuoSpray[™]-Ionenquellen-Bedienerhandbuch.
- 2. Infundieren Sie die [Glu¹]-Fibrinopeptid B-Lösung mit der 1-ml-Spritze mit einem Volumenstrom von 5 μl/ min.
- 3. Doppelklicken Sie in der Analyst[®] TF-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 4. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Tabelle 5-1 Parameter für den TOF-MS-Test mit der DuoSpray[™]-Ionenquelle

Parameter	Wert				
MS-Parameter					
Scan type	TOF MS				
Accumulation time (sec)					
Polarity	Positiv				
TOF Masses (Da)	400 bis 1800				

Parameter	Wert					
Duration (min)	0,5					
Advanced MS-Parameter						
МСА	Aus					
Auto Adjust with mass	Ein					
Q1 Transmission Window	Standard (mit automatischem Anpassen)					
Pulsar Frequency Standard (mit automatischem Anpa						
Time Bins to Sum	4					
Settling time	Standard					
Pause between mass ranges	Standard					
Source/Gas-Parameter						
lon Source Gas 1 (GS1)	20					
Curtain Gas [™] flow (CUR)	20					
Temperature (TEM) (°C)	0					
IonSpray Voltage Floating (ISVF)	5500					
Compound-Parameter						
Declustering Potential (DP) 100						
Syringe Pump Method-Parameter						
Flow rate (µL/min)	5					
Syringe Size	1 ml (4,61 mm i.d.)					

Tabelle 5-1 Parameter für den TOF-MS-Test mit der DuoSpray[™]-Ionenquelle (Fortsetzung)

5. Speichern Sie die neue Methode.

Tipp! Speichern Sie die für die Tests der NanoSpray[®]-Ionenquelle in einem separaten Ordner mit der Bezeichnung "NanoSpray Installation <Datum>."

- 6. Klicken Sie auf **Acquire**, um 30 Sekunden Daten aufzunehmen.
- 7. Markieren Sie 30 Sekunden im Fenster **TIC of +TOF MS** im unteren linken Bereich, und doppelklicken Sie dann, um ein durchschnittliches Spektrum anzuzeigen.
- 8. Klicken Sie im durchschnittlichen Spektrum, dass im unteren Bereich angezeigt wird, mit der rechten Maustaste und klicken Sie dann auf **List Data**. Notieren Sie dann die Schwerpunktintensität und -auflösung.
- 9. Prüfen Sie, ob die Schwerpunktintensität und -auflösung akzeptabel sind. Siehe Datenprotokoll: NanoSpray[®]-Ionenquelle.

Richtlinie: Die bei der DuoSpray[™]-Ionenquelle erzielte Schwerpunktintensität und Auflösung sollte den Spezifikationen für die NanoSpray[®]-Ionenquelle entsprechen. Sollte dem nicht so sein, bereiten Sie eine neue verdünnte Lösung zu.

Durchführen des TOF-MS-Tests mit der NanoSpray[®] Ionenquelle

Hinweis: Spülen Sie die Spritze drei Mal mit der Waschlösung, bevor Sie sie mit der [Glu¹]-Fibrinopeptid-B-Lösung füllen. Schließen Sie die Spritze dann an den passenden Schlauch an und spülen Sie sie erneut, bevor Sie sie an das Verbindungsstück an der Hochspannungsschiene anschließen. Spülen Sie den Schlauch dann mit der [Glu¹]-Fibrinopeptid-B-Lösung durch.

- 1. Installieren Sie die NanoSpray[®]-Ionenquelle am Massenspektrometer. Siehe dazu das NanoSpray[®]-Ionenquellen-Bedienerhandbuch.
- 2. Bereiten Sie den NanoSpray III-Kopf vor. Siehe das *NanoSpray[®]-Ionenquellen-Bedienerhandbuch*.
- 3. Infundieren Sie die [[Glu¹]-Fibrinopeptid B-Lösung mit der 100-μl-Spritze mit einem Volumenstrom von 0,5 μl/min.
- 4. Doppelklicken Sie in der Analyst[®] TF-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 5. Wenn das optionale Verfahren (Optional) Durchführung des TOF-MS-Tests mit der DuoSpray[™]-Ionenquelle durchgeführt wird, öffnen Sie die Methode und stellen Sie die Parameter wie in der folgenden Tabelle angegeben ein. Wird das Verfahren nicht durchgeführt, dann erstellen Sie mithilfe dieser Parameter eine Methode.

Tabelle 5-2 Parameter für die TOF-MS-Methode bei Verwendung der NanoSpray[®] lonenquelle

Parameter	Wert
MS-Parameter	
Scan type	TOF MS
Accumulation time (sec)	1,0
Polarity	Positiv
TOF Masses (Da)	400 bis 1800
Duration (min)	0,5
Advanced MS-Parameter	
МСА	Aus
Auto Adjust with mass	Ein
Q1 Transmission Window	Standard (mit automatischem Anpassen)
Pulsar Frequency	Standard (mit automatischem Anpassen)
Time Bins to Sum	4

Parameter	Wert					
Settling time	Standard					
Pause between mass ranges	Standard					
Source/Gas-Parameter						
lon Source Gas 1 (GS1)	3					
Curtain Gas [™] flow (CUR)	25					
Interface Heater Temperature (IHT) (°C)	75					
IonSpray Voltage Floating (ISVF)	2100					
Compound-Parameter						
Declustering Potential (DP)	100					
Syringe Pump Method-Parameter						
Flow rate (µL/min)	0,5					
Syringe Size	100 gasdicht (1,46 mm)					

Tabelle 5-2 Parameter für die TOF-MS-Methode bei Verwendung der NanoSpray[®] Ionenquelle (Fortsetzung)

6. Klicken Sie auf **Start**, um die Methode auszuführen.

VORSICHT: Mögliche Schäden am System. Vermeiden Sie eine Berührung der Emitterspitze mit der Curtain-Platte. Passen Sie die Position des Zerstäubers anhand des Z-Achsen-Einstellknopfs an, um eine Beschädigung der Emitterspitze zu vermeiden.

VORSICHT: Mögliche Systemkontamination. Führen Sie das Ende der Emitterspitze nicht in die Öffnung der Curtain-Platte ein. Stellen Sie sicher, dass sich die Emitterspitze mindestens 2 bis 5 mm außerhalb der Öffnung befindet. Durch ein zu nahes Sprühen an der Öffnung kann das Massenspektrometer verunreinigt werden.

- 7. Passen Sie die Position des Zerstäuberkopfes relativ zur Transferkapillar-Öffnung an, um die Signalstärke zu optimieren. Notieren Sie die XYZ-Werte für eine spätere Verwendung
- 8. Passen Sie **ISVF** in Schritten von 100 V an, um das beste Signal und das beste Signal-zu-Rausch-Verhältnis zu erhalten.

Hinweis: Wenn die IonSpray[™]-Spannung zu hoch ist, kann es zu einer Koronaentladung kommen. Sie wird durch ein blaues Leuchten an der Spitze der Sonde sichtbar. Eine Koronaentladung hat eine verminderte Empfindlichkeit und Stabilität des Signals zur Folge.

9. Erhöhen Sie **GS1**, bis das Signal abnimmt, und reduzieren Sie dann **GS1**, bis das Signal seinen Maximalwert erreicht.

GS1 ist normalerweise zwischen 3 und 10 optimal. Befindet sich **GS1** außerhalb dieses Bereichs, ist der Spitzenüberstand falsch (1 bis 2 mm) oder die Spitze muss möglicherweise ausgetauscht werden.

Hinweis: Der GS1-Parameter kann bei Null optimal sein.

10. Erhöhen Sie **CUR**, bis das Signal abnimmt, und reduzieren Sie dann **CUR**, bis das Signal seinen Maximalwert erreicht.

Hinweis: Verwenden Sie zur Vermeidung von Verunreinigungen den höchstmöglichen Wert für CUR, ohne dabei Abstriche bei der Empfindlichkeit zu machen. Stellen Sie CUR nicht niedriger als 20 ein. Das hilft ein Durchschlagen des Curtain Gas[™]-Stroms zu verhindern, was ein rauschendes Signal hervorrufen kann. Es verhindert eine Verunreinigung der Öffnung und erhöht das gesamte Signal-Rausch-Verhältnis.

- 11. Falls Sie den Sprühkopf zur Optimieren der Signalintensität bewegt haben, passen Sie die Position des Illuminators bei Bedarf an.
- 12. Speichern Sie die neue Methode.

Tipp! Speichern Sie die für die Tests der NanoSpray[®]-Ionenquelle in einem separaten Ordner mit der Bezeichnung "NanoSpray Installation <Datum>."

- 13. Führen Sie die Methode mindestens 20 Minuten lang aus. Überwachen Sie die Spray-Stabilität. Ist das Spray stabil, sind nur die minimalen Schwankungen im TIC sichtbar.
- 14. Klicken Sie nach dem Optimieren und der Stabilisierung des Sprays auf **Acquire**, und nehmen Sie 30 Sekunden Daten auf.
- 15. Markieren Sie 30 Sekunden im Fenster **TIC of +TOF MS** im unteren linken Bereich, und doppelklicken Sie dann, um ein durchschnittliches Spektrum anzuzeigen.
- 16. Klicken Sie im durchschnittlichen Spektrum, dass im unteren Bereich angezeigt wird, mit der rechten Maustaste und klicken Sie dann auf **List Data**. Notieren Sie die Schwerpunktintensität und -auflösung.
- 17. Prüfen Sie, ob die Schwerpunktintensität und -auflösung akzeptabel sind. Siehe Abbildung 5-2 und Datenprotokoll: NanoSpray[®]-Ionenquelle.

Abbildung 5-2 Probenspektren: TOF-MS-Scan für GluFibrinopeptid B, TripleTOF 5600-System

Wenn die Ergebnisse nicht akzeptabel sind, beachten Sie Tipps zur Fehlerbehebung.

18. Drucken Sie eine Kopie der Ergebnisse aus und zeichnen Sie die Schwerpunktintensität und -auflösung im Datenprotokoll auf.

Aktualisierung der Kalibrierungsreferenztabelle für [Glu¹]-Fibrinopeptid B

- 1. Klicken Sie in der Analyst[®] TF-Software im Modus **Tune and Calibrate** auf **Tools > Settings > Tuning Options.**
- 2. Klicken Sie auf der Registerkarte Calibration auf Reference.
- 3. Wählen Sie im Reference Table Editor im Feld Name die Option Glu-fibrinopeptide B aus.
- Fügen Sie in der Tabelle Reference Ions for TOF MS Calibration (auf der linken Seite) die in Abbildung 5-3 gezeigten Massen hinzu. Eine Liste der Massen von [Glu¹]-Fibrinopeptid B finden Sie unter Massen für [Glu¹]-Fibrinopeptid B.

fere	nce Ions	for TOF MS Calibrat	ion:				_		Refere	ence Ions at of 785.8	for MS/MS Calibrat	ion:
	Use	Compound Name	Precursor m/z (Da)	Use for MS/MS	CE for MS/MS	DP for MS/MS	Retention Time (min)	^		Use	Fragment Name	Fragment m/z (Da)
	J	y4	480.25650	Г	45.000	100.000	0.00	_	1	ম	y1	175.11900
	ব	у6	684.34640	Г	45.000	100.000	0.00	1	2	ব	у3	333.18810
	ঘ	Glu-fibrinopeptide	785.84210	ব	45.000	100.000	0.00	1	3	N	y4	480.25650
	ঘ	y7	813.38900	Г	45.000	100.000	0.00	1	4	ম	y6	684.34640
	ঘ	y8	942.43160	Г	45.000	100.000	0.00	1	5	N	Parent	785.84210
	ব	у9	1056.47450	Г	45.000	100.000	0.00	1	6	<u>य</u>	y8	942.43160
	ঘ	y10	1171.50140	Г	45.000	100.000	0.00	1	7	N	y10	1171.50140
	ঘ	y11	1285.54440	Г	45.000	100.000	0.00	1	8	ਪ	y11	1285.54440
				Г				1	9			
				Γ]	10			
									11			
]	12			
								-	13			
		1		Г				×	14		1	

Abbildung 5-3 Referenztabelleneditor: Referenzionen für die TOF-MS-Kalibrierung

- 5. Klicken Sie auf **OK**.
- 6. Klicken Sie im Dialogfeld **Tuning Options** auf **OK**.

Kalibrieren im TOF-MS-Modus

- 1. Vergewissern Sie sich, dass die Parameter im Modus **Manual Tune** auf die in Durchführen des TOF-MS-Tests mit der NanoSpray[®] Ionenquelle angegebenen Werte eingestellt sind. Siehe Tabelle 5-2.
- 2. Stellen Sie auf der Registerkarte Compound den Wert für Collision Energy (CE) auf 35 V.
- 3. Klicken Sie nach der Stabilisierung des Sprays auf **Acquire** und nehmen Sie 30 Sekunden lang Scandaten auf.
- 4. Markieren Sie im Fenster **TIC of +TOF MS** (unten links) zur Mittelwertbildung 30 Sekunden des TIC-Signals und doppelklicken Sie.
- 5. Klicken Sie im neu angezeigten Fenster (unten im Analyst[®] TF-Fenster) mit der rechten Maustaste und klicken Sie dann auf **Re-Calibrate TOF**.
- 6. Wählen Sie im Dialog **TOF Calibration** in der Liste **Reference Table Glu-fibrinopeptide B** aus.
- 7. Vergewissern Sie sich, dass im Infusionspektrum die korrekten experimentellen Massen identifiziert wurden und mit den theoretischen Massen in der Referenztabelle übereinstimmen.
- 8. Überprüfen Sie den Wert **Average Error**, der rechts neben der Schaltfläche **Calculate New Calibrations** angezeigt wird.
- 9. Klicken Sie auf **Calculate New Calibrations** und stellen Sie sicher, dass der Wert **Average Error** auf unter 2 ppm sinkt.
- 10. Klicken Sie unter Calibration Values auf Calibrate Spectrum.

- 11. Wählen Sie unter Save Current Calibration Set as Instrument Default und Overwrite Current File aus.
- 12. Klicken Sie auf Entire File.
- 13. Klicken Sie auf Close.

Testen und Kalibrieren im Produkt-Ionen-Modus (hohe Empfindlichkeit) (nur Systeme des Typs 5600/5600+ und 6600/6600+)

Testen und Kalibrieren im Produkt-Ionen-Modus (hohe Empfindlichkeit) (nur Systeme des Typs 5600/5600+ und 6600/6600+)

- 1. Doppelklicken Sie in der Analyst[®] TF-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 2. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Parameter	Wert				
MS-Parameter					
Scan type	Produkt-Ion				
Product Of	785,8				
Accumulation time (sec)	1,0				
Polarity	Positiv				
TOF Masses (Da)	100 bis 1800				
High sensitivity	Ein				
Duration (min)	0,5				
Advanced MS-Parameter					
МСА	Aus				
Auto Adjust with mass	Ein				
Q1 Transmission windows	Standard (mit automatischem Anpassen)				
Pulsar Frequency	Standard (mit automatischem Anpassen)				
Time Bins to Sum	4				
Settling time	Standard				
Pause between mass	Standard				

Tabelle 5-3 Parameter für die Produkt-Ionen-Methode

Parameter	Wert
Source/Gas-Parameter	

Tabelle 5-3 Parameter fü	r die Produkt-Ionen-Metho	le (Fortsetzung)
--------------------------	---------------------------	------------------

Source/Gas-Parameter	
lon Source Gas 1 (GS1)	wie optimiert
Curtain Gas [™] flow (CUR)	wie optimiert
Interface Heater Temperature (IHT) (°C)	75
IonSpray Voltage Floating (ISVF)	wie optimiert
Compound-Parameter	
Collision Energy (CE)	45 (oder wie optimiert)
Resolution-Parameter	
Q1 resolution	Einheit

Hinweis: Die optimale CE liegt normalerweise zwischen 40 V und 48 V. Sollte sich die CE nicht in diesem Bereich befinden, ist der CAD-Gas-Wert möglicherweise zu niedrig eingestellt. Sollte die Intensität des Vorläufer-Ions bei m/z 785,9 nicht 10 % oder weniger der ursprünglichen Intensität betragen, ist die Interaktion zwischen CE und CAD-Gas falsch. Wenden Sie sich für weitere Informationen an den technischen Support von SCIEX.

- 3. Speichern Sie die neue Methode.
- 4. Klicken Sie nach der Stabilisierung des Sprays auf **Acquire**, und nehmen Sie mindestens 30 Sekunden Scandaten auf.
- 5. Markieren Sie 30 Sekunden im Fenster **TIC of +TOF Product** im unteren linken Bereich, und doppelklicken Sie dann, um ein durchschnittliches Spektrum anzuzeigen.
- 6. Klicken Sie im durchschnittlichen Spektrum, dass im unteren Bereich angezeigt wird, mit der rechten Maustaste und klicken Sie dann auf **List Data**.
- 7. Klicken Sie auf die Registerkarte Peak List.
- 8. Klicken Sie mit der rechten Maustaste auf die Spaltenkopfzeile und dann auf **Column Options**.

Select Columns for Peak List		? 🔀
Spectrum List Columns		
🗹 m/z (Da)	🔲 Peak start (Da)	
🔽 Intensity (cps)	🗆 Peak end (Da)	
🔽 Centroid mass	🗹 Width (Da)	
Charges	Resolution	
🗖 Peak area	🗆 % Intensity	
🗆 Is Mono-Isotopic	🗖 % Centroid	
Intensity sum	☐ Width at 5%	
Centroid intensity	Raw Resolution	
ОК	Cancel	

Abbildung 5-4 Auswählen von Spalten für das Dialogfeld "Peak List"

- 9. Aktivieren Sie die Kontrollkästchen m/z (Da), Intensity, Centroid mass, Centroid Intensity, Width (Da) und Resolution .
- 10. Klicken Sie auf **OK**.
- 11. Prüfen Sie, ob die Schwerpunktintensität und -Auflösung akzeptabel sind. Siehe Abbildung 5-5 und Datenprotokoll: NanoSpray[®]-Ionenquelle.

Abbildung 5-5 Probenspektren: Test hoher Empfindlichkeit von Produktionen

Wenn das Ergebnis nicht akzeptabel ist, beachten Sie Tipps zur Fehlerbehebung.

12. Drucken Sie eine Kopie der Ergebnisse aus und zeichnen Sie die Schwerpunktintensität und -auflösung im Datenprotokoll auf.

Kalibrieren im Produkt-Ionen-Modus (hohe Empfindlichkeit)

- 1. Vergewissern Sie sich, dass die Parameter im Modus **Manual Tune** auf die in Testen und Kalibrieren im Produkt-Ionen-Modus (hohe Empfindlichkeit) (nur Systeme des Typs 5600/5600+ und 6600/6600+) angegebenen Werte eingestellt sind. Siehe Tabelle 5-3.
- 2. Klicken Sie nach der Stabilisierung des Sprays auf **Acquire** und nehmen Sie mindestens 30 Sekunden lang Scandaten auf.
- 3. Markieren Sie im Fenster **TIC of +TOF Product** (unten links) zur Mittelwertbildung 30 Sekunden des TIC-Signals und doppelklicken Sie.
- 4. Klicken Sie im neu angezeigten Fenster (unten im Analyst[®] TF-Fenster) mit der rechten Maustaste und klicken Sie dann auf **Re-Calibrate TOF**.
- 5. Wählen Sie im Dialog **TOF Calibration** in der Liste **Reference Table Glu-fibrinopeptide B** aus.
- 6. Vergewissern Sie sich, dass im Infusionspektrum die korrekten experimentellen Massen identifiziert wurden und mit den theoretischen Massen in der Referenztabelle übereinstimmen.
- 7. Wählen Sie den Wert **Average Error**, der rechts neben der Schaltfläche **Calculate New Calibrations** angezeigt wird.

- 8. Klicken Sie auf **Calculate New Calibrations** und stellen Sie sicher, dass der Wert **Average Error** auf unter 2 ppm sinkt.
- 9. Klicken Sie unter Calibration Values auf Calibrate Spectrum.
- 10. Wählen Sie unter Save Current Calibration Set as Instrument Default und Overwrite Current File aus.
- 11. Klicken Sie auf Entire File.
- 12. Klicken Sie auf Close.

Testen und Kalibrieren im Produkt-Ionen-Modus

Bei Systemen des Typs SCIEX TripleTOF[®] 5600/5600+ und 6600/6600+ wird dieser Test im Modus "High Resolution" durchgeführt.

Durchführen des Produkt-Ionen-Tests

- 1. Doppelklicken Sie in der Analyst[®] TF-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 2. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Parameter	Wert
MS-Parameter	
Scan type	Produkt-Ion
Product Of	785,8
Accumulation time (sec)	1,0
Polarity	Positiv
TOF Masses (Da)	100 bis 1800
High resolution	Ein
(nur Systeme 5600/5600+ und 6600/6600+)	
Duration (min)	0,5
Advanced MS-Parameter	
МСА	Aus
Auto Adjust with mass	Ein
Q1 Transmission windows	Standard (mit automatischem Anpassen)
Pulsar Frequency	Standard (mit automatischem Anpassen)
Time Bins to Sum	4

Tabelle 5-4 Parameter für die Produkt-Ionen-Methode

Parameter	Wert
Settling time	Standard
Pause between mass	Standard
Source/Gas-Parameter	
lon Source Gas 1 (GS1)	wie optimiert
Curtain Gas [™] flow (CUR)	wie optimiert
Interface Heater Temperature (IHT) (°C)	75
IonSpray Voltage Floating (ISVF)	wie optimiert
Compound-Parameter	
Collision Energy (CE) (V)	45 (oder wie optimiert)
Resolution-Parameter	
Q1 resolution	Einheit

Hinweis: Die optimale CE liegt normalerweise zwischen 40 V und 48 V. Sollte sich die CE nicht in diesem Bereich befinden, ist der CAD-Gas-Wert möglicherweise zu niedrig eingestellt. Sollte die Intensität des Vorläufer-Ions bei m/z 785,9 nicht 10 % oder weniger der ursprünglichen Intensität betragen, ist die Interaktion zwischen CE und CAD-Gas falsch. Wenden Sie sich für weitere Informationen an den technischen Support von SCIEX.

- 3. Speichern Sie die neue Methode.
- 4. Klicken Sie nach der Stabilisierung des Sprays auf **Acquire**, und nehmen Sie mindestens 30 Sekunden Scandaten auf.
- 5. Markieren Sie 30 Sekunden im Fenster **TIC of +TOF Product** im unteren linken Bereich, und doppelklicken Sie dann, um ein durchschnittliches Spektrum anzuzeigen.
- 6. Klicken Sie im durchschnittlichen Spektrum, dass im unteren Bereich angezeigt wird, mit der rechten Maustaste und klicken Sie dann auf **List Data**.
- 7. Klicken Sie auf die Registerkarte **Peak List**.
- 8. Prüfen Sie, ob die Schwerpunktintensität und -auflösung akzeptabel sind. Siehe Abbildung 5-6 und Datenprotokoll: NanoSpray[®]-Ionenquelle.

Abbildung 5-6 Probenspektren: Produktionentest, TripleTOF 5600-System

Wenn die Ergebnisse nicht akzeptabel sind, siehe Tipps zur Fehlerbehebung.

9. Drucken Sie eine Kopie der Ergebnisse aus und zeichnen Sie die Schwerpunktintensität und -auflösung im Datenprotokoll auf.

Kalibrieren im Produkt-Ionen-Modus

Bei Systemen des Typs SCIEX TripleTOF[®] 5600/5600+ und 6600/6600+ wird durch dieses Verfahren der Modus "High Resolution" kalibriert.

- 1. Vergewissern Sie sich, dass die Parameter im Modus **Manual Tune** auf die in Durchführen des Produkt-Ionen-Tests angegebenen Werte eingestellt sind. Siehe Tabelle 5-4.
- 2. Klicken Sie nach der Stabilisierung des Sprays auf **Acquire** und nehmen Sie mindestens 30 Sekunden lang Scandaten auf.
- 3. Markieren Sie im Fenster **TIC of +TOF Product** (unten links) zur Mittelwertbildung 30 Sekunden des TIC-Signals und doppelklicken Sie.
- 4. Klicken Sie im neu angezeigten Fenster (unten im Analyst[®] TF-Fenster) mit der rechten Maustaste und klicken Sie dann auf **Re-Calibrate TOF**.
- 5. Wählen Sie im Dialog **TOF Calibration** in der Liste **Reference Table Glu-fibrinopeptide B** aus.
- 6. Vergewissern Sie sich, dass im Infusionspektrum die korrekten experimentellen Massen identifiziert wurden und mit den theoretischen Massen in der Referenztabelle übereinstimmen.
- 7. Überprüfen Sie den Wert **Average Error**, der rechts neben der Schaltfläche **Calculate New Calibrations** angezeigt wird.

- 8. Klicken Sie auf **Calculate New Calibrations** und stellen Sie sicher, dass der Wert **Average Error** auf unter 2 ppm sinkt.
- 9. Klicken Sie unter Calibration Values auf Calibrate Spectrum.
- 10. Klicken Sie unter Save Current Calibration auf Entire File.
- 11. Klicken Sie auf Close.

Abschluss

Hinweis: Der Außendienstmitarbeiter von SCIEX muss die Ergebnisse des NanoSpray[®]-Abnahmetestlaufs nach der Installation per E-Mail an servicedata@sciex.com schicken.

- 1. Spülen Sie die Spitze und die Infusionsleitung gründlich durch.
- 2. Kopieren Sie das fertige Datenprotokoll sowie die Testergebnisse und händigen Sie dem Kunden die Originale aus.

Testen der Ionenquelle auf Systemen des Typs Triple-Quadrupole und QTRAP[®]

WARNHINWEIS! Gefahr durch heiße Oberflächen. Hochspannungsschiene oder Emitterspitze nicht berühren.

WARNHINWEIS! Stromschlaggefahr. Die NanoSpray[®]-Ionenquelle darf grundsätzlich nur mit einer ordnungsgemäß installierter Beleuchtung, Kamera, Anschlägen und Abdeckungen betrieben werden. Berühren Sie auf keinen Fall die Curtain-Platte und vermeiden Sie jede Berührung zwischen Emitterspitze und Curtain-Platte. Wenn das Massenspektrometer betriebsbereit und die Ionenquelle installiert ist, liegt an der Curtain-Platte Hochspannung an, selbst wenn die X-Y-Z-Positioniereinheit von der Schnittstelle entfernt wurde.

Eine Übersicht über die erforderlichen Aufgaben finden Sie in Abbildung 5-1.

Bei Triple Quad[™]-System mit Ausnahme von Systemen der Serie 3200 führen Sie die folgenden Aufgaben durch:

- Vorbereitung der verdünnten [Glu¹]-Fibrinopeptid-B-Lösung
- Test im Q1-Modus
- Test im Q3-Modus

Bei QTRAP[®]-Systemen mit Ausnahme von Systemen des Typs 3200 QTRAP[®] führen Sie die folgenden Tests durch:

• Vorbereitung der verdünnten [Glu¹]-Fibrinopeptid-B-Lösung

- Test im Q1-Modus
- Test im Q3-Modus
- Testen und Kalibrieren im EPI-Modus (ausschließlich QTRAP[®] oder QTRAP[®]-aktivierte Triple Quad 5500+-Systeme)

Für Systeme des Typs API 3200[™] und 3200 QTRAP[®] siehe Testen der Ionenquelle in Systemen der Serie 3200.

Erforderliche Materialien

- [Glu¹]-Fibrinopeptid B, im LC/MS-Peptid-Kalibriersatz enthalten (Art.-Nr. 4465867)
- Standard-Verdünnungsmittel
- Eine 100 µl-Spritze (Innendurchmesser 1,46 mm) oder ein vergleichbares Gerät für Infusionen im Zusammenhang mit der NanoSpray[®]-Ionenquelle
- (Optional) 1-ml-Spritze (Innendurchmesser 4,61 mm) oder ein vergleichbares Gerät für Infusionen im Zusammenhang mit der Turbo V[™]-Ionenquelle
- Puderfreie Handschuhe (es werden Neopren- bzw. Nitrilhandschuhe empfohlen)
- Schutzbrille
- Kittel

Test im Q1-Modus

(Optional) Durchführung des Q1-Tests mit der Turbo V[™]-Ionenquelle

Mit diesem Verfahren wird die Integrität der verdünnten Lösung bestätigt.

Hinweis: Spülen Sie die Spritze drei Mal mit der Waschlösung, bevor Sie sie mit der [Glu¹]-Fibrinopeptid-B-Lösung füllen. Schließen Sie die Spritze dann an den passenden Schlauch an und spülen Sie sie erneut, bevor Sie sie an das Verbindungsstück an der Hochspannungsschiene anschließen. Spülen Sie den Schlauch dann mit der [Glu¹]-Fibrinopeptid-B-Lösung durch.

- 1. Installieren Sie die Turbo V[™]-Ionenquelle am Massenspektrometer. Siehe *Turbo V[™]-Ionenquellen-Bedienerhandbuch*.
- 2. Infundieren Sie die [Glu¹]-Fibrinopeptid B-Lösung mit der 1-ml-Spritze mit einem Volumenstrom von 5 μl/ min.
- 3. Doppelklicken Sie in der Analyst[®]-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 4. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Parameter	Wert
MS-Parameter	
Scan type	Q1-Scan
Mass mode (Systeme der Serie 6500 und 6500+)	Geringe Masse
Polarity	Positiv
Display masses (Da)	Zentrum: 785,9
	Breite: 20
Scan Speed (Da/sec)	10
MCA	Ein
Cycles	10
Source/Gas-Parameter	
Curtain Gas [™] flow (CUR)	20
IonSpray Voltage (IS)	5500
Ion Source Gas 1 (GS1)	20
Interface Heater (IHT)	Nicht verwendet
Compound-Parameter	
Declustering Potential (DP)	100
Syringe Pump Method-Parameter	
Flow rate (µL/min)	5
Syringe Size	1 ml (4,61 mm i.d.)

Tabelle 5-5 Parameter für den Q1-Test mit der Turbo V[™]-Ionenquelle

5. Speichern Sie die Methode.

Tipp! Speichern Sie die für die Tests der NanoSpray[®]-Ionenquelle in einem separaten Ordner mit der Bezeichnung "NanoSpray Installation <Datum>."

- 6. Klicken Sie auf **Acquire**, um 30 Sekunden Daten aufzunehmen.
- 7. Notieren Sie die Intensität des Höchstwerts bei m/z 785,8421.
- 8. Wiederholen Sie die Schritte 6 und 7 zwei weitere Male.
- 9. Ermitteln Sie den Durchschnitt aus den Ergebnissen der drei Scan-Vorgänge.
- 10. Vergleichen Sie die Schwerpunktintensität und -auflösung mit den Spezifikationen für die NanoSpray[®]-Ionenquelle, die in Datenprotokoll: NanoSpray[®]-Ionenquelle dargestellt sind.

Richtlinie: Die bei der Turbo V-Ionenquelle erzielte Schwerpunktintensität und Auflösung sollte den Spezifikationen für die NanoSpray[®]-Ionenquelle entsprechen. Sollte dem nicht so sein, bereiten Sie eine neue verdünnte Lösung zu.

Durchführen des Q1-Tests mit der NanoSpray[®]-Ionenquelle

Hinweis: Spülen Sie die Spritze drei Mal mit der Waschlösung, bevor Sie sie mit der [Glu¹]-Fibrinopeptid-B-Lösung füllen. Schließen Sie die Spritze dann an den passenden Schlauch an und spülen Sie sie erneut, bevor Sie sie an das Verbindungsstück an der Hochspannungsschiene anschließen. Spülen Sie den Schlauch dann mit der [Glu¹]-Fibrinopeptid-B-Lösung durch.

- 1. Installieren Sie die NanoSpray[®]-Ionenquelle am Massenspektrometer. Siehe das NanoSpray[®]-Ionenquellen-Bedienerhandbuch.
- 2. Bereiten Sie den NanoSpray[®] III-Kopf vor. Siehe das *NanoSpray[®]-Ionenquellen-Bedienerhandbuch*.
- 3. Infundieren Sie die [[Glu¹]-Fibrinopeptid B-Lösung mit der 100-μl-Spritze mit einem Volumenstrom von 0,5 μl/min.
- 4. Doppelklicken Sie in der Analyst[®]-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 5. Wenn das optionale Verfahren durchgeführt wird, (Optional) Durchführung des Q1-Tests mit der Turbo V[™]-Ionenquelle öffnen Sie die erstellte Methode, und legen Sie die Parameter so fest wie in (Optional) Durchführung des Q1-Tests mit der Turbo V[™]-Ionenquelle angegeben. Siehe Tabelle 5-5. Wurde das Verfahren nicht durchgeführt, dann erstellen Sie mithilfe dieser Parameter eine Methode.

Tabelle 5-6 Methodenparameter bei Verwendung der NanoSpray[®]-Ionenquelle

Parameter	Wert
MS-Parameter	
Scan type	Q1-Scan
Mass mode (Systeme der Serie 6500 und 6500+)	Geringe Masse
Polarity	Positiv
Mass Range	400 bis 1000
Scan Speed (Da/sec)	2000
(Systeme der Serien 4500, 5500/5500+ und 6500/ 6500+)	
Scan Time (sec)	3
(Systeme der Serie 4000)	
МСА	Aus

Parameter	Wert
Cycles	Hinweis: Die Anzahl der Zyklen, ist für das spezifische Gerät festgelegt. Siehe dazu die oben aufgeführten Parameter.
	500 (Systeme der Serie 4000)
	50 (Systeme der Serien 4500, 5500/5500+ und 6500/ 6500+)
Source/Gas-Parameter	
CAD Gas	Niedrig (Systeme der Serie 4000) Mittel (oder wie optimiert) (Systeme der Serien 4500, 5500/5500+ und 6500/6500+)
IonSpray Voltage (IS)	2100
lon Source Gas 1 (GS1)	10
Interface Heater Temperature (IHT) (°C)	75
Compound-Parameter	
Declustering Potential (DP)	70 (Systeme der Serie 4000)
	100 (Systeme der Serien 4500, 5500/5500+ und 6500/6500+)
Syringe Pump Method-Parameter	
Flow rate (μL/min)	0,5
Syringe Size (µL)	100 Gasdicht (1,46 mm)

Tabelle 5-6 Methodenparameter bei Verwendung der NanoSpray[®]-Ionenquelle (Fortsetzung)

6. Klicken Sie auf **Start**, um die Methode auszuführen.

VORSICHT: Mögliche Schäden am System. Vermeiden Sie eine Berührung der Emitterspitze mit der Curtain-Platte. Passen Sie die Position des Zerstäubers anhand des Z-Achsen-Einstellknopfs an, um eine Beschädigung der Emitterspitze zu vermeiden.

VORSICHT: Mögliche Systemkontamination. Führen Sie das Ende der Emitterspitze nicht in die Öffnung der Curtain-Platte ein. Stellen Sie sicher, dass sich die Emitterspitze mindestens 2 bis 5 mm außerhalb der Öffnung befindet. Durch ein zu nahes Sprühen an der Öffnung kann das Massenspektrometer verunreinigt werden.

7. Passen Sie die Position des Zerstäuberkopfes relativ zur Transferkapillar-Öffnung an, um die Signalstärke zu optimieren. Notieren Sie die XYZ-Werte für eine spätere Verwendung

8. Passen Sie IS in Schritten von 100 V an, um das beste Signal und das beste Signal-zu-Rausch-Verhältnis zu erhalten.

Hinweis: Wenn die IonSpray[™]-Spannung zu hoch ist, kann es zu einer Koronaentladung kommen. Sie wird durch ein blaues Leuchten an der Spitze der Sonde sichtbar. Eine Koronaentladung hat eine verminderte Empfindlichkeit und Stabilität des Signals zur Folge.

9. Erhöhen Sie GS1, bis das Signal abnimmt, und reduzieren Sie dann GS1, bis das Signal seinen Maximalwert erreicht.

Hinweis: Der GS1-Parameter kann bei Null optimal sein.

10. Erhöhen Sie CUR, bis das Signal abnimmt, und reduzieren Sie dann CUR, bis das Signal seinen Maximalwert erreicht.

Hinweis: Verwenden Sie zur Vermeidung von Verunreinigungen den höchstmöglichen Wert für CUR, ohne dabei Abstriche bei der Empfindlichkeit zu machen. Stellen Sie CUR nicht niedriger als 20 ein. Das hilft ein Durchschlagen des Curtain Gas[™]-Stroms zu verhindern, was ein rauschendes Signal hervorrufen kann. Es verhindert eine Verunreinigung der Öffnung und erhöht das gesamte Signal-Rausch-Verhältnis.

- 11. Falls Sie den Sprühkopf zur Optimieren der Signalintensität bewegt haben, passen Sie die Position des Illuminators bei Bedarf an.
- 12. Speichern Sie die neue Methode.

Tipp! Speichern Sie die für die Tests der NanoSpray[®]-Ionenquelle in einem separaten Ordner mit der Bezeichnung "NanoSpray Installation <Datum>."

13. Überwachen Sie fünf Minuten lang die Spray-Stabilität. Ist das Spray stabil, sind nur die minimalen Schwankungen im TIC sichtbar.

Abbildung 5-7 Probenspektren: Q1-Modus-Test für ein 4000 QTRAP[®]-System

- 14. Ändern Sie nach der Stabilisierung des Sprays die Scan-Geschwindigkeit auf 10.
- 15. Wählen Sie **Center/Width** aus und geben Sie dann **785,9** in die Spalte **Center** und **20** in die Spalte **Width** ein.
- 16. Schalten Sie MCA ein.
- 17. Klicken Sie auf Acquire, um mit der Datenerfassung zu beginnen.
- 18. Notieren Sie die Intensität des Höchstwerts bei m/z 785,9.
- 19. Wiederholen Sie die Schritte 17 und 18 zwei weitere Male.
- 20. Ermitteln Sie den Durchschnitt der drei Intensitäten.
- 21. Prüfen Sie, ob die durchschnittliche Intensität akzeptabel ist. Siehe Datenprotokoll: NanoSpray[®]-Ionenquelle.

Wenn das Ergebnis nicht akzeptabel ist, beachten Sie Tipps zur Fehlerbehebung.

22. Drucken Sie eine Kopie der Ergebnisse aus und zeichnen Sie die Intensität im Datenprotokoll auf.

Test im Q3-Modus

Hinweis: Spülen Sie die Spritze drei Mal mit der Waschlösung, bevor Sie sie mit der [Glu¹]-Fibrinopeptid-B-Lösung füllen. Schließen Sie die Spritze dann an den passenden Schlauch an und spülen Sie sie erneut, bevor Sie sie an das Verbindungsstück an der Hochspannungsschiene anschließen. Spülen Sie den Schlauch dann mit der [Glu¹]-Fibrinopeptid-B-Lösung durch.

- 1. Doppelklicken Sie in der Analyst[®]-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 2. Öffnen Sie die für den Q1-Test verwendete Methode.
- 3. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Parameter	Wert
MS-Parameter	
Scan type	Q3-Scan
Mass mode (Systeme der Serie 6500/6500+)	Geringe Masse
Display masses (Da)	Zentrum: 785,9 Breite: 20
Scan Speed (Da/sec)	10
МСА	Aus
Cycles	10
Compound-Parameter	
Collision Cell Exit Potential (CXP) (V)	15 (oder wie optimiert) (Systeme der Serie 4000)
	30 (oder wie optimiert) (Systeme der Serien 4500, 5500/5500+ und 6500/6500+)

Tabelle 5-7 Q3-Methodenparameter

- 4. Speichern Sie die neue Methode.
- 5. Klicken Sie auf **Start**, um die Methode auszuführen.
- 6. Sobald das Spray stabil ist, schalten Sie MCA ein.
- 7. Klicken Sie auf **Acquire**, um mit der Datenerfassung zu beginnen.
- 8. Notieren Sie die Intensität des Höchstwerts bei m/z 785,9.
- 9. Wiederholen Sie die Schritte 7 und 8 zwei weitere Male.

Abbildung 5-8 Probenspektren: Q3-Modus-Test auf einem System des Typs QTRAP[®] 5500

- 10. Drucken Sie die Ergebnisse aus.
- 11. Ermitteln Sie den Durchschnitt der drei Intensitäten der Ionen und halten Sie das Ergebnis im Datenprotokoll fest.
- 12. Prüfen Sie, ob die durchschnittliche Intensität akzeptabel ist. Siehe Datenprotokoll: NanoSpray[®]-Ionenquelle.

Wenn das Ergebnis nicht akzeptabel ist, beachten Sie Tipps zur Fehlerbehebung.

Testen und Kalibrieren im EPI-Modus (ausschließlich QTRAP[®] oder QTRAP[®]-aktivierte Triple Quad 5500+-Systeme)

Durchführung des EPI-Modustests

- 1. Infundieren Sie die [Glu1]-Fibrinopeptid-B-Lösung mit der 100-μL-Spritze mit einem Volumenstrom von 0,5 μl/min.
- 2. Doppelklicken Sie in der Analyst[®]-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 3. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Parameter wie in der folgenden Tabelle gezeigt ein.

Tabelle 5-8 Parameter für die EPI-Methode

Parameter	Wert
MS-Parameter	
Scan type	EPI-Scan
Parameter	Wert
--	--
Mass mode (Systeme der Serie 6500/6500+)	Geringe Masse
Polarity	Positiv
Mass Range (Da)	100 bis 1500 (Systeme der Serie 4000)
	100 bis 1000 (Systeme der Serien 4500, 5500/5500+ und 6500/6500+)
Scan speed (Da/sec)	4000 (Systeme der Serie 4000)
	10.000 (Systeme der Serien 4500, 5500/5500+ und 6500/6500+)
Precursors of	785,9
МСА	Ein
Scans to Sum	1
Cycles	10 (Systeme der Serie 4000)
	50 (Systeme der Serien 4500, 5500/5500+ und 6500/ 6500+)
Advanced MS-Parameter	
Fixed LIT Fill Time (ms)	50 (Systeme der Serie 4000)
	10 (Systeme der Serien 4500, 5500/5500+ und 6500/ 6500+)
Compound-Parameter	·
Collision Energy (CE) (V)	45 (oder wie optimiert)
Declustering Potential (DP)	70 (oder wie optimiert)
Syringe Pump Method-Parameter	·
Flow rate (µL/min)	0,5
Syringe Size (µL)	100 gasdicht (1,46 mm)

Tabelle 5-8 Parameter für die EPI-Methode (Fortsetzung)

Hinweis: Die optimale CE liegt normalerweise zwischen 40 V und 48 V. Sollte sich die CE nicht in diesem Bereich befinden, ist der CAD-Gas-Wert möglicherweise zu niedrig eingestellt. Sollte die Intensität des Vorläufer-Ions bei m/z 785,9 nicht 10 % oder weniger der ursprünglichen Intensität betragen, ist die Interaktion zwischen CE und CAD-Gas falsch. Wenden Sie sich für weitere Informationen an den technischen Support von SCIEX.

- 4. Klicken Sie auf **Start**, um die Methode auszuführen.
- 5. Optimieren Sie CE, um die Intensität der Fragmente bei *m/z* 480,3; 813,4; 942,4 und 1171,7 zu maximieren.

- 6. Speichern Sie die neue Methode.
- 7. Klicken Sie nach der Stabilisierung des Sprays auf **Acquire** und erfassen Sie Daten.
- 8. Zeichnen Sie die Intensitäten der Fragmente bei m/z 480,3; 813,4; 942,4 und 1171,7 auf.
- 9. Wiederholen Sie die Schritte 7 und 8 zwei weitere Male.
- 10. Drucken Sie die Ergebnisse aus.
- 11. Ermitteln Sie den Durchschnitt der drei Intensitäten der Ionen und halten Sie das Ergebnis im Datenprotokoll fest.
- 12. Prüfen Sie, ob die durchschnittliche Intensität akzeptabel ist. Siehe Datenprotokoll: NanoSpray[®]-Ionenquelle.

Wenn die Ergebnisse nicht akzeptabel sind, beachten Sie Tipps zur Fehlerbehebung.

Erstellen einer Referenztabelle für die Kalibrierung

Bevor Sie das Massenspektrometer ausgehend von einem Datenspektrum kalibrieren können, müssen Sie die Referenztabelle für das verwendete Kalibriermittel definieren. Falls noch keine Referenztabelle für [Glu¹]-Fibrinopeptid B existiert, erstellen Sie diese folgendermaßen:

- 1. Klicken Sie auf Tools > Settings > Tuning Options.
- 2. Klicken Sie auf Reference.

Abbildung 5-9 Referenztabelleneditor

	Mass (Da)	Intensity (cps)	# Charges	Use	^
1	175.120	1.000	1	V	
2	333.190	1.000	1		
3	480.260	1.000	1	1	
4	684.350	1.000	1	V	
5	813.390	1.000	1	V	
6	942.430	1.000	1	V	
7	1285.544	1.000	1		
8					
9				(m)	
10				(m)	
11				m	
12					
13					
14				[17]	-

- 3. Erstellen Sie eine Referenztabelle für [Glu1]-Fibrinopeptid B mit den in der vorstehenden Abbildung gezeigten Einträgen. Geben Sie unbedingt die Werte für die niedrigsten und höchsten Massenfragmente in die Felder Low Mass und High Mass ein.
- 4. Klicken Sie auf Update Ref.
- 5. Klicken Sie auf Close.
- 6. Klicken Sie auf **New**.

Abbildung 5-10 Dialogfeld "Tuning Options"

Tuning Options
Calibration Resolution
Standard: Glu Fib pce 💌 New
Positive
Reference: Glu Fib pos
Q1 Method: Q1 Pos PPG.dam
Q3 Method: Q3 Pos PPG.dam
LIT Nethod: GluFib pos EPI.dom
Negative Reference: Q1 Method: Q3 Method: UIT Nethod:
Update Std. Delete Std Reference
Print and Save OK Cancel Help

- 7. Geben Sie in das Feld Standard GluFib pos ein.
- 8. Aktivieren Sie das Kontrollkästchen **Positive**.
- 9. Wählen Sie im Feld **Q1 Method** die für die Q1-Kalibrierung verwendete Methode aus.
- 10. Wählen Sie im Feld **Q3 Method** die für die Q3-Kalibrierung verwendete Methode aus.
- 11. Wählen Sie im Feld LIT Method die in Durchführung des EPI-Modustests erstellte Methode aus.
- 12. Klicken Sie auf **Update Std**.
- 13. Klicken Sie auf **OK**.

Kalibrieren im EPI-Modus

- 1. Vergewissern Sie sich, dass die Parameter im Modus **Manual Tune** auf die in Durchführung des EPI-Modustests angegebenen Werte eingestellt sind. Siehe Tabelle 5-8.
- 2. Klicken Sie nach der Stabilisierung des Sprays auf **Acquire** und nehmen Sie mindestens 30 Sekunden lang Scandaten auf.
- 3. Klicken Sie auf den EPI-Spektrumsbereich.
- 4. Kicken Sie auf die Schaltfläche "Calibrate" (4).

Abbildung 5-11	I Dialogfeld "LIT	Mass Calibration"	' für Systeme	der Serie 4000
----------------	-------------------	-------------------	---------------	----------------

	Mass (Da)	Intensity (cps)	# Charges	Use	
1	175.120	1.000	1	V	
2	333.190	1.000	1	V	
3	480.260	1.000	1	1	
4	684.350	1.000	1	1	
5	813.390	1.000	1	V	
6	942.430	1.000	1	V	
7	1285.544	1.000	1		
8					
9				(m)	
10				(m)	
11					
12				(m)	
13				(m)	
14				011	1.
	1			PROFILE	

Abbildung 5-12 Dialogfeld "LIT Mass Calibration" für Systeme der Serie 4500, 5500, 5500+, 6500 und 6500+

ame:	Giu FibrinoPep	nde B		I	New
	Mass (Da)	Intensity (cps)	# Charges	Use	-
1	175.120	1.000	1	1	1 🗆
2	333.190	1.000	1	1	
3	480.260	1.000	1	1	1
4	684.350	1.000	1	1]
5	813.390	1.000	1	>	
6	942.430	1.000	1	1	1
7	1285.544	1.000	1		1
8					
9					
10				100]
11					
12					
13					
14] .

- 5. Wählen Sie im Feld **Standard** den in Schritt 7 **Erstellen einer Referenztabelle für die Kalibrierung** erstellten Standard (**GluFib pos**) aus.
- 6. Klicken Sie auf Start.

Der Bereich Mass Calibration Report öffnet sich. Der obere Graph zeigt die Masseverschiebungen bei den Kalibrierungsionen seit der letzten Kalibrierung an.

Abbildung 5-13 Massenkalibrierungsbericht

7. Wenn die Datenspektren gut aussehen und die Masseverschiebungen innerhalb des angegebenen Bereichs liegen, klicken Sie auf **Replace Calibration** (¹²²).

Abbildung 5-14 Dialogfeld "TuneDir"

8. Klicken Sie auf Yes.

Die Werte für die neue Kalibrierung werden unten im Bereich des Zusammenfassungsberichts für die Kalibrierung angezeigt.

Hinweis: Wenn sich die Masse oder Intensität eines der Fragment-Ionen deutlich verändert, bestimmen Sie die Ursache für die Änderung, bevor Sie das Ion bei der Kalibrierung verwenden. Klicken Sie im Dialogfeld **No** auf **TuneDir**, und lassen Sie sich den Zusammenfassungsbericht für die Kalibrierung anzeigen. Suchen Sie die Masse in der Spalte **Found Mass** und sehen Sie sich die Qualität des Ions im Rohdatenspektrum an. Falls das falsche Ion ausgewählt wurde, vergrößern oder verkleinern Sie den **Search Range** im Dialogfeld LIT Mass Calibration. Die Software verwendet für die Kalibrierung den Schwerpunkt des intensivsten Peaks im Suchbereich.

Abbildung 5-15 Bericht "LIT Mass Calibration Results"

LIT Mass Calibration Results for Positive Ions at 4000 deltons per second
Generated On: August 18, 2003 13:27:59
Last Calibration: August 18, 2003 13:26:39
Peak Search Parameters: Search Respe: 0.250 Threshold: 200.000 Peak Vidth At: 50.000
Config. table ver.: 03 Firmware ver.: M401400 B4T0301 M311409 B3T0300 Instrument name: Linear Ion Trap Quadrupole LC/MS/MS Mass Spectrometer Instrument ID: OTrap Manufacturer: AB Scient Instruments Serial number: n1390304 Model Number: 027170c Operator page: settince Workstation: BIOPR04
Acq.Sethod: testTune.don
Date Filename: D:\Analyst Date\Projects\API Instrument\Tuning Cache\MT20030818132658.wiff Standard name: GluFib TIS Reference table name: GluFib cal Spectral information:
Expected Bass Found Mass Mass Shift Feak Width PV Shift Intensity Change(%) 175.115 175.020 0.099 0.350 0.350 43.65 480.257 480.323 -0.066 0.438 0.392 37.08 013.385 013.420 -0.031 0.496 0.204 21.18 1285.544 1285.584 -0.040 0.576 0.124 24.76
Jacobi Stope Variations for Active Calibration Table Average Stope (DAC/anu): 37.326 Mass DAC 480.257 17908 480.257 17908 013.309 30344 1285.544 47966

9. Führen Sie die Kalibrierung für die anderen beiden Scan-Geschwindigkeiten durch, indem Sie die Scan-Geschwindigkeit in der Methode ändern und dann das Verfahren wiederholen.

Abschluss

Hinweis: Der Außendienstmitarbeiter von SCIEX muss die Ergebnisse des NanoSpray[®]-Abnahmetestlaufs nach der Installation per E-Mail an servicedata@sciex.com schicken.

1. Spülen Sie die Spitze und die Infusionsleitung gründlich durch.

2. Kopieren Sie das fertige Datenprotokoll sowie die Testergebnisse und händigen Sie dem Kunden die Originale aus.

Testen der Ionenquelle in Systemen der Serie 3200

WARNHINWEIS! Gefahr durch heiße Oberflächen. Hochspannungsschiene oder Emitterspitze nicht berühren.

WARNHINWEIS! Stromschlaggefahr. Die NanoSpray[®]-Ionenquelle darf grundsätzlich nur mit einer ordnungsgemäß installierter Beleuchtung, Kamera, Anschlägen und Abdeckungen betrieben werden. Berühren Sie auf keinen Fall die Curtain-Platte und vermeiden Sie jede Berührung zwischen Emitterspitze und Curtain-Platte. Wenn das Massenspektrometer betriebsbereit und die Ionenquelle installiert ist, liegt an der Curtain-Platte Hochspannung an, selbst wenn die X-Y-Z-Positioniereinheit von der Schnittstelle entfernt wurde.

Für API 3200[™]-Systeme führen Sie folgenden Test durch:

• Tests in den Q1- und MS2-Modi

Für 3200 QTRAP[®]-Systeme führen Sie folgende Tests durch:

- Tests in den Q1- und MS2-Modi
- Test im EPI-Modus (nur Systeme des Typs 3200 QTRAP[®])

Hinweis: Die NanoSpray[®]-Ionenquelle wird nicht an jedem Gerät der Serie 3200 unterstützt. Wenn Sie weitere Informationen wünschen, wenden Sie sich an einen Vertriebspartner.

Erforderliche Materialien

- Renin 10 pmol/µl, im MS Chemical Kit2 Higher Concentration PPGs Kit enthalten (Art.-Nr. 5512399)
- Verdünntes Lösungsmittel
- 100-µl-Spritze (1,46 mm ID) oder vergleichbares Gerät zur Infusion
- Puderfreie Handschuhe (es werden Neopren- bzw. Nitrilhandschuhe empfohlen)
- Schutzbrille
- Kittel

Zubereitung von 2 ml einer Reninmischung (500 fmol/µl)

1. Geben Sie 2 ml des verdünnten Lösungsmittels (im Kit enthalten) in ein Fläschchen.

- 2. Entnehmen und entsorgen Sie 100 µL des Lösungsmittels.
- 3. Geben Sie 100 µL Renin 10 pmol/µL in das Fläschchen.
- 4. Mischen Sie den Inhalt.

Tests in den Q1- und MS2-Modi

- 1. Installieren Sie die NanoSpray[™]-Ionenquelle am Massenspektrometer. Siehe dazu das NanoSpray[®]-Ionenquellen-Bedienerhandbuch.
- 2. Bereiten Sie den NanoSpray III-Kopf vor. Siehe dazu das NanoSpray[®]-Ionenquellen-Bedienerhandbuch.
- 3. Infundieren Sie die Renin-Mischung mit einem Volumenstrom von 0,5 µl/min.

VORSICHT: Mögliche Systemkontamination. Führen Sie das Ende der Emitterspitze nicht in die Öffnung der Curtain-Platte ein. Stellen Sie sicher, dass sich die Emitterspitze mindestens 2 bis 5 mm außerhalb der Öffnung befindet. Durch ein zu nahes Sprühen an der Öffnung kann das Massenspektrometer verunreinigt werden.

- 4. Passen Sie GS1 an, bis sich ein stabiles Spray ergibt. Beginnen Sie mit einem niedrigen Wert (2 oder 3) und erhöhen Sie ihn langsam, bis das Spray stabil ist und keine Rauschspitzen der Breite Null aufweist. Es kann einige Minuten dauern, bis sich das Spray stabilisiert hat.
- 5. Doppelklicken Sie in der Analyst[®]-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 6. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt ein.

Parameter	Wert	
MS Method-Parameter		
Scan type	Q1 MS (Q1)	
Mass range	100 bis 1200	
Advanced MS-Parameter		
Step size (Da)	0,1	
Source/Gas-Parameter		
Curtain Gas [™] flow (CUR)	20	
IonSpray Voltage (IS)	2100	
lon Source Gas 1 (GS2)	3	
Interface Heater Temperature (IHT) (°C)	75	

Tabelle 5-9 Q1-Methodenparameter

Tabelle 5-9 Q1-Methodenparameter (Fortsetzung)

Parameter	Wert
Compound-Parameter	
Declustering Potential (DP)	70 (oder wie optimiert)

7. Führen Sie das Verfahren durch.

VORSICHT: Mögliche Schäden am System. Vermeiden Sie eine Berührung der Emitterspitze mit der Curtain-Platte. Passen Sie die Position des Zerstäubers anhand des Z-Achsen-Einstellknopfs an, um eine Beschädigung der Emitterspitze zu vermeiden.

VORSICHT: Mögliche Systemkontamination. Führen Sie das Ende der Emitterspitze nicht in die Öffnung der Curtain-Platte ein. Stellen Sie sicher, dass sich die Emitterspitze mindestens 2 bis 5 mm außerhalb der Öffnung befindet. Durch ein zu nahes Sprühen an der Öffnung kann das Massenspektrometer verunreinigt werden.

- 8. Passen Sie die Position des Zerstäuberkopfes relativ zur Transferkapillar-Öffnung an, um die Signalstärke zu optimieren. Notieren Sie die XYZ-Werte für eine spätere Verwendung
- 9. Passen Sie IS in Schritten von 100 V an, bis Sie das beste Signal und das beste Signal-zu-Rausch-Verhältnis erhalten.

Hinweis: Wenn die IonSpray[™]-Spannung zu hoch ist, kann es zu einer Koronaentladung kommen. Sie wird durch ein blaues Leuchten an der Spitze der Sonde sichtbar. Eine Koronaentladung hat eine verminderte Empfindlichkeit und Stabilität des Signals zur Folge.

10. Erhöhen Sie GS2, bis das Signal abnimmt, und reduzieren Sie dann GS1, bis das Signal seinen Maximalwert erreicht.

Hinweis: Der GS1-Parameter kann bei Null optimal sein.

11. Erhöhen Sie CUR, bis das Signal abnimmt, und reduzieren Sie dann CUR, bis das Signal seinen Maximalwert erreicht.

Hinweis: Verwenden Sie zur Vermeidung von Verunreinigungen den höchstmöglichen Wert für CUR, ohne dabei Abstriche bei der Empfindlichkeit zu machen. Stellen Sie CUR nicht niedriger als 20 ein. Das hilft ein Durchschlagen des Curtain Gas[™]-Stroms zu verhindern, was ein rauschendes Signal hervorrufen kann. Es verhindert eine Verunreinigung der Öffnung und erhöht das gesamte Signal-Rausch-Verhältnis.

- 12. Drucken Sie eine Kopie der Ergebnisse aus und speichern Sie anschließend die optimierte Q1-Aufnahmemethode.
- 13. Stellen Sie den Scan type auf Product Ion (MS2) und Product Of auf 587.

- 14. Stellen Sie CAD auf Medium (6).
- 15. Passen Sie **CE** an, um die Spitzenintensität bei *m*/*z* 136 und 784 zu optimieren.
- 16. Drucken Sie eine Kopie der Ergebnisse aus und speichern Sie anschließend die optimierte **Produktionen**-Methode.
- 17. Überprüfen Sie, ob die Intensität im MS2-Modus mit den Spezifikationen in Datenprotokoll: NanoSpray[®]-Ionenquelle übereinstimmt.

Wenn die Ergebnisse nicht akzeptabel sind, beachten Sie Tipps zur Fehlerbehebung.

18. Zeichnen Sie die Ergebnisse im Datenprotokoll auf.

Test im EPI-Modus (nur Systeme des Typs 3200 QTRAP[®])

1. Infundieren Sie die Renin-Mischung mit einem Volumenstrom von 0,5 µl/min.

VORSICHT: Mögliche Systemkontamination. Führen Sie das Ende der Emitterspitze nicht in die Öffnung der Curtain-Platte ein. Stellen Sie sicher, dass sich die Emitterspitze mindestens 2 bis 5 mm außerhalb der Öffnung befindet. Durch ein zu nahes Sprühen an der Öffnung kann das Massenspektrometer verunreinigt werden.

- 2. Doppelklicken Sie in der Analyst[®]-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 3. Öffnen Sie die optimierte Q1-Methode, die Sie in Schritt 12 Tests in den Q1- und MS2-Modi gespeichert haben.
- 4. Passen Sie die Methodenparameter wie in der folgenden Tabelle gezeigt an.

Tabelle 5-10 EPI-Methodenparameter

Parameter	Wert	
MS-Parameter		
Scan type	EPI	
Mass range (Da)	100 bis 1200	
Product Of (Da)	587,4	
Duration (sec)	120	
Advanced MS-Parameter		
Fixed LIT fill time (msec)	20	
Q0 trapping	Aus	
Q3 entry barrier	8	
Source/Gas-Parameter		
Curtain Gas [™] flow (CUR)	wie optimiert	

Parameter	Wert
Collision Gas (CAD)	Hoch
IonSpray Voltage (IS)	wie optimiert
Temperature (TEM) (°C)	150
Ion Source Gas 1 (GS1)	wie optimiert
Ion Source Gas 2 (GS2)	0
Interface Heater Temperature (IHT)	Ein
Compound-Parameter	
Declustering Potential (DP)	80
Collision Energy (CE) (V)	45 (oder wie optimiert)
Collision Energy Spread (CES)	0
Resolution-Parameter	
Q1 resolution	Niedrig

Tabelle 5-10 EPI-Methodenparameter (Fortsetzung)

- 5. Führen Sie das Verfahren durch.
- 6. Passen Sie **CE** an, um die Spitzenintensität bei 136, 647, 784 und 1028 zu optimieren.
- 7. Drucken Sie eine Kopie der Ergebnisse aus und speichern Sie die optimierte EPI-Methode.
- 8. Überprüfen Sie, ob die Intensität mit den Spezifikationen in Datenprotokoll: NanoSpray[®]-Ionenquelle übereinstimmt.

Wenn das Ergebnis nicht akzeptabel ist, beachten Sie Tipps zur Fehlerbehebung.

9. Überprüfen Sie die ausgedruckten Ergebnisse und zeichnen Sie die Ergebnisse im Datenprotokoll auf.

Abschluss

Hinweis: Der Außendienstmitarbeiter von SCIEX muss die Ergebnisse des NanoSpray[®]-Abnahmetestlaufs nach der Installation per E-Mail an servicedata@sciex.com schicken.

- 1. Spülen Sie die Spitze und die Infusionsleitung gründlich durch.
- 2. Kopieren Sie das fertige Datenprotokoll sowie die Testergebnisse und händigen Sie dem Kunden die Originale aus.

Tests an PhotoSpray[®]-Ionenquellen

Führen Sie diese Tests in einer der folgenden Situationen durch:

- wenn eine neue Ionenquelle installiert wird.
- nach größeren Wartungsarbeiten an der Ionenquelle.
- wann immer die Leistung der Ionenquelle überprüft werden muss, entweder vor Beginn eines Projektes oder als Teil einer standardisierten Vorgehensweise.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Verwenden Sie die Ionenquelle nur, wenn Sie Kenntnisse über die ordnungsgemäße Verwendung, Eingrenzung und Entsorgung von mit der Ionenquelle verwendeten toxischen oder schädlichen Materialien haben und darin geschult wurden.

WARNHINWEIS! Gefahr von Stichverletzungen, Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Verwenden Sie die Ionenquelle nicht weiter, wenn das Fenster gesprungen oder zerbrochen ist, und wenden Sie sich an einen SCIEX-Außendienstmitarbeiter. Alle giftigen oder schädlichen Stoffe, die dem Gerät zugeführt werden, sind in der Abluft der Ionenquelle vorhanden. Aus dem Gerät stammende Abluft muss aus dem Raum abgeführt werden. Befolgen Sie bei der Entsorgung von scharfen und spitzen Gegenständen die Sicherheitsvorschriften Ihres Labors.

WARNHINWEIS! Toxisch-chemische Gefahren. Tragen Sie persönliche Schutzausrüstung, wie z. B. Laborkittel, Schutzhandschuhe und eine Schutzbrille, um Haut- oder Augenkontakt zu vermeiden.

WARNHINWEIS! Gefährdung durch ionisierende Strahlung, Biogefährdung oder toxisch-chemische Gefahren. Überprüfen Sie bei einem Chemieunfall die Sicherheitsdatenblätter auf spezifische Anweisungen. Vergewissern Sie sich, dass sich das System im Standby-Modus befindet, bevor Sie ausgelaufene Flüssigkeiten in der Nähe der Ionenquelle entfernen. Verwenden Sie geeignete persönliche Schutzausrüstung und Absorptionstücher, um ausgelaufene Flüssigkeiten aufzunehmen, und entsorgen Sie die ausgelaufenen Materialien entsprechend den örtlichen Vorschriften.

Erforderliche Materialien

- Methanol, MS-Qualität
- Deionisiertes Wasser in HPLC-Qualität
- Lösungsmittel für mobile Phase: 70:30 Acetonitril-Wasserlösung
- Dotierstoff: Toluol (HPLC-Qualität), infundiert mit 100 bis 150 µl/min. Der Dotierstoff sollte über eine eigene HPLC-Pumpe infundiert werden.
- Vorverdünnte 0,0167 pmol/µl Reserpin-Lösung aus dem SCIEX Standard-Chemie-Kit (Art.-Nr. 4406127)
- HPLC-Pumpe (für mobile Phase)
- HPLC-Pumpe zur Dotierstoffinfusion
- Manueller Injektor (8125 Rheodyne oder gleichwertig) mit einer 5-µl-Schleife oder einem Autosampler mit Einrichtung für 5-µl-Injektionen
- PEEK-Kapillare, 1/16 Zoll Außendurchmesser (AD), 0,005 Zoll Innendurchmesser (ID)
- Spritze 250 bis 1000 µl
- Puderfreie Handschuhe (es werden Neopren- bzw. Nitrilhandschuhe empfohlen)
- Schutzbrille
- Kittel

Hinweis: Alle Testlösungen müssen kühl gelagert werden. Wenn sie länger als 48 Stunden nicht in einem Kühlraum gekühlt wurden, müssen sie entsorgt und neue Lösungen verwendet werden.

VORSICHT: Potenziell falsches Ergebnis. Verwenden Sie keine Lösungen mit abgelaufenem Verwendungsdatum.

Versuchsvorbereitungen

WARNHINWEIS! Stromschlaggefahr. Vermeiden Sie Kontakt mit der Hochspannung, die während des Betriebs an der Ionenquelle anliegt. Schalten Sie das System in den Standby-Modus, bevor Sie Anpassungen oder Einstellungen am Probenschlauch oder an anderen Komponenten in der Nähe der Ionenquelle vornehmen.

- Vergewissern Sie sich vor dem Installieren einer neuen Ionenquelle, dass das Massenspektrometer mit der vorhandenen Ionenquelle entsprechend den Spezifikationen funktioniert.
- Installieren Sie die Ionenquelle am Massenspektrometer.
- Stellen Sie sicher, dass die Ionenquelle vollständig optimiert ist. Informationen zur Ionenquelle finden Sie im *Bedienerhandbuch*.

• Bevor Sie mit chemischen Lösungen oder Lösungsmitteln arbeiten, informieren Sie sich in den entsprechenden Sicherheitsdatenblättern über eventuell notwendige Vorsichtsmaßnahmen.

Hinweis: Unabhängig von der verwendeten Pumpe herrscht in der Dotierungsleitung ein erheblicher Gegendruck.

Testen der Ionenquelle

WARNHINWEIS! Gefahr durch heiße Oberflächen. Lassen Sie die Ionenquelle vor Beginn der Wartungsarbeiten mindestens 30 Minuten Iang abkühlen. Die Oberflächen der Ionenquelle werden im Betrieb heiß.

VORSICHT: Mögliche Schäden am System. Lassen Sie keinerlei Lösungsmittel fließen, bis Sie überprüft haben, ob die Ionenquelle die richtige Temperatur erreicht hat.

VORSICHT: Mögliche Schäden am System. Verwenden Sie optimalerweise den höchstmöglichen Wert für die Curtain Gas[™] Flussrate, um eine Verunreinigung des Massenspektrometers zu vermeiden.

Hinweis: Die optimale Ionentransferspannung hängt ab von der Höhe der UV-Lampe. Es gibt nur eine optimale Ionentransferspannung für eine bestimmte UV-Lampenhöhe und nur eine optimale UV-Lampenhöhe für eine bestimmte Ionentransferspannung. Falls der Benutzer die UV-Lampenhöhe verstellt, optimieren Sie die Ionentransferspannung bei jeder neuen Höheneinstellung, um die beste Einstellung für die UV-Lampenhöhe und die Ionentransferspannung zu erhalten.

- 1. Doppelklicken Sie in der Analyst[®]-Software im Modus **Tune and Calibrate** auf **Manual Tune**.
- 2. Öffnen Sie eine zuvor optimierte Methode oder stellen Sie die Parameter wie in der folgenden Tabelle gezeigt ein.

Tabelle 6-1 Methodenparameter

Parameter	Wert
Probe-Parameter	
Sample concentration	10 pg/ml
Mobile Phase	70:30 ACN:H ₂ O
Flow rate (µL/min)	500
Injection volume (µL)	25 (Schleife überfüllen)
Sample loop (µL)	5
Ionization mode	Positiv

Parameter	Wert		
Probe vertical micrometer setting	2		
Probe horizontal micrometer setting	5		
UV Lamp vertical micrometer setting	5		
UV Lamp vertical micrometer setting	100 bis 150 µl/min Volumenstrom		
MS-Parameter			
Scan mode	MRM		
Q1 mass (Da)	609,3 (oder exakte Masse)		
Q3 mass (Da)	195,1 (oder exakte Masse)		
Source/Gas-Parameter			
Curtain Gas [™] (CUR)	30 (oder wie optimiert)		
Collision Gas (CAD)	Mittel		
Ion Transfer Voltage (IS)	800 (oder wie optimiert)		
Temperature (TEM)	400 (oder wie optimiert)		
Ion Source Gas 1 (GS1)	60 (oder wie optimiert)		
Ion Source Gas 2 (GS2)	20 (oder wie optimiert)		
Compound-Parameter			
Declustering Potential (DP)	100 (oder wie optimiert)		
Collision Energy (CE)	45 (oder wie optimiert)		
Collision Exit Potential (CXP)	wie optimiert		
Resolution-Parameter			
Resolution	Einheit/Einheit		
Die bei der Gerätevalidierung erhaltenen Ausgal abweichen.	ngswerte können von den Werten in dieser Tabelle		

Tabelle 6-1 Methodenparameter (Fortsetzung)

- 3. Klicken Sie auf **Acquire**, um mit der Datenerfassung zu beginnen.
- 4. Führen Sie die 70:30 Acetonitril:Wasser-Lösung mit einem Volumenstrom von 500µl/min über den Probeeinlass ein.
- 5. Führen Sie den Dotierstoff mit einem Volumenstrom von 75µl/min über den Dotierungseinlass ein.
- 6. Überfüllen Sie die Probenschleife mit der Testlösung.
- 7. Injizieren Sie 10 pg/μl der Reserpin-Testlösung und beobachten Sie dabei den MRM- (Multiple Reaction Monitoring) Übergang 609/195.

- 8. Optimieren Sie die verbindungsspezifischen Parameter.
- 9. Optimieren Sie die Positionen von Probe und UV-Lampe.
- 10. Optimieren Sie die Ionenquellen-Parameter.
- 11. Drucken Sie die Ergebnisse aus.
- 12. Überprüfen Sie die Ergebnisse auf dem Ausdruck.
- 13. Prüfen Sie, ob die durchschnittliche Intensität der fünf Injektionen akzeptabel ist. Siehe Datenprotokoll: PhotoSpray[®]-Ionenquelle.

Wenn das Ergebnis nicht akzeptabel ist, beachten Sie Tipps zur Fehlerbehebung.

Fehler	Mögliche Ursache	Abhilfemaßnahme
Kein Signal	 Es wird kein Spray erzeugt. (NanoSpray[®]-Ionenquelle) Die Kopfposition der Ionenquelle ist falsch. 	 Informationen zur Fehlerbehebung bei Spray-Problemen finden Sie im Ionenquellen-<i>Bedienerhandbuch</i>. Passen Sie die Positionierung der Emitterspitze mithilfe der X-Y-Z-Einstellknöpfe an.
Unerwartet hohe LC-Höchstwerte oder Rückstände	(NanoSpray [®] -Ionenquelle) Die Verbindung hat ein Totvolumen.	 Vergewissern Sie sich, dass alle Nachsäulenschläuche einen Innendurchmesser von höchstens 25 Mikrometern aufweisen. Überprüfen Sie alle Anschlüsse, um sicherzustellen, dass sie ordnungsgemäß sitzen. Spülen Sie alle Schnitte durch. Tauschen Sie die Emitterspitze aus.
Geringe Spitzenintensität	 Die Position der Ionenquelle, der Spitzenüberstand oder die Parameterwerte der Ionenquelle sind falsch. Die Spritze oder die Probenleitung ist undicht. Q1 oder Q3 ist nicht kalibriert. Die Qualität der Probe hat sich vermindert, oder die Konzentration der Probe ist gering. Es besteht ein Problem mit dem LC System. 	 Optimieren Sie die Quelle. Prüfen Sie auf Undichtigkeiten. Verwenden Sie zum Optimieren von Q1 oder Q3 den Assistenten zur Geräteoptimierung (Instrument Optimization). Überprüfen Sie die Konzentration der Probe. Verwenden Sie entweder eine frische oder aufgetaute Probe. Beheben Sie Fehler des LC-Systems.
Schlechte Auflösung	Das Gerät ist nicht richtig optimiert.	Optimieren Sie das Gerät.

Tipps zur Fehlerbehebung

Fehler	Mögliche Ursache	Abhilfemaßnahme
Schlechte Empfindlichkeit	 Die Interface-Komponenten (Front-End) sind verschmutzt. 	 Reinigen Sie die Interface-Komponenten und positionieren Sie die Ionenquelle neu.
	 Lösungsmitteldämpfe oder andere unbekannte Verbindungen liegen im Bereich des Analysators vor. Die Proben wurden nicht richtig vorbereitet oder die Proben haben sich verschlechtert. Am Probeeinlass gibt es Lecks. Die lonenquelle ist fehlerhaft. 	 Den Curtain Gas[™]-Fluss optimieren. Bestätigen Sie, dass die Proben sachgemäß vorbereitet wurden. Stellen Sie sicher, dass die Anschlüsse dicht sind, und tauschen Sie diese aus, wenn die Undichtigkeiten weiterhin bestehen. Ziehen Sie die Anschlussstücke nicht zu fest an. Installieren und optimieren Sie eine alternative Ionenquelle. Wenden Sie sich an einen Außendienstmitarbeiter (FSE), wenn das Problem weiter besteht.
Schwaches Signal	 Das Auflösungspotenzial von Ionenclustern (DP) ist nicht optimiert. Die Elektrode könnte verunreinigt oder verstopft sein. 	 Optimieren Sie das Auflösungspotenzial von Ionenclustern, bis Sie das beste Signal oder Signal-zu-Rausch-Verhältnis erzielt haben. Die Optimalwerte können von den mit anderen Ionenquellen ermittelten Werten abweichen. Reinigen Sie die Elektrode.
Niedriges Signal-zu-Rausch-Verhältnis	 Die Position der Ionenquelle, der Spitzenüberstand oder die Parameterwerte der Ionenquelle sind falsch. Die Spritze oder die Probenleitung ist undicht. Die Verdünnungslösung ist verunreinigt. 	 Optimieren Sie die Quelle. Suchen Sie nach Undichtigkeiten. Verwenden Sie eine frisch zubereitete Verdünnungslösung aus Reagenzien in MS-Qualität (0,1 % Ameisensäure und 10 % Acetonitril).

Fehler	Mögliche Ursache	Abhilfemaßnahme
Starkes Hintergrundrauschen	 Die Verdünnungslösung ist verunreinigt. Die Spritze oder die Probenleitung ist 	 Verwenden Sie eine frisch zubereitete Verdünnungslösung aus Reagenzien in MS-Qualität (0,1 % Ameisensäure, 10 % Acetonitril).
	 Die Spritze oder die Probenleitung ist verschmutzt. Es befinden sich Rückstände auf dem Interface. Die Temperatur (TEM) ist zu hoch. Der Fluss des Heizergases (GS2) ist zu hoch. Die Ionenquelle ist verunreinigt. 	 MS-Qualität (0,1 % Ameisensäure, 10 % Acetonitril). 2. Reinigen oder ersetzen Sie Spritze oder Probenleitung. 3. Reinigen Sie Curtain-Platte und Orifice-Platte (siehe <i>Qualified Maintenance Person Guide</i> für weitere Informationen zur Wartung des Massenspektrometers). Erhitzen Sie das Interface, falls erforderlich. Wenn das Problem dadurch nicht behoben wird, reinigen Sie Q0 oder die QJet[®]-Ionenführung. 4. Optimieren Sie die Temperatur. 5. Optimieren Sie den Heizergasfluss. 6. Reinigen oder ersetzen Sie die Komponenten der Ionenquellen, und stellen Sie die geeigneten Bedingungen für Ionenquelle und Vorderteil her: a. Bewegen Sie die APCI- oder TIS-Probe so weit wie möglich von der Öffnung weg (vertikal und horizontal). b. Infundieren oder injizieren Sie Methanol und Wasser im Verhältnis von 50:50 bei einer Pumpförderleistung von 1 ml/min. c. Stellen Sie in der Analyst[®]/Analyst[®] TF-Software TEM auf 650, GS1 auf 60 und GS2 auf 60 ein. d. Stellen Sie den Curtain-Gas-Fluss auf 45 oder E0 ain
		 e. Lassen Sie es mindestens 2 Stunden, am besten jedoch über Nacht laufen. 7. Stellen Sie die Position der Emitterspitze ein.

Tipps zur Fehlerbehebung

Fehler	Mögliche Ursache	Abhilfemaßnahme
Bei Prüfungen kann die Ionenquelle nicht die Spezifikationen einhalten	Das Massenspektrometer hat die Installationstests nicht bestanden.	Führen Sie am Massenspektrometer Installationstests mit der Standardquelle durch.
Temperatur nicht erreicht oder Temperatur zu hoch oder instabil	Der Interfaceheizer ist fehlerhaft.	Öffnen Sie das Dialogfeld Mass Spectrometer Detailed Status (Ausführlicher Status des Massenspektrometers). Im Feld Source Temperature sollte die Temperatureinstellung angezeigt werden und der Interface Heater Status sollte auf Ready eingestellt sein. Wenn dies nicht der Fall ist, wenden Sie sich bitte an einen qualifizierten Wartungstechniker (QMP) oder Außendienstmitarbeiter (FSE), um den Interfaceheizer austauschen zu lassen.

Datenprotokoll: IonDrive[™] Turbo V-Ionenquelle

Systeminformation

Tabelle A-1 Informationen zum Massenspektrometer

Seriennummer des Massenspektrometers

Informationen zur Ionenquelle

Komponente	Seriennummer
Ionenquelle	
TurbolonSpray [®] -Sonde	
APCI-Sonde	

IonDrive Turbo V-Ionenquellen-Testergebnisse

Hinweis: Die IonDrive[™] Turbo V-Ionenquelle wird ausschließlich von Geräten der Serie 6500 und 6500+ und den Systemen und 6600/6600+ unterstützt.

Datenprotokoll: IonDrive[™] Turbo V-Ionenquelle

Sonde	Intensität (cps)	Intensität (cps)	Ergebnisse (cps)
	6500	6500+	
TurbolonSpray [®] -Sonde	1,25 × 10 ⁶	1,9 × 10 ⁶	
APCI-Sonde	5,0 × 10 ⁵	7,5 × 10 ⁵	

Unterschrift

Organisation		
Name des Außendienstmitarbeiters (FSE)	Datum (JJJJ-MM-TT)	
Unterschrift des Außendienstmitarbeiters		

Kommentare und Ausnahmen

Datenprotokoll: Turbo V[™]-Ionenquelle

Systeminformation

Tabelle B-1 Informationen zum Massenspektrometer

Seriennummer des Massenspektrometers

Informationen zur Ionenquelle

Komponente	Seriennummer
Ionenquelle	
TurbolonSpray [®] -Sonde	
APCI-Sonde	

Turbo V-Ionenquellen-Testergebnisse

Hinweis: Für das System TripleTOF[®] 4600 sind keine Spezifikationen verfügbar. Die für dieses System empfohlene Quelle ist die DuoSpray[™]-Ionenquelle.

Hinweis: Tests für Systeme der Serie 6500 und 6500+ werden im niedrigen Massenmodus ausgeführt.

Intensität (cps)				Ergebnisse				
3200	3500	4000	4500	5000 und 5500/5500+	5600/5600+ und 6600/6600+	6500	6500+	
TurbolonSpra	ay [®] -Sonde				•			
1,0 × 10 ⁴	2,0 × 10 ⁴	1,0 × 10 ⁵	2,0 × 10 ⁵	5,0 × 10 ⁵	1,0 × 10 ⁴	1,0 × 10 ⁶	1,5 × 10 ⁶	
APCI-Sonde					•			
5,0 × 10 ³	1,0 × 10 ⁴	5,0 × 10 ⁴	1,0 × 10 ⁵	2,5 × 10 ⁵	5,0 × 10 ³	5,0 × 10 ⁵	7,5 × 10 ⁵	

Unterschrift

Organisation		
Name des Außendienstmitarbeiters (FSE)	Datum (JJJJ-MM-TT)	
Unterschrift des Außendienstmitarbeiters		

Kommentare und Ausnahmen

Ionenquelle 98 / 157

Datenprotokoll: DuoSpray[™]-Ionenquelle

Systeminformation

Tabelle C-1 Informationen zum Massenspektrometer

Seriennummer des Massenspektrometers

Informationen zur Ionenquelle

Komponente	Seriennummer
Ionenquelle	
TurbolonSpray [®] -Sonde	
APCI-Sonde	

DuoSpray-Ionenquellen-Testergebnisse

Hinweis: Tests für Systeme der Serie 6500 und 6500+ werden im niedrigen Massenmodus ausgeführt.

Datenprotokoll: DuoSpray[™]-Ionenquelle

Intensität (cps)						Ergebnisse		
3200	4000	4500	4600	5000 und 5500/5500+	5600/5600+ und 6600/6600+	6500	6500+	
TurbolonSpra	ay [®] -Sonde			•			•	
5,0 × 10 ³	5,0 × 10 ⁴	1,0 × 10 ⁵	$2,0 \times 10^{3}$	2,5 × 10 ⁵	5,0 × 10 ³	5,0 × 10 ⁵	7,5 × 10 ⁵	
APCI-Sonde					· · · · · ·			
2,5 × 10 ³	$2,5 \times 10^4$	5,0 × 10 ⁴	$1,0 \times 10^{3}$	1,25 × 10 ⁵	2,5 × 10 ³	2,5 × 10 ⁵	3,8 × 10 ⁵	

Unterschrift

Organisation			
Name des Außendienstmitarbeiters (FSE)	Datum (JJJJ-MM-TT)		
Unterschrift des Außendienstmitarbeiters			

Kommentare und Ausnahmen

Datenprotokoll: OptiFlow[™] Turbo V-Ionenquelle

Systeminformation

Tabelle D-1 Informationen zum Massenspektrometer

Seriennummer des Massenspektrometers

Informationen zur Ionenquelle

Komponente	Seriennummer
Ionenquelle	
SteadySpray-Sonde	
Elektroden-Chargennummer	

OptiFlow Turbo V-Ionenquellen-Testergebnisse

Hinweis: Tests für Systeme der Serie 6500 und 6500+ werden im niedrigen Massenmodus ausgeführt.

	Ergebnisse					
5500/5500+	5500/5500+ 6500 6500+ 6600/6600+					
SteadySpray-Sonde						
5,0 × 10 ⁵	1,0 × 10 ⁶	1,5 × 10 ⁶	$1,0 \times 10^4$			

Unterschrift

Organisation				
Name des Außendienstmitarbeiters (FSE)	Datum (JJJJ-MM-TT)			
Unterschrift des Außendienstmitarbeiters				

Kommentare und Ausnahmen

Ionenquelle 104 / 157

Datenprotokoll: NanoSpray[®]-Ionenquelle

Systeminformation

Tabelle E-1 Informationen zum Massenspektrometer

Seriennummer des Massenspektrometers

Informationen zur Ionenquelle

Komponente	Seriennummer
Ionenquelle	
TurbolonSpray [®] -Sonde	
APCI-Sonde	

Ε

NanoSpray-Ionenquellen-Testergebnisse (TripleTOF-Systeme)

Hinweis: Der Außendienstmitarbeiter von SCIEX muss die Ergebnisse des NanoSpray[®]-Abnahmetestlaufs nach der Installation per E-Mail an servicedata@sciex.com schicken.

Tabelle E-2 TOF-MS-Testergebnisse

Masse 786	Spezifi	kation	Ergebnis
	4600	5600/5600+ und 6600/6600+	
Schwerpunktintensität (Peak-Höhe, cps)	≥ 1.500	≥ 4.000	
Auflösung	≥ 25.000	≥ 30.000	
Erforderliche Ausdrucke: 785,8421			

Tabelle E-3 Produkt-Ionen-Modus-Testergebnisse, hohe Empfindlichkeit (nur Systeme 5600/5600+ und 6600/6600+)

Masse	Schwerpunktintensität (cps)		Auflösung		
	Spezifikation	Ergebnis	Spezifikation	Ergebnis	
187,0713	≥ 60		-	-	
480,2565	≥ 212		≥ 15.000		
813,3890	≥ 375		≥ 15.000		

Tabelle E-3 Produkt-Ionen-Modus-Testergebnisse, hohe Empfindlichkeit (nur Systeme 5600/5600+ und 6600/6600+) (Fortsetzung)

Masse	Schwerpunktintensität (cps)		Auflösung			
	Spezifikation	Ergebnis	Spezifikation	Ergebnis		
1056,4745	≥ 225		≥ 15.000			
Erforderliche Ausdrucke: 187,0713; 480,2565; 813,3890 und 1056,4745						

Tabelle E-4 Produkt-Ionen-Testergebnisse

Masse	S	chwerpunktintensität (c	ps)			
	4600	5600/5600+ und 6600/6600+	Ergebnis	4600	5600/5600+ und 6600/ 6600+	Ergebnis
187,0713	≥ 8	≥ 20		-	-	_
480,2565	≥ 25	≥ 65		≥ 24.000	≥ 25.000	
813,3890	≥ 35	≥ 125		≥ 25.000	≥ 25.000	
1056,4745	≥ 25	≥ 65		≥ 25.000	≥ 25.000	
Hinweis: Im F	all der Systeme 56	00/5600+ und 6600/6600+ w	ird dieser Test im Mo	dus "High Resolution" du	rchgeführt.	
Erforderliche Au	sdrucke: 187,0713;	480,2565; 813,3890 und 105	6,4745			

NanoSpray-Ionenquellen-Testergebnisse (Systeme der Serie 4000, 4500, 5500, 5500+, 6500 und 6500+)

Die Spezifikationen in diesem Abschnitt gelten für die NanoSpray[®] III-Ionenquelle. Siehe das New Objective *Installationshandbuch* für Spezifikationen für die DPV-450 Digital PicoView[®] Nanospray-Ionenquelle für SCIEX-Massenspektrometer.

Hinweis: Der Außendienstmitarbeiter von SCIEX muss die Ergebnisse des NanoSpray[®]-Abnahmetestlaufs nach der Installation per E-Mail an servicedata@sciex.com schicken.

Tabelle E-5 Testergebnisse für Q1-Modus

Masse	Intensität (cps)						
	4000	4500	5500/5500+	6500	6500+	Ergebnis	
786	1,0 × 10 ⁵	2,5 × 10 ⁵	5,0 × 10 ⁵	1,0 × 10 ⁶	1,5 × 10 ⁶		

Tabelle E-6 Testergebnisse für Q3-Modus

Masse	Intensität (cps)								
	4000	4500	5500/5500+	6500	6500+	Ergebnis			
786	1,0 × 10 ⁵	2,5 × 10 ⁵	5,0 × 10 ⁵	1,0 × 10 ⁶	1,5 × 10 ⁶				
Masse	Intensität (cps)								
--------	-----------------------	-----------------------	-----------------------	-----------------------	-----------------------	----------	--	--	--
	4000	4500	5500/5500+ 6500		6500+	Ergebnis			
	Intensität (cps)								
480,3	1,0 × 10 ⁵	5,0 × 10 ⁵	1,0 × 10 ⁶	5,0 × 10 ⁶	7,5 × 10 ⁶				
813,4	1,0 × 10 ⁵	5,0 × 10 ⁵	1,0 × 10 ⁶	5,0 × 10 ⁶	7,5 × 10 ⁶				
942,4	5,0 × 10 ⁴	2,5 × 10 ⁵	5,0 × 10 ⁵	2,5 × 10 ⁶	3,8 × 10 ⁶				
1171,7	$4,0 \times 10^4$	2,0 × 10 ⁵	-	-	_				

Tabelle E-7 Testergebnisse für EPI-Modus (nur QTRAP[®]-Systeme)

NanoSpray-Ionenquellen-Testergebnisse (Systeme der Serie 3200)

Tabelle E-8 Testergebnisse für MS2-Modus

Masse	Intensität (cps)	Ergebnisse (cps)
136,1	≥ 1,6 × 105	
784,4	≥ 5000	

Datenprotokoll: NanoSpray®-Ionenquelle

Tabelle E-9 Testergebnisse für EPI-Modus

Masse	Intensität (cps)	Ergebnisse (cps)
136,1	1,0 × 10 ⁵	
647,3	$4,0 \times 10^4$	
784,4	8,0 × 10 ⁴	
1028,5	1,0 × 10 ⁴	

Unterschrift

Organisation				
Name des Außendienstmitarbeiters (FSE)	Datum (JJJJ-MM-TT)			
Unterschrift des Außendienstmitarbeiters				

Kommentare und Ausnahmen

Tests, Spezifikationen und Datenprotokoll RUO-IDV-05-7280-DE-C

Ionenquelle 111 / 157

Datenprotokoll: PhotoSpray[®]-Ionenquelle

Systeminformation

Tabelle F-1 Informationen zum Massenspektrometer

Seriennummer des Massenspektrometers

Informationen zur Ionenquelle

Komponente	Seriennummer
Ionenquelle	
TurbolonSpray [®] -Sonde	
APCI-Sonde	

PhotoSpray-Ionenquellen-Testergebnisse

Hinweis: Tests für Systeme der Serie 6500 und 6500+ werden im niedrigen Massenmodus ausgeführt.

Intensität (cps)								
3200	4000	4500	5000 und 5500	6500	6500+	Ergebnisse		
2,5 × 10 ³	5,0 × 10 ⁴	1,0 × 10 ⁵	2,5 × 10 ⁵	5,0 × 10 ⁵	7,5 × 10 ⁵			

Unterschrift

Organisation				
Name des Außendienstmitarbeiters (FSE)	Datum (JJJJ-MM-TT)			
Unterschrift des Außendienstmitarbeiters				

Kommentare und Ausnahmen

Ionenquelle 114 / 157

TripleTOF[®]-Systemparameter

Die folgende Tabelle enthält generische Parameter für Systeme des Typs TripleTOF[®] 4600, 5600, 5600+, 6600 und 6600+.

Die erste Zahl unter der Scan-Methode steht für den voreingestellten Wert. Der Zahlenbereich ist der für jeden Parameter zugängliche Bereich.

Parameter-ID Zugangs-ID **Positiver Ionenmodus Negativer Ionenmodus** Q1 TOF MS MS/MS TOF MS MS/MS Q1 GS1 GS1 20 20 20 20 20 20 0 bis 90 GS2 15 15 15 15 15 GS2 15 0 bis 90 25 25 25 25 25 CUR CUR 25 10 bis 55 10 bis 55

Tabelle G-1 TripleTOF[®]-Systemparameter

TripleTOF[®]-Systemparameter

Parameter-ID	Zugangs-ID	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	TOF MS	MS/MS	Q1	TOF MS	MS/MS
TEM ^{1,2,3,4,5,15}	TEM	0	0	0	0	0	0
		0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750
ISVF ^{1,4,15}	IS	5000	5000	5000	-4000	-4000	-4000
(ISVF = IS - OR)		0 bis 5500	0 bis 5500	0 bis 5500	–4500 bis 0	–4500 bis 0	–4500 bis 0
ISVF ⁷	IS	1000	1000	1000	-1000	-1000	-1000
(ISVF = IS - OR)		0 bis 4000	0 bis 4000	0 bis 4000	–4000 bis 0	–4000 bis 0	–4000 bis 0
NC⁵	NC	3	3	3	-3	-3	-3
		0 bis 5	0 bis 5	0 bis 5	–5 bis 0	–5 bis 0	–5 bis 0
IHT ⁷	IHT	150	150	150	150	150	150
		0 bis 225	0 bis 225	0 bis 225	0 bis 225	0 bis 225	0 bis 225

Tabelle G-1 TripleTOF[®]-Systemparameter (Fortsetzung)

¹ DuoSpray[™]-Ionenquelle

² Turbo VTM-Ionenquelle

³ IonDrive[™] Turbo V-Ionenquelle, sofern zutreffend

⁴ TurbolonSpray[®]-Sonde

⁵ APCI-Sonde

⁶ OptiFlow[™] Turbo V

⁷ NanoSpray[®]-Ionenquelle

Ionenquelle 116 / 157

Parameter-ID	Zugangs-ID	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	TOF MS	MS/MS	Q1	TOF MS	MS/MS
OR	DP	80	100	80	-80	-80	-80
(DP=OR-Q0)		0 bis 300	0 bis 300	0 bis 300	-300 bis 0	-300 bis 0	-300 bis 0
Q0	Q0	40	-	-	-40	-	-
		–300 bis 300			–300 bis 300		
Q0	CE	-	10	30	-	-10	-30
(CE = Q0 - RO2)			5 bis 150	0 bis 150		–150 bis –5	–150 bis 0
CES	CES	-	-	0	-	-	0
				0 bis 50			0 bis 50
RO1	IE1	2	2	2	-2	-2	-2
(IE1 = Q0 - RO1)		–300 bis 300	–300 bis 300	–300 bis 300	-300 bis 300	-300 bis 300	–300 bis 300
IQ2	IQ2	0	25	0	0	-25	0
		–300 bis 300	–300 bis 300	–300 bis 300	-300 bis 300	-300 bis 300	–300 bis 300
CAD	CAD	6	6	6	6	6	6
		0 bis 12	0 bis 12	0 bis 12	0 bis 12	0 bis 12	0 bis 12
RO2	RO2	30	30	30	-30	-30	-30
		–57 bis 57	–57 bis 57	–57 bis 57	–57 bis 57	–57 bis 57	–57 bis 57

Tabelle G-1 TripleTOF[®]-Systemparameter (Fortsetzung)

Parameter-ID	Zugangs-ID	Positiver Ionenmodus			Negativer Ionenmodus			
		Q1	TOF MS	MS/MS	Q1	TOF MS	MS/MS	
IRD	IRD	30	30	30	30	30	30	
		6 bis 1000	6 bis 1000	6 bis 1000	6 bis 1000	6 bis 1000	6 bis 1000	
IRW	IRW	15	15	15	15	15	15	
		5 bis 1000	5 bis 1000	5 bis 1000	5 bis 1000	5 bis 1000	5 bis 1000	
LNR	LNR	-15000	-15000	-15000	15000	15000	15000	
		–20000 bis 20000	-20000 bis 20000	-20000 bis 20000	-20000 bis 20000	-20000 bis 20000	-20000 bis 20000	
CEM	CEM	2300	2200	2200	2200	2200	2200	
		0 bis 3000	0 bis 3000	0 bis 3000	0 bis 3000	0 bis 3000	0 bis 3000	
OFS	OFS	30	30	30	-60	-60	-60	
		–100 bis 100	–100 bis 100	–100 bis 100	–100 bis 100	–100 bis 100	–100 bis 100	
MGV	MGV	-975	-975	-975	975	975	975	
		–2000 bis 2000	–2000 bis 2000	–2000 bis 2000	–2000 bis 2000	–2000 bis 2000	-2000 bis 2000	
MPV	MPV	2600	2600	2600	-2600	-2600	-2600	
		-4000 bis 4000	–4000 bis 4000	–4000 bis 4000	–4000 bis 4000	–4000 bis 4000	-4000 bis 4000	

Tabelle G-1 TripleTOF[®]-Systemparameter (Fortsetzung)

Parameter für Systeme der Serien 6500 und 6500+

Die erste Zahl unter der Scan-Methode steht für den voreingestellten Wert. Der Zahlenbereich ist der für jeden Parameter zugängliche Bereich.

Parameter-ID	Zugangs-ID	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		20 bis 55	20 bis 55	20 bis 55	20 bis 55	20 bis 55	20 bis 55
CAD 8,9	CAD ^{8,9}	0	6	Mittel	0	6	Mittel
		_	_	Niedrig, Mittel, Hoch	_	_	Niedrig, Mittel, Hoch
CAD ^{10,11}	CAD ^{10,11}	0	6	9	0	6	9
		-	-	0 bis 12	-	-	0 bis 12

⁸ QTRAP[®] 6500 oder 6500+ System, Low Mass (LM)

⁹ QTRAP[®] 6500 oder 6500+ System, High Mass (HM)

¹⁰SCIEX Triple Quad[™] 6500 oder 6500+ System, Low Mass (LM)

¹¹SCIEX Triple Quad[™] 6500 oder 6500+ System, High Mass (HM)

Tests, Spezifikationen und Datenprotokoll RUO-IDV-05-7280-DE-C Ionenquelle 119 / 157

Parameter-ID	Zugangs-ID	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
IS ^{12,13,14,15}	IS ^{12,13,14}	5500	5500	5500	-4500	-4500	-4500
		0 bis 5500	0 bis 5500	0 bis 5500	-4500 bis 0	–4500 bis 0	–4500 bis 0
IS ¹⁶	IS ¹⁶	1500	1500	1500	-1500	-1500	-1500
		0 bis 2500	0 bis 2500	0 bis 2500	-2500 bis 0	-2500 bis 0	-2500 bis 0
IS ¹⁷	IS ¹⁷	1000	1000	1000	-1000	-1000	-1000
		0 bis 4000	0 bis 4000	0 bis 4000	-4000 bis 0	-4000 bis 0	-4000 bis 0
NC ^{13,16,19,18}	NC ^{13,16,19,18}	3	3	3	-3	-3	-3
		0 bis 5	0 bis 5	0 bis 5	–5 bis 0	–5 bis 0	–5 bis 0
TEM ^{12,13,16,19,14,18,15}	TEM ^{12,13,16,19,14,18}	0	0	0	0	0	0
		0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750

¹²Turbo V[™]-Ionenquelle

¹³IonDrive[™] Turbo V-Ionenquelle

¹⁴TurbolonSpray[®] (TIS)-Sonde

¹⁵OptiFlow[™] Turbo V

¹⁶PhotoSpray[®]-Ionenquelle

¹⁷NanoSpray[®]-Ionenquelle

¹⁸APCI-Sonde

¹⁹DuoSpray[™]-Ionenquelle

Ionenquelle 120 / 157

Parameter-ID	Zugangs-ID	Po	ositiver lonenmo	odus	Negativer Ionenmodus		modus
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
OR	DP	100	100	100	-100	-100	-100
(DP=OR)		0 bis 300	0 bis 300	0 bis 300	–300 bis 0	-300 bis 0	-300 bis 0
Q0	EP	10	10	10	-10	-10	-10
(EP=-Q0)		2 bis 15	2 bis 15	2 bis 15	–15 bis –2	–15 bis –2	–15 bis –2
IQ1	IQ1	Q0 + (-0,5)	Q0 + (-0,5)	Q0 + (-0,5)	Q0 + 0,5	Q0 + 0,5	Q0 + 0,5
(IQ1 = Q0 + Offset)		–0,1 bis –2	–0,1 bis –2	–0,1 bis –2	0,1 bis 2	0,1 bis 2	0,1 bis 2
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8
(ST = Q0 + Offset)		–12 bis –5	–12 bis –5	-12 bis –5	5 bis 12	5 bis 12	5 bis 12
RO1 (IE1 = Q0 - RO1)	IE1	1 0 bis 3	_	1 0 bis 3	–1 –3 bis –0	-	–1 –3 bis –0
IQ2	IQ2	Q0 + (-10)	Q0 + (-10)	Q0 + (-10)	Q0 + 10	Q0 + 10	Q0 + 10
(IQ2 = Q0 + Offset)		–30 bis –8	–30 bis –8	–30 bis –8	8 bis 30	8 bis 30	8 bis 30
RO2	RO2	-20	-20	-	20	20	-
		-	-		-	-	
RO2	CE	-	-	30	-	-	-30
(CE = Q0 - RO2)				5 bis 180			-180 bis
							-5

Tests, Spezifikationen und Datenprotokoll RUO-IDV-05-7280-DE-C Ionenquelle 121 / 157

Parameter-ID	Zugangs-ID	P	ositiver lonenme	odus	Negativer lonenmod		modus
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
ST3	ST3	RO2 – 10	-	-	RO2 + 10	-	-
(ST3 = RO2 + Offset)		–30 bis –5			5 bis 30		
ST3	СХР	-	15	15	-	-15	-15
(CXP = RO2 - ST3)			0 bis 55	0 bis 55		–55 bis 0	–55 bis 0
RO3	RO3	-50	-	-	50	-	-
		-			-		
RO3	IE3	-	1	1	-	-1	-1
(IE3 = RO2 - RO3)			0 bis 5	0 bis 5		-5 bis 0	–5 bis 0
СЕМ	CEM	1700	1700	1700	1700	1700	1700
		0 bis 3300	0 bis 3300	0 bis 3300	0 bis 3300	0 bis 3300	0 bis 3300
GS1	GS1	20	20	20	20	20	20
		0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90
GS2	GS2	0	0	0	0	0	0
		0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90

Parameter-ID	Zugangs-ID	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
IHT ¹⁷	IHT ¹⁷	150	150	150	150	150	150
sdp ¹⁹	sdp ¹⁹	1	1	1	1	1	1
		1 oder 2	1 oder 2	1 oder 2	1 oder 2	1 oder 2	1 oder 2

Tabelle H-2 Parameter für Systeme der Serie 6500 und 6500+ nur für LIT-Scan-Typen

Parameter-ID	Zugangs-ID	Positiver Ionenmodus	Negativer Ionenmodus
CAD	CAD	Hoch	Hoch
		Niedrig, Mittel, Hoch	Niedrig, Mittel, Hoch
AF2 ²⁰	AF2	0,1	0,1
		0 bis 1	0 bis 1
AF3	AF3	Masse-/Geschwindigkeitsabhängig	Masse-/Geschwindigkeitsabhängig
		0 bis 10	0 bis 10
EXB	EXB	Masse-/Geschwindigkeitsabhängig	Masse-/Geschwindigkeitsabhängig
		-165 bis 0	0 bis 165

²⁰Nur MS/MS/MS

Parameter-ID	Zugangs-ID	Positiver Ionenmodus	Negativer Ionenmodus
CES	CES	0	0
		0 bis 50	0 bis 50
ROS	CE	10	-10
(Q0 - ROS)		5 bis 180	–5 bis –180

Tabelle H-2 Parameter für Systeme der Serie 6500 und 6500+ nur für LIT-Scan-Typen (Fortsetzung)

Parameter für Systeme der Serien 5500 und 5500+

Die erste Zahl unter der Scan-Methode steht für den voreingestellten Wert. Der Zahlenbereich ist der für jeden Parameter zugängliche Bereich.

Tabelle I-1 Paramet	ter für Systeme der	Serien 5500 und 5500+
----------------------------	---------------------	-----------------------

Parameter-ID	Zugangs-ID	Positiv	ver Ionenmodu	s	Neg	Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
CUR	CUR	20	20	20	20	20	20	
		10 bis 55	10 bis 55	10 bis 55	10 bis 55	10 bis 55	10 bis 55	
CAD	CAD	0	6	Mittel (9)	0	5	Mittel (9)	
		-	-	0 bis 12	-	-	0 bis 12	
IS ^{21,22}	IS ^{21,22}	5500	5500	5500	-4500	-4500	-4500	
		0 bis 5500	0 bis 5500	0 bis 5500	-4500 bis 0	-4500 bis 0	–4500 bis 0	
NC ²⁴	NC ²⁴	3	3	3	-3	-3	-3	
		0 bis 5	0 bis 5	0 bis 5	-5 bis 0	–5 bis 0	–5 bis 0	

²¹Turbo V[™]-Ionenquelle

²²TurbolonSpray[®]-Sonde

²³OptiFlow[™] Turbo V

²⁴APCI-Sonde

Parameter-ID Zugangs-ID		Po	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
TEM ^{22,24,15}	TEM ^{22,24}	0	0	0	0	0	0	
		0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750	
OR	DP	100	100	100	-100	-100	-100	
(DP = OR)		0 bis 300	0 bis 300	0 bis 300	–300 bis 0	-300 bis 0	-300 bis 0	
Q0	EP	10	10	10	-10	-10	-10	
(EP = -Q0)		2 bis 15	2 bis 15	2 bis 15	–15 bis –2	–15 bis –2	–15 bis –2	
IQ1	IQ1	Q0 + (-0,5)	Q0 + (0,5)	Q0 + (-0,5)	Q0 + 0,5	Q0 + 0,5	Q0 + 0,5	
(IQ1 = Q0 + Offset)		–0,1 bis –2	–0,1 bis –2	–0,1 bis –2	0,1 bis 2	0,1 bis 2	0,1 bis 2	
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8	
(ST = Q0 + Offset)		–12 bis –5	–12 bis –5	-12 bis –5	12 bis 5	12 bis 5	12 bis 5	
RO1 (IE1 = Q0 - RO1)	IE1	1 0 bis 3	-	1 0 bis 3	–1 –3 bis –0	-	–1 –3 bis –0	
IQ2	IQ2	Q0 + (-10)	Q0 + (-10)	Q0 + (-10)	Q0 + 10	Q0 + 10	Q0 + 10	
(IQ2 = Q0 + Offset)		–30 bis –8	–30 bis –8	–30 bis –8	8 bis 30	8 bis 30	8 bis 30	
RO2	RO2	-20	-20	-	20	20	-	
		-	-		-	-		

Ionenquelle 126 / 157

Parameter-ID	Zugangs-ID	Positiver Ionenmodus Negativer Ionenmodus			odus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
RO2	CE	-	-	30	-	-	-30
(CE = Q0 - RO2)				5 bis 180			–180 bis
							-5
ST3	ST3	RO2 – 10	-	-	RO2 + 10	-	-
(ST3 = RO2 + Offset)		–30 bis –5			5 bis 30		
ST3	СХР	-	15	15	-	-15	-15
(CXP = RO2 - ST3)			0 bis 55	0 bis 55		–55 bis 0	–55 bis 0
RO3	RO3	-50	-	-	50	-	-
		-			-		
RO3	IE3	-	1	1	-	-1	-1
(IE3 = RO2 - RO3)			0 bis 5	0 bis 5		–5 bis 0	—5 bis 0
DF 25	DF	-200	-200	-200	200	200	200
		–300 bis 0	–300 bis 0	–300 bis 0	0 bis 300	0 bis 300	0 bis 300
25	CEM	1800	1800	1800	1800	1800	1800
		0 bis 3300	0 bis 3300	0 bis 3300	0 bis 3300	0 bis 3300	0 bis 3300

²⁵Nur Systeme der Serie 5500

Tests, Spezifikationen und Datenprotokoll RUO-IDV-05-7280-DE-C Ionenquelle 127 / 157

Parameter-ID	Zugangs-ID	Pos	sitiver lonenmoo	lus	Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CEM ²⁶	CEM	1700	1700	1700	1700	1700	1700
		0 bis 3300	0 bis 3300	0 bis 3300	0 bis 3300	0 bis 3300	0 bis 3300
GS1	GS1	20	20	20	20	20	20
		0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90
GS2	GS2	0	0	0	0	0	0
		0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90
IHT	IHT	150	150	150	150	150	150
		0 bis 250	0 bis 250	0 bis 250	0 bis 250	0 bis 250	0 bis 250
sdp ²⁷	sdp	1	1	1	1	1	1
		1 oder 2	1 oder 2	1 oder 2	1 oder 2	1 oder 2	1 oder 2

²⁶Nur Systeme der Serie 5500+

²⁷DuoSpray[™]-Ionenquelle (1=TurboIonSpray-Sonde und 2=APCI-Sonde)

Ionenquelle 128 / 157

Tabelle I-2 Parameter für Systeme des Typs QTRAP[®] 5500 und QTRAP[®]-fähige Systeme des Typs Triple Quad 5500+ nur für LIT-Scan-Typen

Parameter-ID	Zugangs-ID	Positiver Ionenmodus	Negativer lonenmodus
CAD	CAD	Hoch	Hoch
		Niedrig–Hoch	Niedrig–Hoch
AF2 ²⁸	AF2	0,100	0,100
		0 oder 1	0 oder 1
AF3	AF3	Masse-/Geschwindigkeitsabhängig	Masse-/Geschwindigkeitsabhängig
		0 bis 10	0 bis 10
EXB	EXB	Masse-/Geschwindigkeitsabhängig	Masse-/Geschwindigkeitsabhängig
		-165 bis 0	0 bis 165
CES	CES	0	0
		0 bis 50	0 bis 50
ROS	CE	10	-10
(Q0 - ROS)		5 bis 180	–5 bis –180

²⁸Nur MS/MS/MS

API 5000[™]-Systemparameter

Die erste Zahl unter der Scan-Methode steht für den voreingestellten Wert. Der Zahlenbereich ist der für jeden Parameter zugängliche Bereich.

Tabelle J-1 API 5000[™]-Systemparameter

Parameter-ID	Zugangs-ID	Positiv	ver Ionenmodu	S	Neg	Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
CUR	CUR	10	10	10	10	10	10	
		10 bis 50	10 bis 50	10 bis 50	10 bis 50	10 bis 50	10 bis 50	
CAD	CAD	0	1	4	0	1	4	
		-	0 bis 12	0 bis 10	-	0 bis 12	0 bis 12	
IS ^{29,30}	IS ^{29,30}	5500	5500	5500	-4500	-4500	-4500	
		0 bis 5500	0 bis 5500	0 bis 5500	–4500 bis 0	–4500 bis 0	–4500 bis 0	
NC ³¹	NC ³¹	3	3	3	-3	-3	-3	
		0 bis 5	0 bis 5	0 bis 5	–5 bis 0	–5 bis 0	–5 bis 0	

²⁹Turbo V[™]-Ionenquelle

³⁰TurbolonSpray[®]-Sonde

³¹APCI-Sonde

Ionenquelle 130 / 157

Parameter-ID	Zugangs-ID	Po	Positiver Ionenmodus			Negativer Ionenmodus			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS		
TEM ^{30,31}	TEM ^{30,31}	0	0	0	0	0	0		
		0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750		
OR	DP	120	120	120	-100	-100	-100		
(DP=OR)		0 bis 400	0 bis 400	0 bis 400	–400 bis 0	-400 bis 0	-400 bis 0		
Q0	EP	10	10	10	-10	-10	-10		
(EP = -Q0)		15 bis 2	15 bis 2	15 bis 2	–15 bis –2	–15 bis –2	–15 bis –2		
IQ1	IQ1	Q0 + (-1)	Q0 + (-1)	Q0 + (-1)	Q0 + 1	Q0 + 1	Q0 + 1		
(IQ1 = Q0 + Offset)		–0,5 bis –2	–0,5 bis –2	–0,5 bis –2	0,5 bis 2	0,5 bis 2	0,5 bis 2		
ST	ST	Q0 + (-7)	Q0 + (-7)	Q0 + (-7)	Q0 + 7	Q0 + 7	Q0 + 7		
(ST = Q0 + Offset)		–12 bis –5	–12 bis –5	-12 bis –5	12 bis 5	12 bis 5	12 bis 5		
RO1 (IE1 = Q0 - RO1)	IE1	1 0,5 bis 2	-	1 0,5 bis 2	-1 -2 bis -0,5	-	-1 -2 bis -0,5		
RO1	RO1	-	Q0 + (-2)	-	-	Q0 + 2	-		
(IE1 = Q0 + Offset)			–0,5 bis –2			0,5 bis 2			
IQ2	IQ2	Q0 + (-20)	Q0 + (-20)	Q0 + (-20)	Q0 + 20	Q0 + 20	Q0 + 20		
(IQ2 = Q0 + Offset)		–100 bis –8	-	-	100 bis 8	-	-		

Tabelle J-1 API 5000[™]-Systemparameter (Fortsetzung)

Tests, Spezifikationen und Datenprotokoll RUO-IDV-05-7280-DE-C

Parameter-ID	Zugangs-ID	Po	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
RO2	RO2	-100	-20	_	100	20	-	
		–200 bis 200	–145 bis –2		–200 bis 200	2 bis 145		
RO2	CE	-	-	30	-	-	-30	
(CE = Q0 - RO2)				5 bis 130			–130 bis	
							-5	
ST3	ST3	-120	-	-	-	-	-	
		-200 bis 200						
ST3	СХР	-	20	15	-	-20	-15	
(CXP = RO2 - ST3)			0 bis 55	0 bis 55		–55 bis 0	–55 bis 0	
RO3	RO3	-150	-	-	100	-	-	
		–200 bis 200			–200 bis 200			
RO3	IE3	-	2	2	-	-1,5	-1,5	
(IE3 = RO2 - RO3)			-0,5 bis 5	–0,5 bis 5		–5 bis 0	–5 bis 0	
DF	DF	-200	-200	-200	200	200	200	
		-400 bis 0	–400 bis 0	–400 bis 0	0 bis 400	0 bis 400	0 bis 400	
CEM	CEM	2000	2000	2000	2000	2000	2000	
		500 bis 3297	500 bis 3297	500 bis 3297	500 bis 3297	500 bis 3297	500 bis 3297	

Tabelle J-1 API 5000[™]-Systemparameter (Fortsetzung)

Ionenquelle 132 / 157

Parameter-ID	Zugangs-ID	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
GS1	GS1	20	20	20	15	15	20
		0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90
GS2	GS2	0	0	0	0	0	0
		0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90
ihe ³²	ihe	1	1	1	1	1	1
		0 oder 1	0 oder 1	0 oder 1	0 oder 1	0 oder 1	0 oder 1
IHT	IHT	40	40	40	40	40	40
		0 bis 250	0 bis 250	0 bis 250	0 bis 250	0 bis 250	0 bis 250
svp ³³	svp	1	1	1	1	1	1
		1 oder 2	1 oder 2	1 oder 2	1 oder 2	1 oder 2	1 oder 2

Tabelle J-1 API 5000[™]-Systemparameter (Fortsetzung)

 32 1 = EIN und 0 = AUS 33 DuoSprayTM-Ionenquelle (1=TurbolonSpray[®] und 2=APCI-Sonde)

Tests, Spezifikationen und Datenprotokoll RUO-IDV-05-7280-DE-C Ionenquelle 133 / 157

Parameter für Systeme der Serie 4500

Die erste Zahl unter der Scan-Methode steht für den voreingestellten Wert. Der Zahlenbereich ist der für jeden Parameter zugängliche Bereich.

Tabelle K-1 Parameter für Geräte der Serie 4500

Parameter-ID	Zugangs-ID	Positiver Ionenmodus			Negativer Ionenmodus			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
CUR	CUR	20	20	20	20	20	20	
		10 bis 55	10 bis 55	10 bis 55	10 bis 55	10 bis 55	10 bis 55	
CAD	CAD	0	6	Mittel (9)	0	6	Mittel (9)	
		-	-	0 bis 12	-	-	0 bis 12	
IS ^{34,35}	IS ^{34,35}	5500	5500	5500	-4500	-4500	-4500	
		0 bis 5500	0 bis 5500	0 bis 5500	–4500 bis 0	-4500 bis 0	–4500 bis 0	
NC ³⁶	NC ³⁶	3	3	3	-3	-3	-3	
		0 bis 5	0 bis 5	0 bis 5	–5 bis 0	–5 bis 0	–5 bis 0	

³⁴Turbo V[™]-Ionenquelle

³⁵TurbolonSpray[®]-Sonde

³⁶APCI-Sonde

Ionenquelle 134 / 157 Κ

Parameter-ID	Zugangs-ID	Positiver Ionenmodus			Negativer Ionenmodus			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
TEM ^{35,36}	TEM ^{35,36}	0	0	0	0	0	0	
		0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750	
OR	DP	100	100	100	-100	-100	-100	
(DP = OR)		0 bis 300	0 bis 300	0 bis 300	-300 bis 0	-300 bis 0	–300 bis 0	
QO	EP	10	10	10	-10	-10	-10	
(EP = -Q0)		2 bis 15	2 bis 15	2 bis 15	–15 bis –2	–15 bis –2	–15 bis –2	
IQ1	IQ1	Q0 + (-0,5)	Q0 + (-0,5)	Q0 + (-0,5)	Q0 + 0,5	Q0 + 0,5	Q0 + 0,5	
(IQ1 = Q0 + Offset)		–0,1 bis –2	–0,1 bis –2	–0,1 bis –2	0,1 bis 2	0,1 bis 2	0,1 bis 2	
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8	
(ST = Q0 + Offset)		–12 bis –5	–12 bis –5	-12 bis –5	12 bis 5	12 bis 5	12 bis 5	
RO1	IE1	1	-	1	-1	-	-1	
(IE1 = Q0 - RO1)		0 bis 3		0 bis 3	–3 bis 0		–3 bis 0	
IQ2	IQ2	Q0 + (-10)	Q0 + (-11)	Q0 + (-10)	Q0 + 10	Q0 + 10	Q0 + 10	
(ST = Q0 + Offset)		–30 bis –8	–30 bis –8	–30 bis –8	8 bis 30	8 bis 30	8 bis 30	
RO2	RO2	-20	-20	-	20	20	-	
		-	-		-	-		

Tabelle K-1 Parameter für Geräte der Serie 4500 (Fortsetzung)

Tests, Spezifikationen und Datenprotokoll RUO-IDV-05-7280-DE-C

Parameter-ID	Zugangs-ID	Pos	sitiver Ionenmo	er Ionenmodus		Negativer Ionenmodus	
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
RO2	CE	-	-	30	-	-	-30
(CE = QO - RO2)				5 bis 180			–180 bis –5
ST3	ST3	RO2 – 10	-	-	RO2 + 10	-	-
(ST3 = RO2 + Offset)		–30 bis –5			5 bis 30		
ST2	СХР	-	15	15	-	–15	-15
(CXP = RO2 - ST3)			0 bis 55	0 bis 55		–55 bis 0	–55 bis 0
RO3	RO3	-50	-	-	50	-	-
		Fest			Fest		
RO3	IE3	-	1	1	-	_1	-1
(IE3 = RO2 - RO3)			0 bis 5	0 bis 5		–5 bis 0	–5 bis 0
DF	DF	-200	-200	-200	200	200	200
		–300 bis 0	-300 bis 0	-300 bis 0	0 bis 300	0 bis 300	0 bis 300
CEM	CEM	2000	2000	2000	2000	2000	2000
		0 bis 3300	0 bis 3300	0 bis 3300	0 bis 3300	0 bis 3300	0 bis 3300
GS1	GS1	20	20	20	20	20	20
		0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90

Tabelle K-1 Parameter für Geräte der Serie 4500 (Fortsetzung)

Ionenquelle 136 / 157

Tabelle K-1 Parameter f Ger Year Ger

Parameter-ID	Zugangs-ID	Positiver Ionenmodus			Negativer Ionenmodus			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
GS2	GS2	0	0	0	0	0	0	
		0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	
IHT	IHT	150	150	150	150	150	150	
		0 bis 250	0 bis 250	0 bis 250	0 bis 250	0 bis 250	0 bis 250	
sdp ³⁷	sdp	1	1	1	1	1	1	
		1 oder 2	1 oder 2	1 oder 2	1 oder 2	1 oder 2	1 oder 2	

Tabelle K-2 Parameter für Systeme des Typs QTRAP[®] 4500 nur für LIT-Scan-Typen

Parameter-ID	Zugangs-ID	Positiver Ionenmodus	Negativer Ionenmodus
CAD	CAD	Hoch	Hoch
		Niedrig–Hoch	Niedrig–Hoch
AF2 ³⁸	AF2	0,100	0,100
		0 oder 0,2	0 oder 0,2
AF3	AF3	Masse-/Geschwindigkeitsabhängig	Masse-/Geschwindigkeitsabhängig
		0 bis 10	0 bis 10

³⁷DuoSpray[™]-Ionenquelle (1=TurboIonSpray-Sonde und 2=APCI-Sonde)

³⁸Nur MS/MS/MS

Parameter für Systeme der Serie 4500

Parameter-ID	Zugangs-ID	Positiver Ionenmodus	Negativer Ionenmodus	
EXB	EXB	Masse-/Geschwindigkeitsabhängig	Masse-/Geschwindigkeitsabhängig	
		–165 bis 0	0 bis 165	
CES	CES	0	0	
		0 bis 50	0 bis 50	
ROS	CE	10	-10	
(Q0 - ROS)		5 bis 180	–180 bis –5	

Tabelle K-2 Parameter für Systeme des Typs QTRAP[®] 4500 nur für LIT-Scan-Typen (Fortsetzung)

Parameter für Systeme der Serie 4000

Die erste Zahl unter jeder Scan-Methode steht für den voreingestellten Wert; der Zahlenbereich ist für jeden Parameter erreichbar.

Tabelle L-1 Parameter für Geräte der Serie 4000

Parameter-ID	Zugangs-ID	Positiver Ionenmodus Negativer Ionenmodus			odus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		10 bis 50	10 bis 50	10 bis 50	10 bis 50	10 bis 50	10 bis 50
CAD ³⁹	CAD	0	1	4	0	1	4
		-	0 bis 12	0 bis 10	-	0 bis 12	0 bis 12
CAD ⁴⁰	CAD	0	1	6	0	1	6
		-	0 bis 12	0 bis 10	-	0 bis 12	0 bis 12
IS ^{41,42}	IS ^{41,42}	5500	5500	5500	-4500	-4500	-4500
		0 bis 5500	0 bis 5500	0 bis 5500	-4500 bis 0	-4500 bis 0	–4500 bis 0

³⁹API 4000[™]-Systeme

⁴⁰4000 QTRAP[®]-Systeme

⁴¹Turbo V[™]-Ionenquelle

⁴²TurbolonSpray[®]-Sonde

Parameter-ID	Zugangs-ID	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
NC ⁴³	NC ⁴³	3	3	3	-3	-3	-3
		0 bis 5	0 bis 5	0 bis 5	–5 bis 0	–5 bis 0	–5 bis 0
TEM ^{42,43}	TEM ^{42, 43}	0	0	0	0	0	0
		0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750
OR	DP	20	20	20	-20	-20	-20
(DP=OR)		0 bis 400	0 bis 400	0 bis 400	–400 bis 0	–400 bis 0	-400 bis 0
Q0	EP	10	10	10	-10	-10	-10
(EP = -Q0)		2 bis 15	2 bis 15	2 bis 15	–15 bis –2	–15 bis –2	–15 bis –2
IQ1	IQ1	Q0 + (-1)	Q0 + (-1)	Q0 + (-1)	Q0 + 1	Q0 + 1	Q0 + 1
(IQ1 = Q0 + Offset)		–0,5 bis –2	–0,5 bis –2	–0,5 bis –2	0,5 bis 2	0,5 bis 2	0,5 bis 2
ST	ST	Q0 + (-5)	Q0 + (-5)	Q0 + (-5)	Q0 + 5	Q0 + 5	Q0 + 5
(ST = Q0 + Offset)		–7 bis –4	–7 bis –4	–7 bis –4	4 bis 7	4 bis 7	4 bis 7
RO1 (IE1 = 00 - RO1)	IE1	1 0.5 bis 2	-	1 0.5 bis 2	-1 -2 bis -0.5	-	-1 -2 bis -0.5
R01	RO1	_	00 + (-1)	_		00 + 1	_
(IE1 = Q0 + Offset)			-0,5 bis -2			0,5 bis 2	

Tabelle L-1 Parameter für Geräte der Serie 4000 (Fortsetzung)

⁴³APCI-Sonde

Ionenquelle 140 / 157

Parameter-ID	Zugangs-ID	Pe	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
IQ2 (IQ2 = Q0 + Offset)	IQ2	Q0+ (-8) -	Q0+ (-8) -	Q0+ (-8) -	Q0 + 8 -	Q0 + 8 -	Q0 + 8 -	
RO2	RO2	-60	-20	-	60	20	-	
		–145 bis 20	–145 bis –20		60 bis 100	20 bis 145		
RO2	CE	-	-	30	-	-	-30	
(CE = Q0 - RO2)				5 bis 130			–130 bis	
							-5	
ST3	ST3	-80	-	-	80	-	-	
		–80 bis 200			80 bis 200			
ST3	СХР	-	15	15	-	-15	-15	
(CXP = RO2 - ST3)			0 bis 55	0 bis 55		–55 bis 0	–55 bis 0	
RO3	RO3	-62	-	-	62	-	-	
		–60 bis 200			60 bis 200			
RO3	IE3	-	2	2	-	-1,5	-1,5	
(IE3 = RO2 - RO3)			–0,5 bis 5	–0,5 bis 5		-5 bis 0	–5 bis 0	
C2	C2	RO3 + 0	RO3 + 0	RO3 + 0	RO3 + 0	RO3 + 0	RO3 + 0	
		_	-	-	_	-	-	

Tabelle L-1 Parameter für Geräte der Serie 4000 (Fortsetzung)

Tests, Spezifikationen und Datenprotokoll RUO-IDV-05-7280-DE-C

Ionenquelle 141 / 157

Parameter-ID	Zugangs-ID	Po	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
DF	DF	0	0	0	0	0	0	
		-400 bis 0	–400 bis 0	–400 bis 0	0 bis 400	0 bis 400	0 bis 400	
CEM	CEM	1800	1800	1800	1800	1800	1800	
		500 bis 3297	500 bis 3297	500 bis 3297	500 bis 3297	500 bis 3297	500 bis 3297	
GS1	GS1	20	20	20	20	20	20	
		0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	
GS2	GS2	0	0	0	0	0	0	
		0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	
ihe ⁴⁴	ihe	1	1	1	1	1	1	
		0 oder 1	0 oder 1	0 oder 1	0 oder 1	0 oder 1	0 oder 1	
IHT	IHT	40	40	40	40	40	40	
		0 bis 250	0 bis 250	0 bis 250	0 bis 250	0 bis 250	0 bis 250	
svp ⁴⁵	svp	1	1	1	1	1	1	
		1 oder 2	1 oder 2	1 oder 2	1 oder 2	1 oder 2	1 oder 2	

Tabelle L-1 Parameter für Geräte der Serie 4000 (Fortsetzung)

 44 1 = EIN und 0 = AUS

⁴⁵DuoSpray[™]-Ionenquelle (1=TurboIonSpray[®]-Sonde und 2=APCI-Sonde)

Ionenquelle 142 / 157 Tests, Spezifikationen und Datenprotokoll RUO-IDV-05-7280-DE-C

Parameter-ID	Zugangs-ID	Positiver Ionenmodus	Negativer lonenmodus	
CAD	CAD	Hoch	Hoch	
		Niedrig–Hoch	Niedrig–Hoch	
AF2 ⁴⁶	AF2	100	100	
		0 bis 200	0 bis 200	
AF3	AF3	Masse-/Geschwindigkeitsabhängig	Masse-/Geschwindigkeitsabhängig	
		0 bis 5	0 bis 5	
EXB	EXB	Masse-/Geschwindigkeitsabhängig	Masse-/Geschwindigkeitsabhängig	
		-200 bis 0	0 bis 200	
CES	CES	0	0	
		–50 bis 50	–50 bis 50	
ROS	CE	30	-30	
(Q0 - ROS)		5 bis 130	–130 bis –5	

Tabelle L-2 Parameter für Systeme des Typs 4000 QTRAP[®] nur für LIT-Scan-Typen

⁴⁶Nur MS/MS/MS

Parameter für Systeme des Typs SCIEX Triple Quad[™] 3500

Die erste Zahl unter der Scan-Methode steht für den voreingestellten Wert. Der Zahlenbereich ist der für jeden Parameter zugängliche Bereich.

Tabelle M-1 Parameter für Systeme des Typs SCIEX Triple Quad[™] 3500

Parameter-ID	Zugangs-ID	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		10 bis 55	10 bis 55	10 bis 55	10 bis 55	10 bis 55	10 bis 55
CAD	CAD	0	6	Mittel (9)	0	6	Mittel (9)
		-	-	0 bis 12	-	-	0 bis 12
IS ^{47,48}	IS ^{47,47,48}	5500	5500	5500	-4500	-4500	-4500
		0 bis 5500	0 bis 5500	0 bis 5500	-4500 bis 0	–4500 bis 0	–4500 bis 0
NC ⁴⁹	NC ⁴⁹	3	3	3	-3	-3	-3
		0 bis 5	0 bis 5	0 bis 5	-5 bis 0	–5 bis 0	–5 bis 0

⁴⁷Turbo V[™]-Ionenquelle

⁴⁸TurbolonSpray[®]-Sonde

⁴⁹APCI-Sonde

Ionenquelle 144 / 157
Parameter-ID	Zugangs-ID	Positiver Ionenmodus		dus	Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
TEM ^{48,49}	TEM ^{48,49}	0	0	0	0	0	0
		0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750
OR	DP	100	100	100	-100	-100	-100
(DP = OR)		0 bis 300	0 bis 300	0 bis 300	–300 bis 0	–300 bis 0	–300 bis 0
QO	EP	10	10	10	-10	-10	-10
(EP = -Q0)		2 bis 15	2 bis 15	2 bis 15	–15 bis –2	–15 bis –2	–15 bis –2
IQ1	IQ1	Q0 + (-0,5)	Q0 + (-0,5)	Q0 + (-0,5)	Q0 + 0,5	Q0 + 0,5	Q0 + 0,5
(IQ1 = Q0 + Offset)		–0,1 bis –2	–0,1 bis –2	–0,1 bis –2	0,1 bis 2	0,1 bis 2	0,1 bis 2
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8
(ST = Q0 + Offset)		–12 bis –5	–12 bis –5	-12 bis –5	12 bis 5	12 bis 5	12 bis 5
RO1	IE1	1	-	1	-1	-	-1
(IE1 = Q0 - RO1)		0 bis 3		0 bis 3	–3 bis 0		–3 bis 0
IQ2	IQ2	Q0 + (-10)	Q0 + (-11)	Q0 + (-10)	Q0 + 10	Q0 + 10	Q0 + 10
(ST = Q0 + Offset)		–30 bis –8	–30 bis –8	–30 bis –8	8 bis 30	8 bis 30	8 bis 30
RO2	RO2	-20	-20	-	20	20	-
		-	-		_	-	

Tabelle M-1 Parameter für Systeme des Typs SCIEX Triple Quad[™] 3500 (Fortsetzung)

Parameter-ID Zugangs-ID		Pos	sitiver Ionenmo	dus	Neg	jativer lonenmo	nenmodus	
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
RO2	CE	-	-	30	-	-	-30	
(CE = Q0 - RO2)				5 bis 180			–180 bis –5	
ST3	ST3	RO2 – 10	-	-	RO2 + 10	-	-	
(ST3 = RO2 + Offset)		–30 bis –5			5 bis 30			
ST2	СХР	-	15	15	-	-15	-15	
(CXP = RO2 - ST3)			0 bis 55	0 bis 55		–55 bis 0	–55 bis 0	
RO3	RO3	-50	-	-	50	-	-	
		Fest			Fest			
RO3	IE3	-	1	1	-	-1	-1	
(IE3 = RO2 - RO3)			0 bis 5	0 bis 5		–5 bis 0	–5 bis 0	
DF	DF	-200	-200	-200	200	200	200	
		-300 bis 0	-300 bis 0	-300 bis 0	0 bis 300	0 bis 300	0 bis 300	
CEM	CEM	2000	2000	2000	2000	2000	2000	
		0 bis 3300	0 bis 3300	0 bis 3300	0 bis 3300	0 bis 3300	0 bis 3300	
GS1	GS1	20	20	20	20	20	20	
		0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	

Tabelle M-1 Parameter für Systeme des Typs SCIEX Triple Quad[™] 3500 (Fortsetzung)

Ionenquelle 146 / 157

Parameter-ID	Zugangs-ID	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
GS2	GS2	0	0	0	0	0	0
		0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90
IHT	ІНТ	150	150	150	150	150	150
		0 bis 250	0 bis 250	0 bis 250	0 bis 250	0 bis 250	0 bis 250

Tabelle M-1 Parameter für Systeme des Typs SCIEX Triple Quad[™] 3500 (Fortsetzung)

Parameter für Systeme der Serie 3200

Die erste Zahl unter jeder Scan-Methode steht für den voreingestellten Wert; der Zahlenbereich ist für jeden Parameter erreichbar.

Tabelle N-1 Parameter für Systeme der Serie 3200

Parameter-ID	Zugangs-ID	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		10 bis 50	10 bis 50	10 bis 50	10 bis 50	10 bis 50	10 bis 50
CAD ⁵⁰	0	2	3	0	2	3	
	Fest	Fest	0 bis 12	Fest	Fest	0 bis 12	
CAD ⁵¹	0	2	Mittel	0	2	Mittel	
	Fest	Fest	Niedrig, Mittel, Hoch	Fest	Fest	Niedrig, Mittel, Hoch	
IS ⁵²	IS ⁵²	5500	5500	5500	-4200	-4200	-4200
		0 bis 5500	0 bis 5500	0 bis 5500	–4500 bis 0	–4500 bis 0	–4500 bis 0

⁵⁰API 3200[™]-Systeme

⁵¹3200 QTRAP[®]-Systeme

⁵²Turbo V[™]-Ionenquelle

Ionenquelle 148 / 157

Parameter-ID	Zugangs-ID	Positi	Positiver Ionenmodus			gativer lonenmo	odus
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
IS 53	1S ⁵³	1000	1000	1000	-1000	-1000	-1000
		0 bis 5500	0 bis 5500	0 bis 5500	-4500 bis 0	-4500 bis 0	–4500 bis 0
IS 54	IS ⁽⁴⁾	1500	1500	1500	-1500	-1500	-1500
		0 bis 2500	0 bis 2500	0 bis 2500	–2500 bis 0	–2500 bis 0	–2500 bis 0
NC ⁵⁵	NC ⁵⁵	1	1	1	-1	-1	-1
		0 bis 5	0 bis 5	0 bis 5	–5 bis 0	–5 bis 0	–5 bis 0
NC ⁵⁶	NC ⁵⁶	1	3	3	-3	-3	-3
		0 bis 5	0 bis 5	0 bis 5	–5 bis 0	–5 bis 0	–5 bis 0
TEM ^{52,55,54}	TEM ^{53,55}	0	0	0	0	0	0
		0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750	0 bis 750
OR	DP	20	20	20	-20	-20	-20
(DP = OR)		0 bis 400	0 bis 400	0 bis 400	-400 bis 0	–400 bis 0	–400 bis 0

Tabelle N-1 Parameter f f vssteme der Serie 3200 (Fortsetzung)

⁵³NanoSpray[®]-Ionenquelle

⁵⁴PhotoSpray[®]-Ionenquelle

⁵⁵DuoSpray[™]-Ionenquelle (1=TurbolonSpray[®]-Sonde und 2=APCI-Sonde)

⁵⁶APCI-Sonde

⁵⁷TurboIonSpray[®]-Sonde

Tests, Spezifikationen und Datenprotokoll RUO-IDV-05-7280-DE-C Ionenquelle 149 / 157

Parameter-ID	Zugangs-ID	Positi	ver lonenmodu	s	Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
Q0	EP	10	10	10	-10	-10	-10
(EP = -Q0)		1 bis 12	1 bis 12	1 bis 12	–12 bis –1	–12 bis –1	–12 bis –1
IQ1	IQ1	Q0 + (-1)	Q0 + (-1)	Q0 + (-1)	Q0 + 1	Q0 + 1	Q0 + 1
(IQ1 = Q0 + Offset)		–2 bis –1	–2 bis –1	–2 bis –1	1 bis 2	1 bis 2	1 bis 2
ST	ST	Q0 + (-5)	Q0 + (-5)	Q0 + (-5)	Q0 + 5	Q0 + 5	Q0 + 5
(ST = Q0 + Offset)		–8 bis –2	–8 bis –2	–8 bis –2	2 bis 8	2 bis 8	2 bis 8
RO1 (IE1 = Q0 - RO1)	IE1	1 0,5 bis 2	-	1 0,5 bis 2	–1 –2 bis –0,5	-	–1 –2 bis –0,5
RO1	RO1	-	Q0 + (-2)	-	-	Q0 + 2	-
(IE1 = Q0 + Offset)			–2 bis –0,5			0,5 bis 2	
IQ2	CEP	Masseabhängig	-	Masseabhängig	Masseabhängig	-	Masseabhängig
(CEP = Q0 - IQ2)		0 bis 188		0 bis 188	–188 bis 0		–188 bis 0
IQ2	IQ2	-	RO2 + 0	-	-	RO2 + 0	-
(IQ2 = RO2 + Offset)			0 bis 2			-2 bis 0	
RO2	CE	-	-	30	-	-	-30
(CE = Q0 - RO2)				5 bis 130			–130 bis
							-5

Tabelle N-1 Parameter für Systeme der Serie 3200 (Fortsetzung)

Ionenquelle 150 / 157 Tests, Spezifikationen und Datenprotokoll RUO-IDV-05-7280-DE-C

Parameter-ID	Zugangs-ID	Ро	Positiver Ionenmodus			us Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
RO2	RO2	-100	-20	-	100	20	-	
		–150 bis 20	–130 bis –5		20 bis 150	5 bis 130		
IQ3	СХР	-	Masseabhängig	5	-	Masseabhängig	-5	
(CXP = RO2 - IQ3)			0 bis 58	0 bis 58		–58 bis 0	–58 bis 0	
IQ3	IQ3	-125	-	-	125	-	-	
		–200 bis –100			100 bis 200			
RO3	IE3	-	4	4	-	-4	-4	
(IE3 = RO2 - RO3)			0,5 bis 8	0,5 bis 8		–8 bis 0,5	–8 bis 0,5	
RO3	RO3	-150	-	-	150	-	-	
		–200 bis –100			150 bis 200			
EX	EX	-200	-200	-200	200	200	200	
		-	-	-	-	-	-	
DF	DF	-100	-100	-100	100	100	100	
		–400 bis 0	-400 bis 0	–400 bis 0	0 bis 400	0 bis 400	0 bis 400	
CEM	CEM	1800	1800	1800	1800	1800	1800	
		500 bis 3297	500 bis 3297	500 bis 3297	500 bis 3297	500 bis 3297	500 bis 3297	

Tabelle N-1 Parameter für Systeme der Serie 3200 (Fortsetzung)

Parameter-ID Zugangs-ID		Positi	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
GS1	GS1	20	20	20	20	20	20	
		0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	
GS2	GS2	0	0	0	0	0	0	
		0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	0 bis 90	
ihe⁵ ⁸	ihe	1	1	1	1	1	1	
		0 oder 1	0 oder 1	0 oder 1	0 oder 1	0 oder 1	0 oder 1	
C2	C2	0	0	0	0	0	0	
		-	_	-	-	-	-	
XA3	ХАЗ	0	0	0	0	0	0	
		-	-	-	-	-	-	
XA2	XA2	0	0	0	0	0	0	
		-	-	-	-	-	-	

Tabelle N-1 Parameter für Systeme der Serie 3200 (Fortsetzung)

 58 1 = EIN und 0 = AUS

Ionenquelle 152 / 157

Parameter-ID	Zugangs-ID	Positiver Ionenmodus			Negativer Ionenmodus		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
IHT ⁵³	IHT	40	40	40	40	40	40
		0 bis 250	0 bis 250	0 bis 250	0 bis 250	0 bis 250	0 bis 250
svp ⁵⁹	svp	1	1	1	1	1	1
		1 oder 2	1 oder 2	1 oder 2	1 oder 2	1 oder 2	1 oder 2

Tabelle N-2 Parameter für Systeme des Typs 3200 QTRAP[®] nur für LIT-Scan-Typen

Parameter-ID	Zugangs-ID	Positiver Ionenmodus	Negativer Ionenmodus
CAD	CAD	Hoch	Hoch
		Niedrig-Mittel-Hoch	Niedrig–Hoch
FI2	CEP	Masse-/Geschwindigkeitsabhängig	Masse-/Geschwindigkeitsabhängig
		0 bis 188	–188 bis 0
ROS	CE	30	-30
(Q0 – RO2)		5 bis 130	–5 bis –130
AF2 ⁶⁰	AF2	100	100
		0 bis 200	0 bis 200

⁵⁹DuoSpray[™]-Ionenquelle (1=TurbolonSpray[®]-Sonde und 2=APCI-Sonde)

⁶⁰Nur MS/MS/MS

Parameter-ID	Zugangs-ID	Positiver Ionenmodus	Negativer Ionenmodus
AF3	AF3	Masse-/Geschwindigkeitsabhängig	Masse-/Geschwindigkeitsabhängig
		0 bis 5	0 bis 5
EXB	EXB	Masse-/Geschwindigkeitsabhängig	Masse-/Geschwindigkeitsabhängig
		–200 bis 0	0 bis 200
DF	DF	-400	400
		-	-
C2B	C2B	Masse-/Geschwindigkeitsabhängig	Masse-/Geschwindigkeitsabhängig
		–500 bis 500	–500 bis 500
CES	CES	0	0
		–50 bis 50	-50 bis 50

Tabelle N-2 Parameter für Systeme des Typs 3200 QTRAP[®] nur für LIT-Scan-Typen (Fortsetzung)

Massen für [Glu¹]-Fibrinopeptid B

Ladung	(M+nH)n ⁺ Monoisotopisch m/z
+1	1570,6768
+2	785,8421*
+3	524,2305*
+4	393,4247
+5	—
+6	—

Tabelle O-1 [Glu1]-Fibrinopeptid B (Monoisotopisches Molekulargewicht, 1569,6696 Da)

* Anzeige häufiger beobachteter Ladungszustände.

Tabelle O-2 Enthält die genauen monoisotopischen Massen für die theoretischen Spaltungen von [Glu1]-Fibrinopeptid B, wie für den positiven Ionenmodus berechnet.

b-Ionen		y-lonen	
m/z	Fragment	m/z	Fragment
_	—	1570,6768	EGVNDNEEGFFSAR
130,0499	E	1441,6342	GVNDNEEGFFSAR
187,0713	EG	1384,6128	VNDNEEGFFSAR
286,1397	EGV	1285,5444	NDNEEGFFSAR
400,1827	EGVN	1171,5014	DNEEGFFSAR
515,2096	EGVND	1056,4745	NEEGFFSAR
629,2525	EGVNDN	942,4316	EEGFFSAR
758,2951	EGVNDNE	813,3890	EGFFSAR
887,3377	EGVNDNEE	684,3464	GFFSAR
944,3592	EGVNDNEEG	627,3249	FFSAR
1091,4276	EGVNDNEEGF	480,2565	FSAR
1238,4960	EGVNDNEEGFF	333,1881	SAR

Tabelle O-2 Theoretische Fragmentionen von [Glu1]-Fibrinopeptid B

b-lonen		y-lonen	
1325,5281	EGVNDNEEGFFS	246,1561	AR
1396,5652	EGVNDNEEGFFSA	175,1190	R
1552,6663	EGVNDNEEGFFSAR	_	—

Tabelle O-2 Theoretische	Fragmentionen vo	n [Glu1]-Fibrinone	entid B (Fortsetzung)
Tabelle 0-2 medieusche	riaginentionen vo	n [olu i]-i ibrillope	plia b (i oi iseizung)

Zubereitung einer verdünnten Reserpin-Lösung 60:1 (10 pg/µl)

Befolgen Sie dieses Verfahren, um die Reserpin-Lösung aus Reserpin 1 pmol/µl (PN 4405236) herzustellen.

- 1. Bereiten Sie eine Stammlösung, indem Sie 4,0 ml verdünntes Lösungsmittel in die Ampulle geben.
- 2. Verschließen Sie das Fläschchen und mischen Sie den Inhalt vorsichtig, oder geben Sie die Ampulle in ein Ultraschallbad, um das Material aufzulösen.

In diesem Schritt werden 1 pmol/µl Reserpin-Lösung hergestellt.

- 3. Geben Sie 1 ml einer Reserpin-Stammlösung in eine saubere Ampulle und fügen Sie 5 ml verdünntes Lösungsmittel hinzu.
- 4. Mischen Sie 1 ml der 6:1-Verdünnung mit 9 ml des Verdünnungslösungsmittels.

In diesem Schritt wird eine 60:1 Reserpin-Lösung hergestellt.