

Ion Source

for Triple Quadrupole and QTRAP Systems

Tests, Specifications, and Data Log

This document is provided to customers who have purchased SCIEX equipment to use in the operation of such SCIEX equipment. This document is copyright protected and any reproduction of this document or any part of this document is strictly prohibited, except as SCIEX may authorize in writing.

Software that may be described in this document is furnished under a license agreement. It is against the law to copy, modify, or distribute the software on any medium, except as specifically allowed in the license agreement. Furthermore, the license agreement may prohibit the software from being disassembled, reverse engineered, or decompiled for any purpose. Warranties are as stated therein.

Portions of this document may make reference to other manufacturers and/or their products, which may contain parts whose names are registered as trademarks and/or function as trademarks of their respective owners. Any such use is intended only to designate those manufacturers' products as supplied by SCIEX for incorporation into its equipment and does not imply any right and/or license to use or permit others to use such manufacturers' and/or their product names as trademarks.

SCIEX warranties are limited to those express warranties provided at the time of sale or license of its products and are SCIEX's sole and exclusive representations, warranties, and obligations. SCIEX makes no other warranty of any kind whatsoever, expressed or implied, including without limitation, warranties of merchantability or fitness for a particular purpose, whether arising from a statute or otherwise in law or from a course of dealing or usage of trade, all of which are expressly disclaimed, and assumes no responsibility or contingent liability, including indirect or consequential damages, for any use by the purchaser or for any adverse circumstances arising therefrom.

For research use only. Not for use in diagnostic procedures.

AB Sciex is doing business as SCIEX.

The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners.

AB SCIEX[™] is being used under license.

© 2018 AB Sciex

AB Sciex Pte. Ltd. Blk 33, #04-06 Marsiling Ind Estate Road 3 Woodlands Central Indus. Estate. SINGAPORE 739256

Contents

1 IonDrive [™] Turbo V Ion Source Tests	5
Prepare for the Test	6
Test the TurbolonSpray [®] Probe	7
Test the APCI Probe	9
2 Turbo V [™] Ion Source Tests	12
Prepare for the Test	13
Test the Ion Source on Triple Quadrupole and QTRAP [®] Systems	15
Test the TurbolonSpray [®] Probe	15
Test the APCI Probe	17
Test the Ion Source on TripleTOF [®] Systems	19
Prepare the Test Solution	19
Test the TurbolonSpray [®] Probe	19
Test the APCI Probe	21
3 DuoSpray TM Ion Source Tests	24
Prepare for the Test	25
Test the Ion Source on TripleTOF [®] Systems	27
Prepare the Test Solution	27
Test the TurbolonSpray [®] Probe	
Test the APCI Probe	
Test the Ion Source on Triple Quadrupole and QTRAP [®] Systems	
Test the TurbolonSpray Probe	
Test the APCI Probe	36
4 NanoSpray [®] Ion Source Tests	
Prepare for the Test	40
Prepare the [Glu ¹]-Fibrinopeptide B Dilution	42
Test the Ion Source on TripleTOF [®] Systems	43
Test and Calibrate in TOF MS Mode	44
Test and Calibrate in Product Ion Mode (High Sensitivity) (5600/5600+	
and 6600 Systems Only)	51
Test and Calibrate in Product Ion Mode	55
Test the Ion Source on Triple Quadrupole and QTRAP Systems	58
Test in Q1 Mode	59
Test in Q3 Mode	65
Test and Calibrate in EPI Mode (QTRAP Systems Only)	66
Test the Ion Source on 3200 Series Systems	73
Prepare 2 mL of Renin Mixture (500 fmol/µL)	74
Test in Q1 and MS2 Modes	74

Contents

Test in EPI Mode (3200 QTRAP [®] Systems Only)	
5 PhotoSpray Ion Source Tests	79 80
Test the Ion Source	
6 Troubleshooting Tips	84
A Data Log: IonDrive TM Turbo V Ion Source	
System Information	
Signoff	
Comments and Exceptions	
B Data Log: Turbo V [™] Ion Source	
System Information	
Comments and Exceptions	
C Data Log: DuoSprav TM Ion Source	
System Information	94
Signoff	
Comments and Exceptions	
D Data Log: NanoSpray Ion Source	
System Information	
Comments and Exceptions	
E Data Log: PhotoSpray [®] Ion Source	
System Information	
Signoff	
Comments and Exceptions	
F TripleTOF [®] System Parameters	
G 6500 and 6500 ⁺ Series System Parameters	
H 5500 Series System Parameters	
I API 5000 [™] System Parameters	
J 4500 Series System Parameters	
K 4000 Series System Parameters	
L SCIEX Triple Quad [™] 3500 System Parameters	
M 3200 Series System Parameters	
N Masses for [Glu ¹]-Fibrinopeptide B	134
O Prepare a Reserpine Dilution 60:1 (10 pg/µL)	

IonDrive[™] Turbo V Ion Source Tests

These tests apply to the IonDrive[™] Turbo V ion source installed on a 6500 or 6500⁺ series system.

Run these tests in any of the following situations:

- When a new ion source is installed.
- After major maintenance to the ion source.
- Whenever the performance of the ion source must be assessed, either before starting a project or as part of a standard operating procedure.

WARNING! Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Use the ion source only if you have knowledge of and training in the proper use, containment, and evacuation of toxic or injurious materials used with the ion source.

WARNING! Puncture Hazard, Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Discontinue use of the ion source if the ion source window is cracked or broken and then contact a SCIEX Field Service Employee (FSE). Any toxic or injurious materials introduced into the equipment will be present in the source exhaust output. Dispose of sharps following established laboratory safety procedures.

WARNING! Toxic Chemical Hazard. Wear personal protective equipment, including a laboratory coat, gloves, and safety glasses, to avoid skin or eye exposure.

WARNING! Ionizing Radiation Hazard, Biohazard, Electrical Shock Hazard, or Toxic Chemical Hazard. In the event of a chemical spill, review product Safety Data Sheets for specific instructions. Make sure that the system is in Standby mode before cleaning a spill near the ion source. Use appropriate personal protective equipment and absorbent wipes to contain the spill and dispose of it following local regulations.

Required Materials

- Mobile phase solvent: 70:30 acetonitrile:water solution
- Test Solution: 0.0167 pmol/µL (equivalent to 10 pg/µL) reserpine. Use the pre-diluted 0.0167 pmol/µL reserpine solution included in the SCIEX Standard Chemical Kit (PN 4406127).
- HPLC pump (for mobile phase)
- Manual injector (8125 Rheodyne or equivalent) with a 5 µL loop or an autosampler set up for 5 µL injections
- PEEK tubing 1/16-inch outside diameter (o.d.), 0.005-inch inside diameter (i.d.)
- Ion source with a probe installed
- Syringe 250 µL to 1000 µL
- Powder-free gloves (nitrile or neoprene is recommended)
- Safety glasses
- Lab coat

Note: All test solutions must be kept refrigerated. If they are left out of the refrigerator for longer than 48 hours, then discard them and use new solutions.

Prepare for the Test

WARNING! Electrical Shock Hazard. Avoid contact with the high voltages applied to the ion source during operation. Put the system in Standby mode before adjusting the sample tubing or other equipment near the ion source.

- When installing a new ion source, make sure that the mass spectrometer is performing to specifications with the existing ion source.
- Install the ion source on the mass spectrometer.
- Make sure that the ion source is fully optimized. Refer to the appropriate ion source *Operator Guide*.
- Refer to all applicable Safety Data Sheets for any necessary precautions before handling chemical solutions or solvents.
- Make sure that the users are sufficiently trained on mass spectrometer operation and safety procedures.
- Install the probe to be tested.
- Connect the grounding union on the ion source to a pump, through a manual injector equipped with a 5 μL loop, or to an autosampler.

Refer to Figure 1-1.

Figure 1-1 LC Pump Configuration

ltem	Description
1	Pump for the flow inlet
2	Injector or autosampler
3	lon source

Test the TurbolonSpray[®] Probe

WARNING! Hot Surface Hazard. Let the ion source cool for at least 90 minutes before starting any maintenance procedures. Surfaces of the ion source become hot during operation.

CAUTION: Potential System Damage. Do not introduce any solvent flow until after the ion source has reached the correct temperature.

Refer to the ion source Operator Guide for information about installing or optimizing the ion source.

- 1. Configure the HPLC pump to deliver 0.5 mL/min of the mobile phase.
- 2. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 3. Open a previously optimized method or set the method parameters as shown in Table 1-1.

Table 1-1 Method Parameters

Parameter	Value
MS Parameters	
Scan Mode	MRM
Q1	609.3
Q3	195.1
Scan Time (seconds)	0.200
Duration (minutes)	10
Source/Gas Parameters	
Curtain Gas [™] flow (CUR)	30 (or as optimized)
Temperature (TEM)	700 (or as optimized)
Ion Source Gas 1 (GS1)	60 (or as optimized)
Ion Source Gas 2 (GS2)	70 (or as optimized)
IonSpray Voltage (IS)	4500 (or as optimized)
Compound Parameters	
Declustering Potential (DP)	100 (or as optimized)
Collision Energy (CE)	45 (or as optimized)
Collision Exit Potential (CXP)	As optimized

4. Click **Start** to run the method.

WARNING! Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Make sure that the electrode protrudes beyond the tip of the probe, to prevent hazardous vapors from escaping from the source. The electrode must not be recessed within the probe.

CAUTION: Potential System Damage. Optimize using the highest possible value for the Curtain Gas[™] flow rate to avoid contaminating the mass spectrometer.

- 5. Click **Acquire** to begin collecting data.
- 6. Perform three 5 μ L injections of the reserpine solution.

Tip! We recommend that the 5 μ L loop be overfilled with 30 μ L to 40 μ L of the solution.

- 7. Print the results.
- 8. Average the three intensities of the ions and then record the result in the Data Log.
- 9. Confirm that the average intensity is acceptable. Refer to Data Log: IonDrive[™] Turbo V Ion Source.

If the result is not acceptable, refer to Troubleshooting Tips.

10. After completing the tests, stop the LC pump, set **TEM** to 0, and then let the probe cool.

Test the APCI Probe

WARNING! Hot Surface Hazard. Let the ion source cool for at least 90 minutes before starting any maintenance procedures. Surfaces of the ion source become hot during operation.

CAUTION: Potential System Damage. Do not introduce any solvent flow until after the ion source has reached the correct temperature.

Refer to the ion source Operator Guide for information about installing or optimizing the ion source.

- 1. Configure the HPLC pump to deliver 1 mL/min of the mobile phase.
- 2. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 3. Open a previously optimized method or set the method parameters as shown in Table 1-2.

Table 1-2 Method Parameters

Parameter	Value
MS Parameters	
Scan Mode	MRM
Q1	609.3

Table 1-2 Method Parameters (continued)

Parameter	Value
Q3	195.1
Scan Time (seconds)	0.200
Duration (minutes)	10
Source/Gas Parameters	<u>^</u>
Curtain Gas [™] flow (CUR)	30 (or as optimized)
CAD Gas	9 (or as optimized)
Nebulizer Current (NC)	3 (or as optimized)
Temperature (TEM)	425
lon Source Gas 1 (GS1)	70 (or as optimized)
Compound Parameters	^
Declustering Potential (DP)	100 (or as optimized)
Collision Energy (CE)	45 (or as optimized)
Collision Exit Potential (CXP)	As optimized

4. Click **Start** to run the method.

WARNING! Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Make sure that the electrode protrudes beyond the tip of the probe, to prevent hazardous vapors from escaping from the source. The electrode must not be recessed within the probe.

CAUTION: Potential System Damage. Optimize using the highest possible value for the Curtain Gas[™] flow rate to avoid contaminating the mass spectrometer.

- 5. Click **Acquire** to begin collecting data.
- 6. Perform three 5 μL injections of the reserpine solution.

Tip! We recommend that the 5 μ L loop be overfilled with 30 μ L to 40 μ L of the solution.

7. Print the results.

- 8. Average the three intensities of the ions and then record the result in the Data Log.
- 9. Confirm that the average intensity is acceptable. Refer to Data Log: IonDrive[™] Turbo V Ion Source.

If the result is not acceptable, refer to Troubleshooting Tips.

10. After completing the tests, stop the LC pump, set **TEM** to 0, and then let the probe cool.

Turbo V[™] Ion Source Tests

Run these tests in any of the following situations:

- When a new ion source is installed.
- After major maintenance to the ion source.
- Whenever the performance of the ion source must be assessed, either before starting a project or as part of a standard operating procedure.

WARNING! Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Use the ion source only if you have knowledge of and training in the proper use, containment, and evacuation of toxic or injurious materials used with the ion source.

WARNING! Puncture Hazard, Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Discontinue use of the ion source if the ion source window is cracked or broken and then contact a SCIEX Field Service Employee (FSE). Any toxic or injurious materials introduced into the equipment will be present in the source exhaust output. Dispose of sharps following established laboratory safety procedures.

WARNING! Toxic Chemical Hazard. Wear personal protective equipment, including a laboratory coat, gloves, and safety glasses, to avoid skin or eye exposure.

WARNING! Ionizing Radiation Hazard, Biohazard, Electrical Shock Hazard, or Toxic Chemical Hazard. In the event of a chemical spill, review product Safety Data Sheets for specific instructions. Make sure that the system is in Standby mode before cleaning a spill near the ion source. Use appropriate personal protective equipment and absorbent wipes to contain the spill and dispose of it following local regulations.

Required Materials

- Mobile phase solvent: 70:30 acetonitrile:water solution
- Test Solution:
 - For 4500, 5500, 6500, and 6500⁺ systems, use the pre-diluted 0.0167 pmol/µL reserpine solution included in the SCIEX Standard Chemical Kit (PN 4406127).
 - For 3200 and 3500 systems, use the pre-diluted 0.167 pmol/µL reserpine solution included in the SCIEX Standard Chemical Kit (PN 4406127).
 - For TripleTOF[®] systems, prepare the test solution from the 0.167 pmol/µL reserpine solution and the standard diluent provided in the SCIEX TripleTOF[®] System Chemical Kit (PN 4456736)

A vortex mixer is required.

- HPLC pump (for mobile phase)
- Manual injector (8125 Rheodyne or equivalent) with a 5 µL loop or an autosampler set up for 5 µL injections
- PEEK tubing 1/16-inch outside diameter (o.d.), 0.005-inch inside diameter (i.d.)
- Ion source with a probe installed
- Syringe 250 µL to 1000 µL
- Powder-free gloves (nitrile or neoprene is recommended)
- Safety glasses
- Lab coat

Note: All test solutions must be kept refrigerated. If they are left out of the refrigerator for longer than 48 hours, then discard them and use new solutions.

CAUTION: Potential Wrong Result. Do not use expired solutions.

Prepare for the Test

WARNING! Electrical Shock Hazard. Avoid contact with the high voltages applied to the ion source during operation. Put the system in Standby mode before adjusting the sample tubing or other equipment near the ion source.

- When installing a new ion source, make sure that the mass spectrometer is performing to specifications with the existing ion source.
- Install the ion source on the mass spectrometer.

- Make sure that the ion source is fully optimized. Refer to the appropriate ion source *Operator Guide*.
- Refer to all applicable Safety Data Sheets for any necessary precautions before handling chemical solutions or solvents.
- Install the probe to be tested.
- Connect the grounding union on the ion source to a pump, through a manual injector equipped with a 5 μL loop, or to an autosampler.

Refer to Figure 2-1.

Figure 2-1 LC Pump Configuration

ltem	Description
1	Pump for the flow inlet
2	Injector or autosampler
3	lon source

Test the Ion Source on Triple Quadrupole and QTRAP[®] Systems

Test the TurbolonSpray[®] Probe

WARNING! Hot Surface Hazard. Let the ion source cool for at least 30 minutes before starting any maintenance procedures. Surfaces of the ion source become hot during operation.

CAUTION: Potential System Damage. Do not introduce any solvent flow until after the ion source has reached the correct temperature.

Refer to the ion source *Operator Guide* for information about installing or optimizing the ion source.

- 1. Configure the HPLC pump to deliver 0.2 mL/min of the mobile phase.
- 2. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 3. Open a previously optimized method or set the method parameters as shown in Table 2-1.

Table 2-1 Method Parameters

Parameter	Value
MS Parameters	
Scan Mode	MRM
Q1	609.3 (or as optimized)
Q3	195.1 (or as optimized)
Scan Time (seconds)	0.200
Duration (minutes)	10
Source/Gas Parameters	
Curtain Gas [™] flow (CUR)	20 (or as optimized)
Temperature (TEM)	700 (or as optimized)
lon Source Gas 1 (GS1)	60 (or as optimized)
Ion Source Gas 2 (GS2)	70 (or as optimized)
IonSpray [™] Voltage (IS)	4500 (or as optimized)

Table 2-1 Method Parameters (continue

Parameter	Value
Compound Parameters	
Declustering Potential (DP)	100 (or as optimized)
Collision Energy (CE)	45 (or as optimized)
Collision Exit Potential (CXP)	As optimized

4. Click **Start** to run the method.

WARNING! Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Make sure that the electrode protrudes beyond the tip of the probe, to prevent hazardous vapors from escaping from the source. The electrode must not be recessed within the probe.

CAUTION: Potential System Damage. Optimize using the highest possible value for the Curtain Gas[™] flow rate to avoid contaminating the mass spectrometer.

- 5. Perform several 5 µL injections of the reserpine solution while optimizing the following for maximum signal intensity and stability:
 - The vertical and horizontal position of the probe
 - The electrode tip extension
 - CUR, TEM, GS1, GS2, and IS
- 6. Click Acquire to begin collecting data.
- 7. Perform three 5 μ L injections of the reserpine solution.

Tip! We recommend that the 5 μ L loop be overfilled with 30 μ L to 40 μ L of the solution.

- 8. Print the results.
- 9. Average the three intensities of the ions and then record the result in the Data Log.
- 10. Confirm that the average intensity is acceptable. Refer to Data Log: Turbo V[™] Ion Source.

If the result is not acceptable, then refer to Troubleshooting Tips.

11. After completing the tests, stop the LC pump, set **TEM** to 0, and then let the probe cool.

Test the APCI Probe

WARNING! Hot Surface Hazard. Let the ion source cool for at least 30 minutes before starting any maintenance procedures. Surfaces of the ion source become hot during operation.

CAUTION: Potential System Damage. Do not introduce any solvent flow until after the ion source has reached the correct temperature.

Refer to the ion source *Operator Guide* for information about installing or optimizing the ion source.

- 1. Configure the HPLC pump to deliver 1 mL/min of the mobile phase.
- 2. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 3. Open a previously optimized method or set the method parameters as shown in Table 2-2.

Parameter	Value
MS Parameters	
Scan Mode	MRM
Q1	609.3 (or as optimized)
Q3	195.1 (or as optimized)
Scan Time (seconds)	0.200
Duration (minutes)	10
Source/Gas Parameters	
Curtain Gas [™] flow (CUR)	20 (or as optimized)
CAD Gas	9 (or as optimized)
Nebulizer Current (NC)	3 (or as optimized)
Temperature (TEM)	425
lon Source Gas 1 (GS1)	70 (or as optimized)
Compound Parameters	
Declustering Potential (DP)	100 (or as optimized)

Table 2-2 Method Parameters

Table 2-2 Method Parameters (continued)

Parameter	Value
Collision Energy (CE)	45 (or as optimized)
Collision Exit Potential (CXP)	As optimized

4. Click **Start** to run the method.

WARNING! Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Make sure that the electrode protrudes beyond the tip of the probe, to prevent hazardous vapors from escaping from the source. The electrode must not be recessed within the probe.

CAUTION: Potential System Damage. Optimize using the highest possible value for the Curtain Gas[™] flow rate to avoid contaminating the mass spectrometer.

- 5. Perform several 5 µL injections of the reserpine solution while optimizing the following for maximum signal intensity and stability:
 - The vertical and horizontal position of the probe
 - The electrode tip extension
 - CUR, GS1, and NC
- 6. Click **Acquire** to begin collecting data.
- 7. Perform three 5 μ L injections of the reserpine solution.

Tip! We recommend that the 5 μ L loop be overfilled with 30 μ L to 40 μ L of the solution.

- 8. Print the results.
- 9. Average the three intensities of the ions and then record the result in the Data Log.
- 10. Confirm that the average intensity is acceptable. Refer to Data Log: Turbo V[™] Ion Source.

If the result is not acceptable, then refer to Troubleshooting Tips.

11. After completing the tests, stop the LC pump, set **TEM** to 0, and then let the probe cool.

Test the Ion Source on TripleTOF[®] Systems

Note: Specifications are not available for the TripleTOF[®] 4600 system. The recommended ion source for TripleTOF[®] systems is the DuoSpray[™] ion source.

Prepare the Test Solution

- 1. Combine 100 μ L of the 0.167 pmol/ μ L reserpine solution and 900 μ L of the standard diluent.
- 2. Mix using a vortex mixer for 30 seconds.

This step produces the 0.0167 pmol/ μ L reserpine solution.

Test the TurbolonSpray[®] Probe

WARNING! Hot Surface Hazard. Let the ion source cool for at least 30 minutes before starting any maintenance procedures. Surfaces of the ion source become hot during operation.

CAUTION: Potential System Damage. Do not introduce any solvent flow until after the ion source has reached the correct temperature.

Refer to the ion source Operator Guide for information about installing or optimizing the ion source.

- 1. Configure the HPLC pump to deliver 0.2 mL/min of the mobile phase.
- 2. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 3. Open a previously optimized method or set the method parameters as shown in Table 2-3.

Table 2-3 Method Parameters

Parameter	Value	
MS Parameters		
Scan Mode	Product Ion	
High Sensitivity (5600/5600+ and 6600 systems only)	On	
Product Of	609.2807	
TOF Masses (Da)	150 to 650	

Parameter	Value	
Accumulation time (seconds)	0.200	
Duration (minutes)	10	
Source/Gas Parameters		
Curtain Gas [™] flow (CUR)	20	
Temperature (TEM)	700	
Ion Source Gas 1 (GS1)	50	
Ion Source Gas 2 (GS2)	50	
IonSpray Voltage Floating (ISVF)	5000	
Compound Parameters		
Declustering Potential (DP)	100	
Collision Energy (CE)	45	
Resolution Parameters		
Q1 Resolution	Unit	

4. Click **Start** to run the method.

WARNING! Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Make sure that the electrode protrudes beyond the tip of the probe, to prevent hazardous vapors from escaping from the source. The electrode must not be recessed within the probe.

CAUTION: Potential System Damage. Optimize using the highest possible value for the Curtain Gas[™] flow rate to avoid contaminating the mass spectrometer.

- 5. Perform several 5 μL injections of the 0.0167 pmol/μL reserpine solution while optimizing the following for maximum signal intensity and stability:
 - The vertical and horizontal position of the probe
 - The electrode tip extension
 - CUR, TEM, GS1, GS2, and ISVF

- 6. Click **Acquire** to begin collecting data.
- 7. Perform three 5 μ L injections of the reserpine solution.

Tip! We recommend that the 5 μ L loop be overfilled with 30 μ L to 40 μ L of the solution.

- 8. Print the results.
- 9. Average the three intensities of the ions and then record the result in the Data Log.
- 10. Confirm that the average intensity is acceptable. Refer to Data Log: Turbo V[™] Ion Source.

If the result is not acceptable, refer to Troubleshooting Tips.

11. After completing the tests, stop the LC pump, set **TEM** to 0, and then let the probe cool.

Test the APCI Probe

WARNING! Hot Surface Hazard. Let the ion source cool for at least 30 minutes before starting any maintenance procedures. Surfaces of the ion source become hot during operation.

CAUTION: Potential System Damage. Do not introduce any solvent flow until after the ion source has reached the correct temperature.

Refer to the ion source Operator Guide for information about installing or optimizing the ion source.

- 1. Configure the HPLC pump to deliver 1 mL/min of the mobile phase.
- 2. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 3. Open a previously optimized method or set the method parameters as shown in Table 2-4.

Table 2-4 Method Parameters

Parameter	Value	
MS Parameters		
Scan Mode	Product Ion	
High Sensitivity (5600/5600+ and 6600 systems only)	On	
Product Of	609.2807	
TOF Masses (Da)	150 to 650	
Accumulation time (seconds)	0.200	

Table 2-4 Method Parameters (Continued)	Table	2-4	Method	Parameters	(continued)
---	-------	-----	--------	------------	-------------

Parameter	Value		
Duration (minutes)	10		
Source/Gas Parameters			
Curtain Gas [™] flow (CUR)	20 (or as optimized)		
Temperature (TEM)	425		
Ion Source Gas 1 (GS1)	70 (or as optimized)		
Nebulizer Current (NC)	3 (or as optimized)		
Compound Parameters			
Declustering Potential (DP)	100		
Collision Energy (CE)	45		
Resolution Parameters			
Q1 Resolution	Unit		

4. Click **Start** to run the method.

WARNING! Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Make sure that the electrode protrudes beyond the tip of the probe, to prevent hazardous vapors from escaping from the source. The electrode must not be recessed within the probe.

CAUTION: Potential System Damage. Optimize using the highest possible value for the Curtain Gas[™] flow rate to avoid contaminating the mass spectrometer.

- 5. Perform several 5 µL injections of the reserpine solution while optimizing the following for maximum signal intensity and stability:
 - The vertical and horizontal position of the probe
 - The electrode tip extension
 - CUR, GS1, and NC
- 6. Click **Acquire** to begin collecting data.
- 7. Perform three 5 μ L injections of the reserpine solution.

Tip! We recommend that the 5 μ L loop be overfilled with 30 μ L to 40 μ L of the solution.

- 8. Print the results.
- 9. Average the three intensities of the ions and then record the result in the Data Log.
- 10. Confirm that the average intensity is acceptable. Refer to Data Log: Turbo V^{TM} Ion Source.

If the result is not acceptable, refer to Troubleshooting Tips.

11. After completing the tests, stop the LC pump, set **TEM** to 0, and then let the probe cool.

DuoSpray[™] Ion Source Tests

3

Run these tests in any of the following situations:

- When a new ion source is installed.
- After major maintenance to the ion source.
- Whenever the performance of the ion source must be assessed, either before starting a project or as part of a standard operating procedure.

WARNING! Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Use the ion source only if you have knowledge of and training in the proper use, containment, and evacuation of toxic or injurious materials used with the ion source.

WARNING! Puncture Hazard, Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Discontinue use of the ion source if the ion source window is cracked or broken and then contact a SCIEX Field Service Employee (FSE). Any toxic or injurious materials introduced into the equipment will be present in the source exhaust output. Dispose of sharps following established laboratory safety procedures.

WARNING! Toxic Chemical Hazard. Wear personal protective equipment, including a laboratory coat, gloves, and safety glasses, to avoid skin or eye exposure.

WARNING! Ionizing Radiation Hazard, Biohazard, Electrical Shock Hazard, or Toxic Chemical Hazard. In the event of a chemical spill, review product Safety Data Sheets for specific instructions. Make sure that the system is in Standby mode before cleaning a spill near the ion source. Use appropriate personal protective equipment and absorbent wipes to contain the spill and dispose of it following local regulations.

Required Materials

- Mobile phase solvent: 70:30 acetonitrile:water solution
- Test Solution:
 - For 4500, 5500, 6500, and 6500⁺ systems, use the pre-diluted 0.0167 pmol/µL reserpine solution included in the SCIEX Standard Chemical Kit (PN 4406127).
 - For 3200 and 3500 systems, use the pre-diluted 0.167 pmol/µL reserpine solution included in the SCIEX Standard Chemical Kit (PN 4406127).
 - For TripleTOF[®] systems, prepare the test solution from the 0.167 pmol/µL reserpine solution and the standard diluent provided in the SCIEX TripleTOF[®] System Chemical Kit (PN 4456736)

A vortex mixer is required.

- HPLC pump (for mobile phase)
- Manual injector (8125 Rheodyne or equivalent) with a 5 µL loop or an autosampler set up for 5 µL injections
- PEEK tubing 1/16-inch outside diameter (o.d.), 0.005-inch inside diameter (i.d.)
- Ion source with a probe installed
- Syringe 250 µL to 1000 µL
- Powder-free gloves (nitrile or neoprene is recommended)
- Safety glasses
- Lab coat

Note: All test solutions must be kept refrigerated. If they are left out of the refrigerator for longer than 48 hours, then discard them and use new solutions.

CAUTION: Potential Wrong Result. Do not use expired solutions.

Prepare for the Test

WARNING! Electrical Shock Hazard. Avoid contact with the high voltages applied to the ion source during operation. Put the system in Standby mode before adjusting the sample tubing or other equipment near the ion source.

- When installing a new ion source, make sure that the mass spectrometer is performing to specifications with the existing ion source.
- Install the ion source on the mass spectrometer.

- Make sure that the ion source is fully optimized. Refer to the appropriate ion source *Operator Guide*.
- Refer to all applicable Safety Data Sheets for any necessary precautions before handling chemical solutions or solvents.
- Connect the grounding union on the ion source to a pump, through a manual injector equipped with a 5 μL loop, or to an autosampler.

Refer to Figure 3-1 and Figure 3-2.

Figure 3-1 LC Pump Configuration: TurbolonSpray[®] Probe

Figure 3-2 Pump Configuration: APCI Probe

ltem	Description
1	LC pump
2	Injector or autosampler
3	lon source

Test the Ion Source on TripleTOF[®] Systems

Prepare the Test Solution

- 1. Combine 100 μ L of the 0.167 pmol/ μ L reserpine solution and 900 μ L of the standard diluent.
- 2. Mix using a vortex mixer for 30 seconds.

This step produces the 0.0167 pmol/ $\!\mu L$ reserpine solution.

Test the TurbolonSpray[®] Probe

WARNING! Hot Surface Hazard. Let the ion source cool for at least 30 minutes before starting any maintenance procedures. Surfaces of the ion source become hot during operation.

CAUTION: Potential System Damage. Do not introduce any solvent flow until after the ion source has reached the correct temperature.

Refer to the ion source *Operator Guide* for information about installing or optimizing the ion source.

- 1. Configure the HPLC pump to deliver 0.2 mL/min of the mobile phase.
- 2. In the Analyst[®] TF software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 3. Adjust the probe positions as shown in the Table 3-1.

Table 3-1 Probe Positions

Probe	Vertical Position	Horizontal Position	Electrode Tip Extension
APCI	5	_	0.5 mm
TurbolonSpray	5	5	0.5 mm

4. Open a previously optimized method or set the method parameters as shown in Table 3-2.

Table 3-2 Method Parameters

Parameter	Value	
MS Parameters		
Scan Mode	Product Ion	
High Sensitivity (5600/5600+ and 6600 systems only)	On	
Product Of	609.2807	
TOF Masses (Da)	150 to 650	
Accumulation time (seconds)	0.200	
Duration (minutes)	10	

Parameter	Value	
Source/Gas Parameters		
Curtain Gas [™] flow (CUR)	20	
Temperature (TEM)	650	
Ion Source Gas 1 (GS1)	50	
Ion Source Gas 2 (GS2)	70	
IonSpray Voltage Floating (ISVF)	5500	
Compound Parameters		
Declustering Potential (DP)	100	
Collision Energy (CE)	45	
Resolution Parameters		
Q1 Resolution	Unit	

Table 3-2 Method Parameters (continued)

5. Click **Start** to run the method.

WARNING! Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Make sure that the electrode protrudes beyond the tip of the probe, to prevent hazardous vapors from escaping from the source. The electrode must not be recessed within the probe.

CAUTION: Potential System Damage. Optimize using the highest possible value for the Curtain Gas[™] flow rate to avoid contaminating the mass spectrometer.

- 6. Perform several 5 μL injections of the 0.0167 pmol/μL reserpine solution while optimizing the following for maximum signal intensity and stability:
 - The vertical and horizontal position of the probe
 - The electrode tip extension
 - CUR, TEM, GS1, GS2, and ISVF
- 7. Click **Acquire** to begin collecting data.
- 8. Perform three 5 μ L injections of the reserpine solution.

Tip! We recommend that the 5 μ L loop be overfilled with 30 μ L to 40 μ L of the solution.

- 9. After the acquisition, for each injection, generate an XIC of the 50 mDa window centered on m/z 195.0652 (or the observed mass, as calibrated). Record the intensity (peak height) for each injection.
- 10. Print the results.

The results should be similar to the following figure.

- 11. Average the three intensities of the ions and then record the result in the Data Log.
- 12. Confirm that the average intensity is acceptable. Refer to Data Log: DuoSpray[™] Ion Source.

If the result is not acceptable, refer to Troubleshooting Tips.

13. After completing the tests, stop the LC pump, set **TEM** to 0, and then let the probe cool.

Test the APCI Probe

WARNING! Hot Surface Hazard. Let the ion source cool for at least 30 minutes before starting any maintenance procedures. Surfaces of the ion source become hot during operation.

CAUTION: Potential System Damage. Do not introduce any solvent flow until after the ion source has reached the correct temperature.

Refer to the ion source Operator Guide for information about installing or optimizing the ion source.

1. Configure the HPLC pump to deliver 1 mL/min of the mobile phase.

- 2. In the Analyst[®] TF software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 3. Adjust the probe positions as shown in the Table 3-3.

Table 3-3 Probe Positions

Probe	Vertical Position	Horizontal Position	Electrode Tip Extension
APCI	5	—	0.5 mm
TurbolonSpray	5	5	0.5 mm

4. Open a previously optimized method or set the method parameters as shown in Table 3-4.

Table 3-4 Method Parameters

Parameter	Value	
MS Parameters		
Scan Mode	Product Ion	
High Sensitivity (5600/5600+ and 6600 systems only)	On	
Product Of	609.2807	
TOF Masses (Da)	150 to 650	
Accumulation time (seconds)	0.200	
Duration (minutes)	10	
Source/Gas Parameters		
Curtain Gas [™] flow (CUR)	20	
Temperature (TEM)	650	
lon Source Gas 2 (GS2)	70	
IonSpray Voltage Floating (ISVF)	5500	
Compound Parameters		
Declustering Potential (DP)	100	
Collision Energy (CE)	45	

Table 3-4 Method Parameters (continued)

Parameter	Value
Resolution Parameters	
Q1 Resolution	Unit

5. Click **Start** to run the method.

WARNING! Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Make sure that the electrode protrudes beyond the tip of the probe, to prevent hazardous vapors from escaping from the source. The electrode must not be recessed within the probe.

CAUTION: Potential System Damage. Optimize using the highest possible value for the Curtain Gas[™] flow rate to avoid contaminating the mass spectrometer.

- 6. Perform several 5 μL injections of the 0.0167 pmol/μL reserpine solution while optimizing the following for maximum signal intensity and stability:
 - The vertical position of the probe
 - The electrode tip extension
 - CUR, TEM, GS2, and ISVF
- 7. Click **Acquire** to begin collecting data.
- 8. Perform three 5 µL injections of the reserpine solution.

Tip! We recommend that the 5 μ L loop be overfilled with 30 μ L to 40 μ L of the solution.

- 9. After the acquisition, for each injection, generate an XIC of the 50 mDa window centered on m/z 195.0652 (or the observed mass, as calibrated). Record the intensity (peak height) for each injection.
- 10. Print the results.

The results should be similar to the following figure.

Figure 3-4 XIC for the 50 mDa Window Around the Centroid Mass of m/z 195

11. Confirm that the average intensity is acceptable. Refer to Data Log: DuoSpray[™] Ion Source.

If the result is not acceptable, refer to Troubleshooting Tips.

12. After completing the tests, stop the LC pump, set **TEM** to 0, and then let the probe cool.

Test the Ion Source on Triple Quadrupole and QTRAP[®] Systems

Test the TurbolonSpray[®] Probe

WARNING! Hot Surface Hazard. Let the ion source cool for at least 30 minutes before starting any maintenance procedures. Surfaces of the ion source become hot during operation.

CAUTION: Potential System Damage. Do not introduce any solvent flow until after the ion source has reached the correct temperature.

Refer to the ion source Operator Guide for information about installing or optimizing the ion source.

- 1. Configure the HPLC pump to deliver 0.2 mL/min of the mobile phase.
- 2. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 3. On the Source/Gas tab, select TIS from the list

4. Adjust the probe positions as shown in the Table 3-5.

Table 3-5 Probe Positions

Probe	Vertical Position	Horizontal Position	Electrode Tip Extension
APCI	5	—	0.5 mm
TurbolonSpray	5	5	0.5 mm

5. Open a previously optimized method or set the method parameters as shown in Table 3-6.

Table 3-6 Method Parameters

Parameter	Value	
MS Parameters	Product Ion	
Scan Mode	MRM	
Q1	609.3	
Q3	195.1	
Scan Time (ms)	200	
Duration (minutes)	10	
Source/Gas Parameters		
Curtain Gas [™] flow (CUR)	20 (or as optimized)	
IonSpray Voltage (IS)	4500 (or as optimized)	
Temperature (TEM)	700 (or as optimized)	
Ion Source Gas 1 (GS1)	60 (or as optimized)	
Ion Source Gas 2 (GS2)	70 (or as optimized)	
Compound Parameters		
Declustering Potential (DP)	100 (or as optimized)	
Collision Energy (CE)	45 (or as optimized)	
Collision Exit Potential (CXP)	As optimized	

6. Click **Start** to run the method.

WARNING! Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Make sure that the electrode protrudes beyond the tip of the probe, to prevent hazardous vapors from escaping from the source. The electrode must not be recessed within the probe.

CAUTION: Potential System Damage. Optimize using the highest possible value for the Curtain Gas[™] flow rate to avoid contaminating the mass spectrometer.

- 7. Perform several 5 μL injections of the reserpine solution while optimizing the following for maximum signal intensity and stability:
 - The vertical and horizontal position of the probe
 - The electrode tip extension
 - CUR, TEM, GS1, GS2, and IS
- 8. Click **Acquire** to begin collecting data.
- 9. Perform three 5 μ L injections of the 10 pg/ μ L test solution while monitoring the 50 mDa window around the centroid mass of m/z 195.

Tip! We recommend that the 5 μ L loop be overfilled with 30 μ L to 40 μ L of the solution.

10. Print the results.

The results should be similar to the following figure.

- 11. Average the three intensities of the ions and then record the result in the Data Log.
- 12. Confirm that the average intensity is acceptable. Refer to Data Log: DuoSpray[™] Ion Source.

If the result is not acceptable, refer to Troubleshooting Tips.

13. After completing the tests, stop the LC pump, set **TEM** to 0, and then let the probe cool.

Test the APCI Probe

WARNING! Hot Surface Hazard. Let the ion source cool for at least 30 minutes before starting any maintenance procedures. Surfaces of the ion source become hot during operation.

CAUTION: Potential System Damage. Do not introduce any solvent flow until after the ion source has reached the correct temperature.

Refer to the ion source *Operator Guide* for information about installing or optimizing the ion source.

- 1. Configure the HPLC pump to deliver 1 mL/min of the mobile phase.
- 2. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 3. Adjust the probe positions as shown in the Table 3-7.

Table 3-7 Probe Positions

Probe	Vertical Position	Horizontal Position	Electrode Tip Extension
APCI	5	_	0.5 mm
TurbolonSpray	5	5	0.5 mm

4. Open a previously optimized method or set the method parameters as shown in Table 3-8.

Table 3-8 Method Parameters

Parameter	Value				
MS Parameters					
Scan Mode	MRM				
Q1	609.3				
Q3	195.1				
Table 3-8 Method Parameters (continued	Table	3-8 Meth	nod Paran	neters (co	ntinued)
--	-------	----------	-----------	------------	----------
--	-------	----------	-----------	------------	----------

Parameter	Value				
Scan Time (ms)	200				
Duration (minutes)	10				
Source/Gas Parameters					
Curtain Gas [™] flow (CUR)	20 (or as optimized)				
Nebulizer Current (NC)	3 (or as optimized)				
Temperature (TEM)	350 (or as optimized)				
Ion Source Gas 2 (GS2)	70 (or as optimized)				
Compound Parameters					
Declustering Potential (DP)	100 (or as optimized)				
Collision Energy (CE)	45 (or as optimized)				
Collision Exit Potential (CXP)	As optimized				

5. Click **Start** to run the method.

WARNING! Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Make sure that the electrode protrudes beyond the tip of the probe, to prevent hazardous vapors from escaping from the source. The electrode must not be recessed within the probe.

CAUTION: Potential System Damage. Optimize using the highest possible value for the Curtain Gas[™] flow rate to avoid contaminating the mass spectrometer.

- 6. Perform several 5 μL injections of the reserpine solution while optimizing the following for maximum signal intensity and stability:
 - The vertical and horizontal position of the probe
 - The electrode tip extension
 - CUR, GS1, and NC
- 7. Click **Acquire** to begin collecting data.
- 8. Perform three 5 µL injections of the reserpine solution.

Tip! We recommend that the 5 μ L loop be overfilled with 30 μ L to 40 μ L of the solution.

- 9. After the acquisition, for each injection, generate an XIC of the 50 mDa window centered on m/z 195.0652 (or the observed mass, as calibrated). Record the intensity (peak height) for each injection.
- 10. Print the results.
- 11. Confirm that the average intensity is acceptable. Refer to Data Log: DuoSpray[™] Ion Source.

If the result is not acceptable, refer to Troubleshooting Tips.

12. After completing the tests, stop the LC pump, set **TEM** to 0, and then let the probe cool.

NanoSpray[®] Ion Source Tests

Run these tests in any of the following situations:

- When a new ion source is installed.
- After major maintenance to the ion source.
- Whenever the performance of the ion source must be assessed, either before starting a project or as part of a standard operating procedure.

WARNING! Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Use the ion source only if you have knowledge of and training in the proper use, containment, and evacuation of toxic or injurious materials used with the ion source.

WARNING! Electrical Shock Hazard. Never operate the NanoSpray[®] ion source without the illuminator, camera, stop, and covers properly installed. Never touch the curtain plate or allow the emitter tip to contact the curtain plate. If the mass spectrometer is operational and the ion source is installed, then high voltage is present on the curtain plate, even if the X-Y-Z positioning unit is moved away from the interface.

WARNING! Toxic Chemical Hazard. Wear personal protective equipment, including a laboratory coat, gloves, and safety glasses, to avoid skin or eye exposure.

WARNING! Ionizing Radiation Hazard, Biohazard, Electrical Shock Hazard, or Toxic Chemical Hazard. In the event of a chemical spill, review product Safety Data Sheets for specific instructions. Make sure that the system is in Standby mode before cleaning a spill near the ion source. Use appropriate personal protective equipment and absorbent wipes to contain the spill and dispose of it following local regulations.

Prepare for the Test

WARNING! Electrical Shock Hazard. Avoid contact with the high voltages applied to the ion source during operation. Put the system in Standby mode before adjusting the sample tubing or other equipment near the ion source.

- When installing a new ion source, make sure that the mass spectrometer is performing to specifications with the existing ion source.
- Install the ion source on the mass spectrometer.
- Make sure that the ion source is fully optimized. Refer to the appropriate ion source *Operator Guide*.
- Refer to all applicable Safety Data Sheets for any necessary precautions before handling chemical solutions or solvents.

Figure 4-1 Test Workflow

Prepare the [Glu¹]-Fibrinopeptide B Dilution

Required Material

- [Glu1]-Fibrinopeptide B, included in the LC/MS Peptide Calibration Kit (PN 4465867)
- Standard diluent, included in the LC/MS Peptide Calibration Kit
- Powder-free gloves (nitrile or neoprene is recommended)
- Safety glasses
- Lab coat

For the list of masses for [Glu¹]-Fibrinopeptide B, refer to Masses for [Glu¹]-Fibrinopeptide B.

Note: Always prepare the dilution just before running the test.

Note: The [Glu¹]-Fibrinopeptide B might become lodged in the rubber septum of the vial. Gently tap or shake it down before opening the vial. Then, partially remove the septum to reveal a slot. Add the dilution solvent through the slot. Then push the septum back into place and mix well to dissolve.

CAUTION: Potential Wrong Result. Do not use expired solutions.

- Add 900 μL of Standard diluent (0.1% formic acid, 10% acetonitrile) to the glass amber vial containing 0.1 mg [Glu¹]-Fibrinopeptide B.
- 2. Cover the vial tightly, shake it, and then vortex it for at least 2 minutes, to make sure that the peptide is fully dissolved.

Note: Peptide concentration may vary depending on the total peptide content and peptide purity of the standard solution. Refer to the Certificate of Analysis provided by the vendor. At 100% purity, 0.1 mg [Glu¹]-Fibrinopeptide B dissolved as described in the preceding steps produces a stock solution with a concentration of approximately 66.67 pmol/µL.

- 3. Aliquot the stock solution in 50 μ L volumes into clean tubes. Freeze unused aliquots at -20° C for future use.
- 4. Put 50 μL of the stock solution into a clean tube and then add 450 μL of standard diluent.
- 5. Vortex the tube for 30 seconds.

This is a 1:10 dilution, providing 500 μL of a 6.7 pmol/ μL solution.

- 6. Put 50 μL of the 6.7 pmol/ μL solution into another clean tube.
- 7. Add 450 μL of standard diluent.

8. Vortex the tube for 30 seconds.

This is a 1:10 dilution, providing 500 μL of the 667 fmol/ μL solution.

- 9. Put 50 μL of the 667 fmol/ μL solution into another clean tube.
- 10. Add 450 μL of standard diluent.
- 11. Vortex the tube for 30 seconds.

This is a 1:10 dilution, providing 500 μ L of the final 66.7 fmol/ μ L solution, to be used for the infusion test.

Test the Ion Source on TripleTOF[®] Systems

WARNING! Electrical Shock Hazard. Never operate the NanoSpray[®] ion source without the illuminator, camera, stop, and covers properly installed. Never touch the curtain plate or allow the emitter tip to contact the curtain plate. If the mass spectrometer is operational and the ion source is installed, then high voltage is present on the curtain plate, even if the X-Y-Z positioning unit is moved away from the interface.

WARNING! Hot Surface Hazard. Do not touch the high voltage rail or emitter tip.

Refer to Figure 4-1 for an overview of the required tasks.

For TripleTOF[®] 4600 systems, perform these tasks:

- Prepare the [Glu¹]-Fibrinopeptide B Dilution
- Test and Calibrate in TOF MS Mode
- Test and Calibrate in Product Ion Mode

For TripleTOF[®] 5600/5600+ and 6600 systems, perform these tasks:

- Prepare the [Glu¹]-Fibrinopeptide B Dilution
- Test and Calibrate in TOF MS Mode
- Test and Calibrate in Product Ion Mode (High Sensitivity) (5600/5600+ and 6600 Systems Only)
- Test and Calibrate in Product Ion Mode. This test is performed in High Resolution mode.

Required Materials

- [Glu1]-Fibrinopeptide B Dilution. Refer to Prepare the [Glu¹]-Fibrinopeptide B Dilution.
- 100 μL syringe (1.46 mm i.d.) or equivalent for infusion with the NanoSpray $^{\circledast}$ ion source
- (Optional) 1 mL syringe (4.61 mm i.d.) or equivalent for infusion with the DuoSpray[™] ion source
- Powder-free gloves (nitrile or neoprene is recommended)
- Safety glasses
- Lab coat

Test and Calibrate in TOF MS Mode

(Optional) Perform the TOF MS Test with the DuoSpray[™] Ion Source

This procedure confirms the integrity of the dilution.

Note: Before filling the syringe with the [Glu¹]-Fibrinopeptide B solution, wash it three times with the wash solution. Then connect the syringe to the proper tubing and wash it again before connecting it to the union on the high-voltage rail. Then, flush the tubing with the [Glu¹]-Fibrinopeptide B solution.

- 1. Install the DuoSpray[™] ion source on the mass spectrometer. Refer to the *DuoSpray[™] Ion Source Operator Guide*.
- 2. Using the 1 mL syringe, infuse the $[Glu^1]$ -Fibrinopeptide B solution at a flow rate of 5 μ L/min.
- 3. In the Analyst[®] TF software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 4. Open a previously optimized method or set the method parameters as shown in Table 4-1.

Table 4-1 Parameters for the TOF MS Test with the DuoSpray[™] Ion Source

Parameter	Value				
MS Parameters					
Scan type	TOF MS				
Accumulation time (sec)					
Polarity	Positive				
TOF masses (Da)	400 to 1800				
Duration (min)	0.5				

Parameter	Value			
Advanced MS Parameters				
МСА	Off			
Auto Adjust with mass	On			
Q1 Transmission Window	Default (with Auto-adjust)			
Pulsar Frequency	Default (with Auto-adjust)			
Time bins to sum	4			
Settling time	Default			
Pause between mass ranges	Default			
Source/Gas Parameters				
lon Source Gas 1 (GS1)	20			
Curtain Gas [™] flow (CUR)	20			
Temperature (TEM) (°C)	0			
IonSpray Voltage Floating (ISVF)	5500			
Compound Parameters	.			
Declustering Potential (DP)	100			
Syringe Pump Method Parameters				
Flow rate (µL/min)	5			
Syringe Size	1 mL (4.61 mm i.d.)			

Table 4-1 Parameters for the TOF MS Test with the DuoSpray[™] Ion Source (continued)

5. Save the new method.

Tip! Save the methods used for the NanoSpray[®] ion source tests in a separate folder, named NanoSpray Installation <date>.

- 6. Click **Acquire** to acquire 30 seconds of data.
- 7. Highlight 30 seconds in the **TIC of +TOF MS** window in the lower left pane, and then double-click to display an averaged spectrum.
- 8. Right-click in the averaged spectrum, which appears in the bottom pane, and then click **List Data**. Then record the centroid intensity and resolution.

9. Confirm that the centroid intensity and resolution are acceptable. Refer to Data Log: NanoSpray[®] Ion Source.

Guideline: The centroid intensity and resolution achieved with the DuoSpray[™] ion source should meet the specifications given for the NanoSpray[®] ion source. If they do not, prepare a new dilution.

Perform the TOF MS Test with the NanoSpray[®] Ion Source

Note: Before filling the syringe with the [Glu¹]-Fibrinopeptide B solution, wash it three times with the wash solution. Then connect the syringe to the proper tubing and wash it again before connecting it to the union on the high-voltage rail. Then, flush the tubing with the [Glu¹]-Fibrinopeptide B solution.

- 1. Install the NanoSpray[®] ion source on the mass spectrometer. Refer to the NanoSpray[®] Ion Source Operator Guide.
- 2. Prepare the NanoSpray III head. Refer to the *NanoSpray[®]* Ion Source Operator Guide.
- 3. Using the 100 μ L syringe, infuse the [Glu¹]-Fibrinopeptide B solution at a flow rate of 0.5 μ L/min.
- 4. In the Analyst[®] TF software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 5. If the optional procedure, (Optional) Perform the TOF MS Test with the DuoSpray[™] Ion Source , is performed, open the method and then and set the parameters as shown in Table 4-2. If the procedure is not performed, then create a method using these parameters.

Table 4-2 TOF MS Method Parameters with the NanoSpray[®] Ion Source

Parameter	Value				
MS Parameters					
Scan type	TOF MS				
Accumulation time (sec)	1.0				
Polarity	Positive				
TOF masses (Da)	400 to 1800				
Duration (min)	0.5				
Advanced MS Parameters					
МСА	Off				
Auto Adjust with mass	On				
Q1 Transmission Window	Default (with Auto-adjust)				
Pulsar Frequency	Default (with Auto-adjust)				
Time bins to sum	4				

Tests, Specifications, and Data Log RUO-IDV-05-7280-A

Parameter	Value				
Settling time	Default				
Pause between mass ranges	Default				
Source/Gas Parameters					
Ion Source Gas 1 (GS1)	3				
Curtain Gas [™] flow (CUR)	25				
Interface Heater Temperature (IHT) (°C)	75				
IonSpray Voltage Floating (ISVF)	2100				
Compound Parameters					
Declustering Potential (DP)	100				
Syringe Pump Method Parameters					
Flow rate (µL/min)	0.5				
Syringe Size	100 Gastight (1.46 mm)				

Table 4-2 TOF MS Method Parameters with the NanoSpray[®] Ion Source (continued)

6. Click **Start** to run the method.

CAUTION: Potential System Damage. Do not allow the emitter tip to contact the curtain plate. Use the fine Z-axis adjustment knob to adjust the sprayer position, to avoid damage to the emitter tip.

CAUTION: Potential System Contamination. Do not insert the end of the emitter tip into the curtain plate aperture. Make sure that the emitter tip is at least 2 mm to 5 mm outside the aperture. Spraying too close to the aperture can cause contamination of the mass spectrometer.

- 7. Adjust the position of the sprayer head relative to the curtain plate aperture to optimize signal intensity. Record the XYZ values for future use.
- 8. Adjust **ISVF** in 100 V increments to achieve the best signal and signal-to-noise ratio.

Note: If the IonSpray[™] voltage is too high, then a corona discharge can occur. It is visible as a blue glow at the tip of the probe. A corona discharge results in decreased sensitivity and stability of the signal.

9. Increase **GS1** until the signal starts to decrease and then reduce **GS1** until the signal reaches its maximum value.

GS1 usually optimizes between 3 and 10. If **GS1** is outside this range, then the tip protrusion is incorrect (1 to 2 mm) or the tip may need to be replaced.

Note: The GS1 parameter might optimize at zero.

10. Increase **CUR** until the signal starts to decrease, and then reduce **CUR** until the signal reaches its maximum value.

Note: To prevent contamination, use the highest value for CUR possible without sacrificing sensitivity. Do not set CUR lower than 20. This helps to prevent penetration of the Curtain Gas[™] flow, which can produce a noisy signal; prevent contamination of the aperture; and increase the overall signal-to-noise ratio.

- 11. If you moved the sprayer head to optimize signal intensity, adjust the position of the illuminator as necessary.
- 12. Save the new method.

Tip! Save the methods used for the NanoSpray[®] ion source tests in a separate folder, named NanoSpray Installation <date>.

- 13. Run the method for at least 20 minutes. Monitor the spray stability. If the spray is stable, only minimal fluctuations are visible in the TIC.
- 14. After the spray is optimized and has stabilized, click **Acquire** and acquire 30 seconds of data.
- 15. Highlight 30 seconds in the **TIC of +TOF MS** window in the lower left pane, and then double-click to display an averaged spectrum.
- 16. Right-click in the averaged spectrum, which appears in the bottom pane, and then click **List Data**. Record the centroid intensity and the resolution.
- 17. Confirm that the centroid intensity and resolution are acceptable. Refer to Figure 4-2 and Data Log: NanoSpray[®] Ion Source.

Figure 4-2 Sample Spectra: TOF MS Scan for GluFibrinopeptide B, TripleTOF 5600 system

If the results are not acceptable, then refer to Troubleshooting Tips.

18. Print a copy of the results and record the centroid intensity and resolution in the Data Log.

Update the Calibration Reference Table for [Glu¹]-Fibrinopeptide B

- 1. In the Analyst[®] TF software, in **Tune and Calibrate** mode, click **Tools > Settings > Tuning Options.**
- 2. On the **Calibration** tab, click **Reference**.
- 3. In the **Reference Table Editor**, in the **Name** field, select **Glu-fibrinopeptide B**.
- 4. In the table of **Reference lons for TOF MS Calibration** (on the left side) add the masses shown in Figure 4-3. For the list of masses for [Glu¹]-fibrinopeptide B, refer to Masses for [Glu¹]-Fibrinopeptide B.

fere	nce Ions	i for TOF MS Calibrat	ion:						Refer	ence Ions	f or M5/M5 Calibrat 4210 Da)	ion:
	Use	Compound Name	Precursor m/z (Da)	Use for MS/MS	CE for MS/MS	DP for MS/MS	Retention Time (min)	^		Use	Fragment Name	Fragment m/z (Da)
	ঘ	y4	480.25650	Г	45.000	100.000	0.00	_	1	ম	y1	175.1190
	ঘ	у6	684.34640	Г	45.000	100.000	0.00		2	ম	y3	333.1881
	ঘ	Glu-fibrinopeptide	785.84210	ব	45.000	100.000	0.00		3	N	y4	480.2565
	ব	у7	813.38900	Г	45.000	100.000	0.00		4	ব	y6	684.3464
	ঘ	y8	942.43160	Γ	45.000	100.000	0.00		5	N	Parent	785.84210
	ঘ	у9	1056.47450		45.000	100.000	0.00		6	N	y8	942.4316
	ব	y10	1171.50140		45.000	100.000	0.00		7	N	y10	1171.5014
	L	y11	1285.54440	Г	45.000	100.000	0.00		8	N	y11	1285.5444
	Г			Г					9			
									10			
									11			
				Г					12			
								-	13			
2 3 4								~	12 13 14			

Figure 4-3 Reference Table Editor: Reference Ions for TOF MS Calibration

- 5. Click **OK**.
- 6. In the **Tuning Options** dialog, click **OK**.

Calibrate in TOF MS Mode

- 1. In **Manual Tune** mode, make sure that the parameters are set to the values specified in Table 4-2.
- 2. On the **Compound** tab, set **Collision Energy (CE)** to **35** V.
- 3. When the spray is stable, click **Acquire** and acquire 30 seconds of scan data.
- 4. In the **TIC of +TOF MS** window (at the lower left), highlight 30 seconds of TIC signal to average and then double-click.
- 5. In the new window that appears (at the bottom of the Analyst[®] software window), right-click and click **Re-Calibrate TOF**.
- 6. In the **TOF Calibration** dialog, in the **Reference Table** list, select **Glu-fibrinopeptide B**.
- 7. Make sure that the proper experimental masses have been identified in the infusion spectrum and that they match the reference table theoretical masses.
- 8. Check the **Average Error** value displayed to the right of the **Calculate New Calibrations** button.
- 9. Click **Calculate New Calibrations** and make sure that the **Average Error** value drops to less than 2 ppm.
- 10. Under Calibration Values, click Calibrate Spectrum.

11. Under Save Current Calibration, select Set as Instrument Default and Overwrite Current File.

12. Click Entire File.

13. Click **Close**.

Test and Calibrate in Product Ion Mode (High Sensitivity) (5600/5600+ and 6600 Systems Only)

Perform the Product Ion mode (High Sensitivity) Test (5600/5600+ and 6600 Systems Only)

- 1. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 2. Open a previously optimized method or set the method parameters as shown in Table 4-3.

Parameter	Value			
MS Parameters				
Scan type	Product Ion			
Product of	785.8			
Accumulation time (sec)	1.0			
Polarity	Positive			
TOF masses (Da)	100 to 1800			
High sensitivity	On			
Duration (min)	0.5			
Advanced MS Parameters				
МСА	Off			
Auto Adjust with mass	On			
Q1 Transmission windows	Default (with Auto-adjust)			
Pulsar Frequency	Default (with Auto-adjust)			
Time Bins to Sum	4			
Settling time	Default			
Pause between mass	Default			

Table 4-3 Product Ion Method Parameters

Parameter	Value				
Source/Gas Parameters					
Ion Source Gas 1 (GS1)	as optimized				
Curtain Gas [™] flow (CUR)	as optimized				
Interface Heater Temperature (IHT) (°C)	75				
IonSpray Voltage Floating (ISVF)	as optimized				
Compound Parameters					
Collision Energy (CE) (V)	45 (or as optimized)				
Resolution Parameters					
Q1 resolution	Unit				

Table 4-3 Product Ion Method Parameters (continued)

Note: CE normally optimizes between 40 V and 48 V. If CE is not in this range, then the CAD gas value may be set too low. If the intensity of the precursor ion at m/z 785.9 is not 10% or less of the original intensity, then the interaction of CE and CAD gas is incorrect. Contact SCIEX technical support for more information.

- 3. Save the new method.
- 4. When the spray is stable, click **Acquire** to acquire at least 30 seconds of scans.
- 5. Highlight 30 seconds in the **TIC of +TOF Product** window in the lower left pane, and then double-click to display an averaged spectrum.
- 6. Right-click in the averaged spectrum, which appears in the bottom pane, and then click **List Data**.
- 7. Click the **Peak List** tab.
- 8. Right-click the column header row, and click **Column Options**.

Figure 4-4 Select Columns for Peak List Dialog

Select Columns for Peak List		? 🔀		
Spectrum List Columns				
🔽 m/z (Da)	🔲 Peak start (Da)			
🔽 Intensity (cps)	🔲 Peak end (Da)			
Centroid mass	🔽 Width (Da)			
🗆 Charges	Resolution			
🗆 Peak area	🗆 % Intensity			
🗆 Is Mono-Isotopic	🗖 % Centroid			
🗆 Intensity sum	🔲 Width at 5%			
Centroid intensity	🗆 Raw Resolution			
OK Cancel				

- 9. Select the m/z (Da), Intensity, Centroid mass, Centroid Intensity, Width (Da), and Resolution check boxes.
- 10. Click **OK**.
- 11. Confirm that the centroid intensity and resolution are acceptable. Refer to Figure 4-5 and Data Log: NanoSpray[®] Ion Source.

If the result is not acceptable, refer to Troubleshooting Tips.

12. Print a copy of the results and record the centroid intensity and resolution in the Data Log.

Calibrate in Product Ion Mode (High Sensitivity)

- 1. In **Manual Tune** mode, make sure that the parameters are set to the values specified in Table 4-3.
- 2. When the spray is stable, click **Acquire** and acquire at least 30 seconds of scan data.
- 3. In the **TIC of +TOF Product** window (at the lower left), highlight 30 seconds of TIC signal to average and then double-click.
- 4. In the new window that appears (at the bottom of the Analyst[®] window), right-click and click **Re-Calibrate TOF**.
- 5. In the TOF Calibration dialog, in the Reference Table list, select Glu-fibrinopeptide B.
- 6. Make sure that the proper experimental masses have been identified in the infusion spectrum and that they match the reference table theoretical masses.
- 7. Select the **Average Error** value shown to the right of the **Calculate New Calibrations** button.

- 8. Click **Calculate New Calibrations** and make sure that the **Average Error** value drops to less than 2 ppm.
- 9. Under Calibration Values, click Calibrate Spectrum.
- 10. Under Save Current Calibration, select Set as Instrument Default and Overwrite Current File.
- 11. Click Entire File.
- 12. Click Close.

Test and Calibrate in Product Ion Mode

For SCIEXTripleTOF[®] 5600/5600+ and 6600 systems, this test is performed in High Resolution mode.

Perform the Product Ion Test

- 1. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 2. Open a previously optimized method or set the method parameters as shown in Table 4-4.

Table 4-4 Product Ion Method Parameters

Parameter	Value			
MS Parameters				
Scan type	Product Ion			
Product of	785.8			
Accumulation time (sec)	1.0			
Polarity	Positive			
TOF masses (Da)	100 to 1800			
High resolution	On			
(5600/5600+ and 6600 systems only)				
Duration (min)	0.5			
Advanced MS Parameters				
МСА	Off			
Auto Adjust with mass	On			
Q1 Transmission windows	Default (with Auto-adjust)			
Pulsar Frequency	Default (with Auto-adjust)			

Parameter	Value		
Time Bins to Sum	4		
Settling time	Default		
Pause between mass	Default		
Source/Gas Parameters			
Ion Source Gas 1 (GS1)	as optimized		
Curtain Gas [™] flow (CUR)	as optimized		
Interface Heater Temperature (IHT) (°C)	75		
IonSpray Voltage Floating (ISVF)	as optimized		
Compound Parameters			
Collision Energy (CE) (V)	45 (or as optimized)		
Resolution Parameters	-		
Q1 resolution	Unit		

Table 4-4 Product Ion Method Parameters (continued)

Note: CE normally optimizes between 40 V and 48 V. If CE is not in this range, then the CAD gas value may be set too low. If the intensity of the precursor ion at m/z 785.9 is not 10% or less of the original intensity, then the interaction of CE and CAD gas is incorrect. Contact SCIEX technical support for more information.

- 3. Save the new method.
- 4. When the spray is stable, click **Acquire** to acquire at least 30 seconds of scans.
- 5. Highlight 30 seconds in the **TIC of +TOF Product** window in the lower left pane, and then double-click to display an averaged spectrum.
- 6. Right-click in the averaged spectrum, which appears in the bottom pane, and then click List Data.
- 7. Click the **Peak List** tab.
- 8. Confirm that the centroid intensity and resolution are acceptable. Refer to Figure 4-6 and Data Log: NanoSpray[®] Ion Source.

Figure 4-6 Sample Spectra: Product Ion Test, TripleTOF 5600 System

If the results are not acceptable, refer to Troubleshooting Tips.

9. Print a copy of the results and record the centroid intensity and resolution in the data log.

Calibrate in Product Ion Mode

For SCIEX TripleTOF[®] 5600/5600+ and 6600 systems, this procedure calibrates High Resolution mode.

- 1. In **Manual Tune** mode, make sure that the parameters are set to the values specified in Table 4-4.
- 2. When the spray is stable, click **Acquire** and acquire at least 30 seconds of scan data.
- 3. In the **TIC of +TOF Product** window (at the lower left), highlight 30 seconds of TIC signal to average and then double-click.
- 4. In the new window that appears (at the bottom of the Analyst[®] window), right-click and click **Re-Calibrate TOF**.
- 5. In the TOF Calibration dialog, in the Reference Table list, select Glu-fibrinopeptide B.
- 6. Make sure that the proper experimental masses have been identified in the infusion spectrum and that they match the reference table theoretical masses.
- 7. Check the **Average Error** value displayed to the right of the **Calculate New Calibrations** button.

NanoSpray[®] Ion Source Tests

- 8. Click **Calculate New Calibrations** and make sure that the **Average Error** value drops to less than 2 ppm.
- 9. Under Calibration Values, click Calibrate Spectrum.
- 10. Under Save Current Calibration, click Entire File.
- 11. Click Close.

Wrap-Up

Note: The SCIEX Field Service Employee (FSE) must e-mail the results of the NanoSpray[®] acceptance test run after installation to servicedata@sciex.com.

- 1. Flush the tip and the infusion line thoroughly.
- 2. Make a copy of the completed data log and test results and provide the customer with the originals.

Test the Ion Source on Triple Quadrupole and QTRAP[®] Systems

WARNING! Hot Surface Hazard. Do not touch the high voltage rail or emitter tip.

WARNING! Electrical Shock Hazard. Never operate the NanoSpray[®] ion source without the illuminator, camera, stop, and covers properly installed. Never touch the curtain plate or allow the emitter tip to contact the curtain plate. If the mass spectrometer is operational and the ion source is installed, then high voltage is present on the curtain plate, even if the X-Y-Z positioning unit is moved away from the interface.

Refer to Figure 4-1 for an overview of the required tasks.

For triple quadrupole systems, except 3200 series systems, do these tasks:

- Prepare the [Glu¹]-Fibrinopeptide B Dilution
- Test in Q1 Mode
- Test in Q3 Mode

For QTRAP[®] systems, except 3200 QTRAP[®] systems, perform these tests:

- Prepare the [Glu¹]-Fibrinopeptide B Dilution
- Test in Q1 Mode

• Test in Q3 Mode

For API 3200[™] and 3200 QTRAP[®] systems, refer to Test the Ion Source on 3200 Series Systems.

Required Materials

- [Glu¹]-Fibrinopeptide B, included in the LC/MS Peptide Calibration Kit (PN 4465867)
- Standard diluent
- 100 μL syringe (1.46 mm i.d.) or equivalent for infusion with the NanoSpray[®] ion source
- (Optional) 1 mL syringe (4.61 mm i.d.) or equivalent for infusion with the Turbo V[™] ion source
- Powder-free gloves (nitrile or neoprene is recommended)
- Safety glasses
- Lab coat

Test in Q1 Mode

(Optional) Perform the Q1 Test with the Turbo V[™] Ion Source

This procedure confirms the integrity of the dilution.

Note: Before filling the syringe with the [Glu¹]-Fibrinopeptide B solution, wash it three times with the wash solution. Then connect the syringe to the proper tubing and wash it again before connecting it to the union on the high-voltage rail. Then, flush the tubing with the [Glu¹]-Fibrinopeptide B solution.

- 1. Install the Turbo V[™]ion source on the mass spectrometer. Refer to the *Turbo* V[™] *Ion Source Operator Guide*.
- 2. Using the 1 mL syringe, infuse the $[Glu^1]$ -Fibrinopeptide B solution at a flow rate of 5 μ L/min.
- 3. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 4. Open a previously optimized method or set the method parameters as shown in Table 4-5.

Table 4-5 Parameters for the Q1 Test with the Turbo V[™] Ion Source

Parameter	Value
MS Parameters	
Scan type	Q1 scan
Mass mode (6500 and 6500 ⁺ series systems)	Low mass
Polarity	Positive

Table 4-5 Parameters	for the Q1 Te	st with the Turbo	o V [™] Ion Source	(continued)
				(

Parameter	Value
Display masses (Da)	Center: 785.9
	Width: 20
Scan Speed (Da/sec)	10
МСА	On
Cycles	10
Source/Gas Parameters	
Curtain Gas [™] flow (CUR)	20
IonSpray Voltage (IS)	5500
Ion Source Gas 1 (GS1)	20
Interface Heater (IHT)	Not used
Compound Parameters	
Declustering Potential (DP)	100
Syringe Pump Method Parameters	
Flow rate (µL/min)	5
Syringe Size	1 mL (4.61 mm i.d.)

5. Save the method.

Tip! Save the methods used for the NanoSpray[®] ion source tests in a separate folder, named NanoSpray Installation <date>.

- 6. Click **Acquire** to acquire 30 seconds of data.
- 7. Record the intensity of the peak at m/z 785.8421.
- 8. Repeat step 6 to step 7 two more times.
- 9. Average the results of the three scans.
- 10. Compare the centroid intensity and resolution with the NanoSpray[®] ion source specifications shown in Data Log: NanoSpray[®] Ion Source.

Guideline: The centroid intensity and resolution achieved with the Turbo V ion source should meet the specifications given for the NanoSpray[®] ion source. If they do not, prepare a new dilution.

Perform the Q1 Test with the NanoSpray[®] Ion Source

Note: Before filling the syringe with the [Glu¹]-Fibrinopeptide B solution, wash it three times with the wash solution. Then connect the syringe to the proper tubing and wash it again before connecting it to the union on the high-voltage rail. Then, flush the tubing with the [Glu¹]-Fibrinopeptide B solution.

- 1. Install the NanoSpray[®] ion source on the mass spectrometer. Refer to the *NanoSpray[®] Ion Source Operator Guide*.
- 2. Prepare the NanoSpray[®] III head. Refer to the *NanoSpray[®] Ion Source Operator Guide*.
- 3. Using the 100 μ L syringe, infuse the [Glu¹]-Fibrinopeptide B solution at a flow rate of 0.5 μ L/min.
- 4. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 5. If the optional procedure is performed, (Optional) Perform the Q1 Test with the Turbo V[™] Ion Source, then open the method created, and set the parameters as specified in Table 4-5. If the procedure was not performed, then create a method using these parameters.

Table 4-6 Method Parameters with the NanoSpray[®] lon Source

Parameter	Value
MS Parameters	
Scan type	Q1 scan
Mass mode (6500 and 6500 ⁺ series systems)	Low mass
Polarity	Positive
Mass Range	400 to 1000
Scan Speed (Da/sec)	2000
(4500, 5500, 6500, and 6500 ⁺ series systems)	
Scan Time (sec)	3
(4000 series systems)	
МСА	Off
Cycles	Note : The number of cycles if fixed for the specific instrument analyzed. Refer to the parameters above.
	500 (4000 series systems)
	50 (4500, 5500, 6500, and 6500 ⁺ series systems)
Source/Gas Parameters	

	Table 4-6 Method	Parameters with	the NanoSpray [®]	lon Source	(continued)
--	------------------	------------------------	----------------------------	------------	-------------

Parameter	Value
CAD Gas	Low (4000 series systems) Medium (or as optimized) (4500, 5500, 6500, and 6500 ⁺ series systems)
IonSpray Voltage (IS)	2100
lon Source Gas 1 (GS1)	10
Interface Heater Temperature (IHT) (°C)	75
Compound Parameters	
Declustering Potential (DP)	70 (4000 series systems)
	100 (4500, 5500, 6500, and 6500 ⁺ series systems)
Syringe Pump Method Parameters	
Flow rate (µL/min)	0.5
Syringe Size (µL)	100 Gastight (1.46 mm)

6. Click **Start** to run the method.

CAUTION: Potential System Damage. Do not allow the emitter tip to contact the curtain plate. Use the fine Z-axis adjustment knob to adjust the sprayer position, to avoid damage to the emitter tip.

CAUTION: Potential System Contamination. Do not insert the end of the emitter tip into the curtain plate aperture. Make sure that the emitter tip is at least 2 mm to 5 mm outside the aperture. Spraying too close to the aperture can cause contamination of the mass spectrometer.

- 7. Adjust the position of the sprayer head relative to the curtain plate aperture to optimize signal intensity. Record the XYZ values for future use.
- 8. Adjust IS in 100 V increments to achieve the best signal and signal-to-noise ratio.

Note: If the IonSprayTM voltage is too high, then a corona discharge can occur. It is visible as a blue glow at the tip of the probe. A corona discharge results in decreased sensitivity and stability of the signal.

9. Increase GS1 until the signal starts to decrease and then reduce GS1 until the signal reaches its maximum value.

Note: The GS1 parameter might optimize at zero.

10. Increase CUR until the signal starts to decrease, and then reduce CUR until the signal reaches its maximum value.

Note: To prevent contamination, use the highest value for CUR possible without sacrificing sensitivity. Do not set CUR lower than 20. This helps to prevent penetration of the Curtain Gas^{TM} flow, which can produce a noisy signal; prevent contamination of the aperture; and increase the overall signal-to-noise ratio.

- 11. If you moved the sprayer head to optimize signal intensity, adjust the position of the illuminator as necessary.
- 12. Save the new method.

Tip! Save the methods used for the NanoSpray[®] ion source tests in a separate folder, named NanoSpray Installation <date>.

13. Monitor the spray stability for 5 minutes. If the spray is stable, only minimal fluctuations are visible in the TIC.

Figure 4-7 Sample Spectra: Q1 Mode Test on a 4000 QTRAP[®]System

- 14. After the spray has stabilized, change **Scan Speed** to **10**.
- 15. Select **Center/Width**, and then type **785.9** in the **Center** column and **20** in the **Width** column.
- 16. Turn **MCA** on.
- 17. Click **Acquire** to begin collecting data.
- 18. Record the intensity of the peak at m/z 785.9.
- 19. Repeat step 17 to step 18 two more times.
- 20. Average the three intensities.
- 21. Confirm that the average intensity is acceptable. Refer to Data Log: NanoSpray[®] Ion Source.

If the result is not acceptable, refer to Troubleshooting Tips.

22. Print a copy of the results and record the intensity in the data log.

Test in Q3 Mode

Note: Before filling the syringe with the [Glu¹]-Fibrinopeptide B solution, wash it three times with the wash solution. Then connect the syringe to the proper tubing and wash it again before connecting it to the union on the high-voltage rail. Then, flush the tubing with the [Glu¹]-Fibrinopeptide B solution.

- 1. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 2. Open the method used for the Q1 test.
- 3. Open a previously optimized method or set the method parameters as shown in Table 4-7.

Table 4-7 Q3 Method Parameters

Parameter	Value
MS Parameters	
Scan type	Q3 scan
Mass mode (6500 and 6500 ⁺ series systems)	Low mass
Display masses (Da)	Center: 785.9 Width: 20
Scan Speed (Da/sec)	10
MCA	Off
Cycles	10
Compound Parameters	
Collision Cell Exit Potential (CXP) (V)	15 (or as optimized) (4000 series systems)
	30 (or as optimized) (4500, 5500, 6500, and 6500^+ series systems)

- 4. Save the new method.
- 5. Click **Start** to run the method.
- 6. When the spray is stable, turn MCA on.
- 7. Click **Acquire** to begin collecting data.
- 8. Record the intensity of the peak at m/z 785.9.
- 9. Repeat step 7 to step 8 two more times.

Figure 4-8 Sample Spectra: Q3 Mode Test on a QTRAP[®] 5500 System

10. Print the results.

- 11. Average the three intensities of the ions and then record the result in the Data Log.
- 12. Confirm that the average intensity is acceptable. Refer to Data Log: NanoSpray[®] Ion Source.

If the result is not acceptable, refer to Troubleshooting Tips.

Test and Calibrate in EPI Mode (QTRAP[®] Systems Only)

Perform the EPI Mode Test

- 1. Using the 100 μ L syringe, infuse the [Glu1]-Fibrinopeptide B solution at a flow rate of 0.5 μ L/min.
- 2. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 3. Open a previously optimized method or set the parameters as shown in Table 4-8.

Table 4-8 EPI Method Parameters

Parameter	Value
MS Parameters	
Scan type	EPI Scan
Mass mode (6500 and 6500 ⁺ series systems)	Low mass

Parameter	Value
Polarity	Positive
Mass Range (Da)	100 to 1500 (4000 series systems)
	100 to 1000 (4500, 5500, 6500, and 6500 ⁺ series systems)
Scan speed (Da/sec)	4000 (4000 series systems)
	10 000 (4500, 5500, 6500, and 6500 ⁺ series systems)
Precursors of	785.9
МСА	On
Scans to sum	1
Cycles	10 (4000 series systems)
	50 (4500, 5500, 6500, and 6500^+ series systems)
Advanced MS Parameters	
Fixed LIT Fill Time (ms)	50 (4000 series systems)
	10 (4500, 5500, 6500, and 6500 ⁺ series systems)
Compound Parameters	
Collision Energy (CE) (V)	45 (or as optimized)
Declustering Potential (DP)	70 (or as optimized)
Syringe Pump Method Parameters	
Flow rate (µL/min)	0.5
Syringe Size (µL)	100 Gastight (1.46 mm)

Table 4-8 EPI Method Parameters (continued)

Note: CE normally optimizes between 40 V and 48 V. If CE is not in this range, then the CAD gas value may be set too low. If the intensity of the precursor ion at m/z 785.9 is not 10% or less of the original intensity, then the interaction of CE and CAD gas is incorrect. Contact SCIEX technical support for more information.

- 4. Click **Start** to run the method.
- 5. Optimize CE to maximize the intensity for the fragments at *m/z* 480.3, 813.4, 942.4, and 1171.7.
- 6. Save the new method.
- 7. When the spray is stable, click **Acquire** and acquire data.

- 8. Record the intensities of the fragments at *m*/*z* 480.3, 813.4, 942.4, and 1171.7.
- 9. Repeat step 7 to step 8 two more times.
- 10. Print the results.
- 11. Average the three intensities of the ions and then record the result in the Data Log.
- 12. Confirm that the average intensities are acceptable. Refer to Data Log: NanoSpray[®] Ion Source.

If the results are not acceptable, refer to Troubleshooting Tips.

Create a Reference Table for Calibration

Before you can calibrate the mass spectrometer from a data spectrum, you must define the reference table for the calibrant being used. If a reference table for [Glu¹]-Fibrinopeptide B does not exist, follow these steps to create it.

- 1. Click Tools > Settings > Tuning Options.
- 2. Click Reference.

Figure 4-9 Reference Table Editor

	mass (ba)	intensity (cps)	* charges	U au	- 6
1	175.120	1.000			
2	333.190	1.000	1	V	
3	480.260	1,000		V	
4	684.350	1.000		V	
5	813.390	1.000	1	V	
6	942.430	1.000	1	V	
7	1285.544	1.000	1	V	
8	_			<u></u>	
9				12	
10				111	
11				(m)	
12				1	
13				1	
14				[17]	-

- 3. Create a reference table for [Glu1]-Fibrinopeptide B, with the entries shown in Figure 4-9. Be sure to enter the values for the lowest and highest mass fragments in the **Low Mass** and **High Mass** fields.
- 4. Click Update Ref.
- 5. Click Close.
- 6. Click New.

Figure 4-10 Tuning Options Dialog

Tuning Options
Calibration Resolution
Standard: Glu Fb pce New
Positive
Reference: Glu Fb pos
Q1 Method: Q1 Pos PPG.dam
Q3 Method: Q3 Poc PPG.dam
LIT Method: GluFib pos EPI.dam
Regative
Q1 Method:
Q3 Method: 📃
LIT Nethod:
Lodate Std. Delete Std. Beference
Print and Save CK Cancel Help

- 7. In the **Standard** field, type **GluFib pos**.
- 8. Select the **Positive** check box.
- 9. In the **Q1 Method** field, select the method used for Q1 calibration.
- 10. In the **Q3 Method** field, select the method used for Q3 calibration.
- 11. In the **LIT Method** field, select the method created in Perform the EPI Mode Test.
- 12. Click Update Std.
- 13. Click **OK**.

Calibrate in EPI Mode

- 1. In **Manual Tune** mode, make sure that the parameters are set to the values specified in Table 4-8.
- 2. When the spray is stable, click **Acquire** and acquire at least 30 seconds of scan data.
- 3. Click the EPI spectrum pane.

	Mass (Da)	Intensity (cps)	# Charges	Use	<u>^</u>
1	175.120	1.000	1	V	
2	333.190	1.000	1		
3	480.260	1.000	1	V	
4	684.350	1.000	1	1	
5	813.390	1.000	1		
5	942.430	1.000	1	V	
7	1285.544	1.000	1		
3				111	
9				(11)	
10				1	
11					
12					
13				10	
14				(11)	- 1
					1

Figure 4-11 LIT Mass Calibration Dialog for 4000 Series Systems

Figure 4-12 LIT Mass Calibration Dialog for 4500, 5500, 6500, and 6500⁺ Series Systems

	Mass (Da)	Intensity (cps)	# Charges	Use	
1	175.120	1.000	1	1	
2	333.190	1.000	1	V	
3	480.260	1.000	1	V	
4	684.350	1.000	1	V	
5	813.390	1.000	1	V	
6	942.430	1.000	1	V	
7	1285.544	1.000	1		
8					
9					
10					
11					
12					
13					
14					-

- 5. In the **Standard** field, select the standard created in step 7 Create a Reference Table for Calibration (**GluFib pos**).
- 6. Click Start.

The Mass Calibration Report pane opens. The top graph shows the mass shift in the calibration ions since the last calibration.

Figure 4-13 Mass Calibration Report

7. If the data spectra look good, and the mass shifts are within the specified range, click **Replace Calibration** ().

Figure 4-14 TuneDir Dialog

8. Click Yes.

The values for the new calibration are shown at the bottom of the calibration summary report pane.

Note: If the mass or intensity of one of the fragment ions changes drastically, determine why the change occurred before using this ion in calibration. Click **No** on the **TuneDir** dialog, and then review the calibration summary report. Find the mass in the **Found Mass** column, and observe the quality of the ion in the raw data spectrum. If the incorrect ion was chosen, widen or narrow the **Search Range** on the LIT Mass Calibration dialog. The software uses the centroid of the most intense peak in the search range for calibration.

Figure 4-15 LIT Mass Calibration Results Report

LIT Bass Calibration Results for Positive Ions at 4000 daltons per second
Generated On: August 18, 2003 13:27:59
Last Calibration: August 18, 2003 13:26:39
Peak Search Parameters: Search Respe: 0.250 Threshold: 200.000 Peak Width At: 50.000
Config. table ver.: 03 Firmsone ver.: H401400 B4T0301 MDL1400 BJT0306 Instrument name: Linear Ion Trap Quadrupole LC/KS/MS Mass Spectrometer Instrument ID: OTrap Manufacturer: AB Spice Instrumente Seriel number: n1390304 Model Number: 022170c Operator name: settince Workstation: BIOPR04
Acq. Method: testTune.dan
Data Filename: D:\Analyst Data\Projects\API Instrument\Tuning Cache\MT20030818132658.wiff Standard news: Glufib TIS Reference table mane: Glufib cal Spectral information:
Expected Bass Found Mass Mass Shift Peak Width PV Shift Intensity Change(%) 175 115 175 020 0.099 0.350 0.350 43.65 480 257 480.323 -0.066 0.408 0.292 37.08 013.309 013.420 -0.031 0.496 0.214 21.10 1285 544 1285 584 -0.040 0.576 0.124 24.76
The Slope Variations for Active Calibratica Table Average Slope (DAC'anu): 37.326 Mass DAC Slope Variation Slope 480.257 17908 5/8 n/8 613.369 30344 1.600 37.331 1285.544 47966 1.000 37.322

9. Calibrate for the other two scan speeds by changing the scan speed in the method, and then repeating this procedure.

Wrap-Up

Note: The SCIEX Field Service Employee (FSE) must e-mail the results of the NanoSpray[®] acceptance test run after installation to servicedata@sciex.com.
- 1. Flush the tip and the infusion line thoroughly.
- 2. Make a copy of the completed data log and test results and provide the customer with the originals.

Test the Ion Source on 3200 Series Systems

WARNING! Hot Surface Hazard. Do not touch the high voltage rail or emitter tip.

WARNING! Electrical Shock Hazard. Never operate the NanoSpray[®] ion source without the illuminator, camera, stop, and covers properly installed. Never touch the curtain plate or allow the emitter tip to contact the curtain plate. If the mass spectrometer is operational and the ion source is installed, then high voltage is present on the curtain plate, even if the X-Y-Z positioning unit is moved away from the interface.

For API 3200[™] systems, perform this test:

• Test in Q1 and MS2 Modes

For 3200 QTRAP[®] systems, perform these tests:

- Test in Q1 and MS2 Modes
- Test in EPI Mode (3200 QTRAP[®] Systems Only)

Note: The NanoSpray[®] ion source is not supported on every 3200 series instrument. Contact a sales representative for more information.

Required Materials

- Renin 10 pmol/µL, included in the MS Chemical Kit2 Higher Concentration PPGs kit (PN 5512399)
- Dilution solvent
- 100 µL syringe (1.46 mm i.d.) or equivalent for infusion
- Powder-free gloves (nitrile or neoprene is recommended)
- Safety glasses
- Lab coat

Prepare 2 mL of Renin Mixture (500 fmol/µL)

- 1. Measure 2 ml of dilution solvent (provided in the kit) into a vial.
- 2. Remove and discard 100 μL of the solvent.
- 3. Add 100 μL of renin 10 pmol/ μL to the vial.
- 4. Mix.

Test in Q1 and MS2 Modes

- 1. Install the NanoSpray ion source on the mass spectrometer. Refer to the *NanoSpray[®] Ion Source Operator Guide*.
- 2. Prepare the NanoSpray III head. Refer to the *NanoSpray[®] Ion Source Operator Guide*.
- 3. Infuse the renin mixture at a flow rate of 0.5 μ L/min.

CAUTION: Potential System Contamination. Do not insert the end of the emitter tip into the curtain plate aperture. Make sure that the emitter tip is at least 2 mm to 5 mm outside the aperture. Spraying too close to the aperture can cause contamination of the mass spectrometer.

- 4. Adjust GS1 until a stable spray is achieved. Start with a low value (2 or 3) and slowly increase it, until the spray is stable with no zero width noise spikes. It may take a few minutes for the spray to stabilize.
- 5. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 6. Open a previously optimized method or set the method parameters as shown in Table 4-9.

Table 4-9 Q1 Method Parameters

Parameter	Value		
MS Method Parameters			
Scan type	Q1 MS (Q1)		
Mass range	100 to 1200		
Advanced MS Parameters			
Step size (Da)	0.1		
Source/Gas Parameters			
Curtain Gas [™] flow (CUR)	20		

Table 4-9 Q1 Method Parameters (continued)

Parameter	Value		
IonSpray Voltage (IS)	2100		
Ion Source Gas 1 (GSI)	3		
Interface Heater Temperature (IHT) (°C)	75		
Compound Parameters			
Declustering Potential (DP) 70 (or as optimized)			

7. Run the method.

CAUTION: Potential System Damage. Do not allow the emitter tip to contact the curtain plate. Use the fine Z-axis adjustment knob to adjust the sprayer position, to avoid damage to the emitter tip.

CAUTION: Potential System Contamination. Do not insert the end of the emitter tip into the curtain plate aperture. Make sure that the emitter tip is at least 2 mm to 5 mm outside the aperture. Spraying too close to the aperture can cause contamination of the mass spectrometer.

- 8. Adjust the position of the sprayer head relative to the curtain plate aperture to optimize signal intensity. Record the XYZ values for future use.
- 9. Adjust IS in 100 V increments until you achieve the best signal and signal-to-noise ratio.

Note: If the IonSpray[™] voltage is too high, then a corona discharge can occur. It is visible as a blue glow at the tip of the probe. A corona discharge results in decreased sensitivity and stability of the signal.

10. Increase GS2 until the signal starts to decrease and then reduce GS1 until the signal reaches its maximum value.

Note: The GS1 parameter might optimize at zero.

11. Increase CUR until the signal starts to decrease, and then reduce CUR until the signal reaches its maximum value.

Note: To prevent contamination, use the highest value for CUR possible without sacrificing sensitivity. Do not set CUR lower than 20. This helps to prevent penetration of the Curtain Gas[™] flow, which can produce a noisy signal; prevent contamination of the aperture; and increase the overall signal-to-noise ratio.

- 12. Print a copy of the results and then save the optimized Q1 acquisition method.
- 13. Set the Scan type to Product Ion (MS2), and set Product Of to 587.
- 14. Set CAD to Medium (6).
- 15. Adjust **CE** to optimize the intensity of the fragment ions at *m*/*z* 136 and 784.
- 16. Print a copy of the results and then save the optimized **Product Ion** method.
- 17. Verify that the intensity in MS2 mode meets the specifications in Data Log: NanoSpray[®] Ion Source.

If the results are not acceptable, refer to Troubleshooting Tips.

18. Record the results in the Data Log.

Test in EPI Mode (3200 QTRAP[®] Systems Only)

1. Infuse the renin mixture at a flow rate of 0.5 μ L/min.

CAUTION: Potential System Contamination. Do not insert the end of the emitter tip into the curtain plate aperture. Make sure that the emitter tip is at least 2 mm to 5 mm outside the aperture. Spraying too close to the aperture can cause contamination of the mass spectrometer.

- 2. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 3. Open the optimized Q1 method saved in step 12 Test in Q1 and MS2 Modes.
- 4. Set the method parameters as shown in Table 4-10.

Table 4-10 EPI Method Parameters

Parameter	Value	
MS Parameters		
Scan type	EPI	
Mass range (Da)	100 to 1200	
Product Of (Da)	587.4	
Duration (sec)	120	

Table 4-10 EPI Method	Parameters	(continued)
-----------------------	-------------------	-------------

Parameter	Value		
Advanced MS Parameters			
Fixed LIT fill time (msec) 20			
Q0 trapping OFF			
Q3 entry barrier	8		
Source/Gas Parameters	- ·		
Curtain Gas [™] flow (CUR)	As optimized		
Collision Gas (CAD)	High		
IonSpray Voltage (IS)	As optimized		
Temperature (TEM) (°C) 150			
Ion Source Gas 1 (GSI) As optimized			
lon Source Gas 2 (GS2)	0		
Interface Heater Temperature (IHT)	ON		
Compound Parameters			
Declustering Potential (DP)	80		
Collision Energy (CE) (V) 45 (or as optimized)			
Collision Energy Spread (CES)	0		
Resolution Parameters	· ·		
Q1 resolution	LOW		

5. Run the method.

- 6. Adjust **CE** to optimize the intensity of the peaks at 136, 647, 784, and 1028.
- 7. Print a copy of the results and save the optimized EPI method.
- 8. Verify that the intensity meets the specifications in Data Log: NanoSpray[®] Ion Source.

If the result is not acceptable, refer to Troubleshooting Tips.

9. Review the printed copy of the results and record the results in the Data Log.

Wrap-Up

Note: The SCIEX Field Service Employee (FSE) must e-mail the results of the NanoSpray[®] acceptance test run after installation to servicedata@sciex.com.

- 1. Flush the tip and the infusion line thoroughly.
- 2. Make a copy of the completed data log and test results and provide the customer with the originals.

PhotoSpray[®] Ion Source Tests

Run these tests in any of the following situations:

- When a new ion source is installed.
- After major maintenance to the ion source.
- Whenever the performance of the ion source must be assessed, either before starting a project or as part of a standard operating procedure.

WARNING! Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Use the ion source only if you have knowledge of and training in the proper use, containment, and evacuation of toxic or injurious materials used with the ion source.

WARNING! Puncture Hazard, Ionizing Radiation Hazard, Biohazard, or Toxic Chemical Hazard. Discontinue use of the ion source if the ion source window is cracked or broken and then contact a SCIEX Field Service Employee (FSE). Any toxic or injurious materials introduced into the equipment will be present in the source exhaust output. Dispose of sharps following established laboratory safety procedures.

WARNING! Toxic Chemical Hazard. Wear personal protective equipment, including a laboratory coat, gloves, and safety glasses, to avoid skin or eye exposure.

WARNING! Ionizing Radiation Hazard, Biohazard, Electrical Shock Hazard, or Toxic Chemical Hazard. In the event of a chemical spill, review product Safety Data Sheets for specific instructions. Make sure that the system is in Standby mode before cleaning a spill near the ion source. Use appropriate personal protective equipment and absorbent wipes to contain the spill and dispose of it following local regulations.

Required Materials

- MS-grade methanol
- HPLC-grade deionized water
- Mobile phase solvent: 70:30 acetonitrile:water solution
- Dopant: toluene (HPLC grade) infused at 100 to 150 μ L/min. The dopant should be infused using a separate HPLC pump.
- Pre-diluted 0.0167 pmol/µL reserpine solution included in the SCIEX Standard Chemical Kit (PN 4406127)
- HPLC pump (for mobile phase)
- HPLC pump for dopant infusion.
- Manual injector (8125 Rheodyne or equivalent) with a 5 µL loop or an autosampler set up for 5 µL injections
- PEEK tubing 1/16-inch outside diameter (o.d.), 0.005-inch inside diameter (i.d.)
- Syringe 250 µL to 1000 µL
- Powder-free gloves (nitrile or neoprene is recommended)
- Safety glasses
- Lab coat

Note: All test solutions must be kept refrigerated. If they are left out of the refrigerator for longer than 48 hours, then discard them and use new solutions.

CAUTION: Potential Wrong Result. Do not use expired solutions.

Prepare for the Test

WARNING! Electrical Shock Hazard. Avoid contact with the high voltages applied to the ion source during operation. Put the system in Standby mode before adjusting the sample tubing or other equipment near the ion source.

- When installing a new ion source, make sure that the mass spectrometer is performing to specifications with the existing ion source.
- Install the ion source on the mass spectrometer.
- Make sure that the ion source is fully optimized. Refer to the appropriate ion source *Operator Guide*.
- Refer to all applicable Safety Data Sheets for any necessary precautions before handling chemical solutions or solvents.

Note: Regardless of the pump used, there is a significant back pressure on the dopant line.

Test the Ion Source

WARNING! Hot Surface Hazard. Let the ion source cool for at least 30 minutes before starting any maintenance procedures. Surfaces of the ion source become hot during operation.

CAUTION: Potential System Damage. Do not introduce any solvent flow before verifying that the ion source has reached the correct temperature.

CAUTION: Potential System Damage. Optimize using the highest possible value for the Curtain Gas[™] flow rate to avoid contaminating the mass spectrometer.

Note: The optimum ion transfer voltage is dependent upon the height of the UV lamp. There is only one optimum ion transfer voltage for a set UV lamp height and only one optimum UV lamp height for a given ion transfer voltage. If the user changes the UV lamp height, optimize the ion transfer voltage at each new height setting to converge on the best setting for UV lamp height and ion transfer voltage.

- 1. In the Analyst[®] software, in **Tune and Calibrate** mode, double-click **Manual Tune**.
- 2. Open a previously optimized method or set the parameters as shown in Table 5-1.

Parameter	Value		
Probe Parameters			
Sample concentration	10 pg/µL		
Mobile phase	70:30 ACN:H ₂ O		
Flow rate (µL/min)	500		
Injection volume (μL)	25 (overfill the loop)		
Sample loop (µL)	5		
Ionization mode	Positive		
Probe vertical micrometer setting	2		

Table 5-1 Method Parameters (continued)	Table	5-1	Method	Parameters	(continued)
---	-------	-----	--------	------------	-------------

Parameter Value			
Probe horizontal micrometer setting	5		
UV Lamp vertical micrometer setting	5		
Dopant	100 μL/min to 150 μL/min flow rate		
MS Parameters			
Scan mode	MRM		
Q1 mass (Da)	609.3 (or exact mass)		
Q3 mass (Da)	195.1 (or exact mass)		
Source/Gas Parameters			
Curtain Gas [™] (CUR)	30 (or as optimized)		
Collision Gas (CAD)	Medium		
Ion Transfer Voltage (IS)	800 (or as optimized)		
Temperature (TEM)	400 (or as optimized)		
Ion Source Gas 1 (GS1)	60 (or as optimized)		
lon Source Gas 2 (GS2)	20 (or as optimized)		
Compound Parameters			
Declustering Potential (DP)	100 (or as optimized)		
Collision Energy (CE)	45 (or as optimized)		
Collision Exit Potential (CXP)	As optimized		
Resolution Parameters			
Resolution	Unit/Unit		
The starting values obtained during instrument validation may differ from those in this table.			

- 3. Click **Acquire** to begin collecting data.
- 4. Introduce the 70:30 acetonitrile:water solution at a flow rate of 500 μ L/min through the sample inlet.
- 5. Introduce the dopant at a flow rate of 75 $\mu\text{L/min}$ through the dopant inlet.
- 6. Overfill the sample loop with the test solution.
- 7. Inject 10 pg/µL of reserpine test solution while monitoring the multiple creation monitoring (MRM) 609/195 transition.

- 8. Optimize the compound-specific parameters.
- 9. Optimize the probe and UV lamp positions.
- 10. Optimize the ion source parameters.
- 11. Print the results.
- 12. Review the printed copy of the results.
- 13. Confirm that the average intensity of the five injections is acceptable. Refer to Data Log: PhotoSpray[®] Ion Source.

If the result is not acceptable, refer to Troubleshooting Tips.

Troubleshooting Tips

Symptom	Possible Cause	Corrective Action
No signal	 No spray is being generated. (NanoSpray[®] ion source) The ion source head position is incorrect. 	 Refer to the ion source Operator Guide to troubleshoot spray problems. Use the X-Y-Z adjustment knobs to adjust the emitter tip position.
Unexpectedly wide LC peaks or tailing	(NanoSpray [®] ion source) The union has a dead volume.	 Make sure that all post-column tubing has an inside diameter less than or equal to 25 microns. Check all connections to make sure that they are properly seated. Flush all cuts. Replace the emitter tip.
Low peak intensity	 The source position, tip protrusion, or source parameter values are incorrect. The syringe or sample line is leaking. Q1 or Q3 is not calibrated. The sample has degraded or has a low concentration. There is a problem with the LC system. 	 Optimize the source. Inspect for leaks. Use the Instrument Optimization wizard to calibrate Q1 or Q3. Check the sample concentration. Use either a fresh sample or a sample that has been frozen. Troubleshoot the LC system.
Poor resolution	The instrument is not optimized.	Optimize the instrument.

Symptom	Possible Cause	Corrective Action
Poor sensitivity	1. The interface components (front end) are dirty.	1. Clean the interface components and reposition the ion source.
	 Solvent vapor or other unknown compounds are present in the analyzer region. 	2. Optimize the Curtain Gas [™] flow.
		3. Confirm that the sample was prepared correctly.
	 The sample was not prepared correctly or the sample has degraded. 	 Verify that the fittings are tight and replace fittings if leaks continue. Do not overtighten the
	4. There are leaks at the sample inlet	fittings.
	5. The ion source is faulty.	5. Install and optimize an alternate ion source. If the problem persists, contact an FSE.
Low signal	1. The Declustering Potential (DP) is not optimized.	1. Optimize declustering to achieve the best signal or signal-to-noise
	2. The electrode might be dirty or clogged.	ratio. The optimum values may be different from those found using other ion sources.
		2. Clean the electrode.
Low signal-to-noise ratio	1. The source position, tip	1. Optimize the source.
	protrusion, or source parameter values are incorrect.	2. Check for leaks.
	 The syringe or sample line is leaking. 	 Use freshly prepared diluent, made with MS-grade reagents (0.1% formic acide and 10%
	3. The diluent is contaminated.	acetonitrile).

Troubleshooting Tips

Symptom	Possible Cause	Corrective Action
High background noise	 The diluent is contaminated. The syringe or sample line is dirty. There is residue on the interface. The temperature (TEM) is too bigb 	 Use freshly prepared diluent made with MS-grade reagents (0.1% formic acid, 10% acetonitrile). Clean or replace the syringe or sample line.
	 The heater gas flow rate (GS2) is too high. The ion source is contaminated. 	 Clean the curtain plate and orifice plate (refer to the <i>Qualified</i> <i>Maintenance Person Guide</i> for the mass spectrometer). If necessary, bake the interface. If the problem is not resolved, clean Q0 or the QJet[®] ion guide.
		4. Optimize the temperature.
		5. Optimize the heater gas flow.
		6. Clean or replace the ion source components and condition the source and the front end:
		a. Move the APCI or TIS probe to the furthest position from the aperture (vertically and horizontally).
		 b. Infuse or inject 50:50 methanol:water with a pump flow of 1 mL/min.
		c. In the Analyst [®] /Analyst [®] TF software, set TEM to 650, GS1 to 60, and GS2 to 60.
		d. Set the Curtain Gas flow to 45 or 50.
		e. Run for a minimum of 2 hours or preferably overnight, for best results.
		7. Adjust the emitter tip position.

Symptom	Possible Cause	Corrective Action
During testing, the ion source fails to meet specifications	The mass spectrometer has not passed the installation tests.	Perform installation tests on the mass spectrometer with the default source.
Temperature not reached or the temperature too high or unstable	The interface heater is faulty.	Open the Mass Spectrometer Detailed Status dialog. The Source Temperature field should contain the set temperature and the Interface Heater Status should be Ready. If not, then contact a Qualified Maintenance Person (QMP) or Field Service Employee (FSE) to replace the interface heater.

Data Log: IonDrive[™] Turbo V Ion Source

System Information

 Table A-1 Mass Spectrometer Information

Mass spectrometer serial number	
Mass spectrometer senai number	

Ion Source Information

Component	Serial Number
Ion Source	
TurbolonSpray [®] probe	
APCI probe	

IonDrive Turbo V Ion Source Test Results

Note: The lon Drive[™] Turbo V ion source is supported by 6500 and 6500⁺ series of instruments and the and 6600 systems only.

Probe	Intensity (cps)	Intensity (cps)	Results (cps)
	6500	6500 ⁺	
TurbolonSpray [®] probe	1.25 × 10 ⁶	1.9 × 10 ⁶	
APCI probe	5.0×10^{5}	7.5 × 10 ⁵	

Signoff

Organization		
FSE name	Date (yyyy-mm-dd)	
FSE signature		

Comments and Exceptions

Data Log: Turbo V[™] Ion Source

System Information

 Table B-1 Mass Spectrometer Information

Mass spectrometer serial number	

Ion Source Information

Component	Serial Number
Ion Source	
TurbolonSpray [®] probe	
APCI probe	

Turbo V Ion Source Test Results

Note: Specifications are not available for the TripleTOF[®] 4600 system. The recommended source for this system is the DuoSpray[™] ion source.

Note: Tests for 6500 and 6500⁺ series systems are run in low mass mode.

Data Log: Turbo V[™] Ion Source

Intensity (cps)						Results		
3200	3500	4000	4500	5000 and 5500	5600 /5600+ and 6600	6500	6500 ⁺	
TurbolonSp	ray [®] Probe				•			
1.0×10^{4}	2.0 × 10 ⁴	1.0×10^{5}	2.0 × 10 ⁵	5.0 × 10 ⁵	1.0×10^4	1.0 × 10 ⁶	1.5 × 10 ⁶	
APCI Probe								
5.0 × 10 ³	1.0×10^{4}	5.0×10^{4}	1.0 × 10 ⁵	2.5 × 10 ⁵	5.0 × 10 ³	5.0 × 10 ⁵	7.5 × 10 ⁵	

Signoff

Organization		
FSE name	Date (yyyy-mm-dd)	
FSE signature		

Comments and Exceptions

Data Log: DuoSpray[™] Ion Source

System Information

 Table C-1 Mass Spectrometer Information

Mass spectrometer serial number	

Ion Source Information

Component	Serial Number
Ion Source	
TurbolonSpray [®] probe	
APCI probe	

DuoSpray Ion Source Test Results

Note: Tests for 6500 and 6500⁺ series systems are run in low mass mode.

Intensity (cps)							Results	
3200	4000	4500	4600	5000 and 5500	5600/5600+ and 6600	6500	6500 ⁺	
TurbolonSpray [®] Probe								
5.0×10^{3}	5.0×10^4	1.0×10^{5}	2.0×10^{3}	2.5 × 10 ⁵	5.0×10^{3}	5.0 × 10 ⁵	7.5 × 10 ⁵	
APCI Probe					· · · · · ·			
2.5×10^{3}	2.5×10^4	5.0×10^{4}	1.0 × 10 ³	1.25 × 10 ⁵	2.5×10^{3}	2.5 × 10 ⁵	3.8 × 10 ⁵	

Signoff

Date (yyyy-mm-dd)	
	Date (yyyy-mm-dd)

Comments and Exceptions

Data Log: NanoSpray[®] Ion Source

System Information

 Table D-1 Mass Spectrometer Information

Mass spectrometer serial number	

Ion Source Information

Component	Serial Number
lon Source	
TurbolonSpray [®] probe	
APCI probe	

NanoSpray Ion Source Test Results (TripleTOF Systems)

Note: The SCIEX Field Service Employee (FSE) must e-mail the results of the NanoSpray[®] acceptance test run after installation to servicedata@sciex.com.

Table D-2 TOF MS Test Results

Mass 786	Specification		Result		
	4600	5600/5600+ and 6600			
Centroid intensity (peak height, cps)	≥ 1500	≥ 4000			
Resolution	≥ 25 000	≥ 30 000			
Printouts required: 785.8421					

Table D-3 Product Ion High Sensitivity Test Results (5600/5600+ and 6600 Systems Only)

Mass	Centroid Intensity (cps)		Resolu	ition	
	Specification	Result	Specification	Result	
187.0713	≥ 60		N/A	N/A	
480.2565	≥ 212		≥ 15 000		
813.3890	≥ 375		≥ 15 000		
1056.4745	≥ 225		≥ 15 000		
Printouts required: 187.0713, 480.2565, 813.3890, and 1056.4745					

Table D-4 Product Ion Test Results

Mass	Centroid Intensity (cps)				Resolution		
	4600	5600/5600+ and 6600	Result	4600	5600/5600+ and 6600	Result	
187.0713	≥ 8	≥ 20		N/A	N/A	N/A	
480.2565	≥ 25	≥ 65		≥ 24 000	≥ 25 000		
813.3890	≥ 35	≥ 125		≥ 25 000	≥ 25 000		
1056.4745	≥ 25	≥ 65		≥ 25 000	≥ 25 000		
Note: For 5600/5600+ and 6600 systems, this test is run in High Resolution mode.							
Printouts requi	red: 187.0713, 48	0.2565, 813.3890, and 105	6.4745				

NanoSpray Ion Source Test Results (4000, 4500, 5500, 6500, and 6500+ Series Systems)

Note: The SCIEX Field Service Employee (FSE) must e-mail the results of the NanoSpray[®] acceptance test run after installation to servicedata@sciex.com.

Table D-5 Q1 Mode Test Results

Mass	Intensity (cps)					
	4000 4500 5500 6500 6500 ⁺ Result					
786	1.0 × 10 ⁵	2.5 × 10 ⁵	5.0×10^{5}	1.0×10^{6}	1.5 × 10 ⁶	

Table D-6 Q3 Mode Test Results

Mass	Intensity (cps)					
	4000 4500 5500 6500 6500 ⁺ Result					
786	1.0 × 10 ⁵	2.5 × 10 ⁵	5.0 × 10 ⁵	1.0 × 10 ⁶	1.5 × 10 ⁶	

Table D-7 EPI Mode Test Results (QTRAP[®]Systems Only)

Mass	Intensity (cps)								
	4000	4000 4500 5500 6500 6500 ⁺ Result							
	Intensity (cps)	Intensity (cps)	Intensity (cps)	Intensity (cps)	Intensity (cps)				
480.3	1.0 × 10 ⁵	5.0 × 10 ⁵	1.0 × 10 ⁶	5.0 × 10 ⁶	7.5 × 10 ⁶				
813.4	1.0 × 10 ⁵	5.0 × 10 ⁵	1.0 × 10 ⁶	5.0 × 10 ⁶	7.5 × 10 ⁶				
942.4	5.0×10^4	2.5 × 10 ⁵	5.0 × 10 ⁵	2.5 × 10 ⁶	3.8 × 10 ⁶				
1171.7	4.0×10^{4}	2.0 × 10 ⁵	N/A	N/A	N/A				

NanoSpray Ion Source Test Results (3200 Series Systems)

Table D-8 MS2 Mode Test Results

Mass	Intensity (cps)	Results (cps)
136.1	≥1.6 × 105	
784.4	≥5000	

Table D-9 EPI Mode Test Results

Mass	Intensity (cps)	Results (cps)
136.1	1.0 × 10 ⁵	
647.3	4.0×10^{4}	
784.4	8.0×10^4	
1028.5	1.0×10^{4}	

Signoff

Organization		
FSE name	Date (yyyy-mm-dd)	
FSE signature		

Comments and Exceptions

Data Log: PhotoSpray[®] Ion Source

System Information

Table E-1 Mass Spectrometer Information

Mass spectrometer serial number	

Ion Source Information

Component	Serial Number
Ion Source	
TurbolonSpray [®] probe	
APCI probe	

PhotoSpray Ion Source Test Results

Note: Tests for 6500 and 6500⁺ series systems are run in low mass mode.

E

Data Log: PhotoSpray[®] lon Source

Intensity (cps)							
3200	3200 4000 4500 5000 & 5500 6500 ⁺						
2.5×10^{3}	5.0×10^4	1.0 × 10 ⁵	2.5 × 10 ⁵	5.0 × 10 ⁵	7.5 × 10 ⁵		

Signoff

Organization		
FSE name	Date (yyyy-mm-dd)	
FSE signature		

Comments and Exceptions

The following table contains generic parameters for the TripleTOF[®] 4600, 5600/5600+, and 6600 systems.

The first number under each scan type is the preset value. The range of numbers is the accessible range for each parameter.

Parameter	Access ID	Positive Ion Mode			Negative Ion Mode		
טו		Q1	TOF MS	MS/MS	Q1	TOF MS	MS/MS
GS1	GS1	20	20	20	20	20	20
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90
GS2	GS2	15	15	15	15	15	15
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90
CUR	CUR	25	25	25	25	25	25
		10 to 55	10 to 55	10 to 55	10 to 55	10 to 55	10 to 55
TEM ^{1,2,3,4,5}	TEM	0	0	0	0	0	0
		0 to 750	0 to 750	0 to 750	0 to 750	0 to 750	0 to 750
ISVF ^{1,4}	IS	5000	5000	5000	-4000	-4000	-4000
(ISVF = IS – OR)		0 to 5500	0 to 5500	0 to 5500	-4500 to 0	-4500 to 0	-4500 to 0
ISVF ⁶	IS	1000	1000	1000	-1000	-1000	-1000
(ISVF = IS – OR)		0 to 4000	0 to 4000	0 to 4000	–4000 to 0	–4000 to 0	–4000 to 0
NC ⁵	NC	3	3	3	-3	-3	-3
		0 to 5	0 to 5	0 to 5	–5 to 0	–5 to 0	–5 to 0

Table F-1 TripleTOF[®] System Parameters

¹ DuoSpray[™] ion source

² Turbo V[™] ion source

 $^{3}\,$ IonDrive $^{^{TM}}$ Turbo V ion source, if applicable

⁴ TurbolonSpray[®] probe

⁵ APCI probe

⁶ NanoSpray[®] ion source

Parameter	Access ID	Positive Ion Mode			Negative Ion Mode			
ID		Q1	TOF MS	MS/MS	Q1	TOF MS	MS/MS	
IHT ⁶	IHT	150	150	150	150	150	150	
		0 to 225						
OR	DP	80	100	80	-80	-80	-80	
(DP = OR - Q0)		0 to 300	0 to 300	0 to 300	–300 to 0	–300 to 0	-300 to 0	
Q0	Q0	40	N/A	N/A	-40	N/A	N/A	
		-300 to 300			-300 to 300			
Q0	CE	N/A	10	30	N/A	-10	-30	
(CE = Q0 - RO2)			5 to 150	0 to 150		–150 to –5	–150 to 0	
CES	CES	N/A	N/A	0	N/A	N/A	0	
				0 to 50			0 to 50	
RO1	IE1	2	2	2	-2	-2	-2	
(IE1 = Q0 - RO1)		-300 to 300						
IQ2	IQ2	0	25	0	0	-25	0	
		-300 to 300						
CAD	CAD	6	6	6	6	6	6	
		0 to 12						
RO2	RO2	30	30	30	-30	-30	-30	
		–57 to 57						
IRD	IRD	30	30	30	30	30	30	
		6 to 1000						
IRW	IRW	15	15	15	15	15	15	
		5 to 1000						
LNR	LNR	-15000	-15000	-15000	15000	15000	15000	
		-20000 to 20000						

Table F-1 TripleTOF[®] System Parameters (continued)

Parameter	Access ID	Positive Ion Mode			Negative Ion Mode			
ID		Q1	TOF MS	MS/MS	Q1	TOF MS	MS/MS	
CEM	CEM	2300	2200	2200	2200	2200	2200	
		0 to 3000	0 to 3000	0 to 3000	0 to 3000	0 to 3000	0 to 3000	
OFS	OFS	30	30	30	-60	-60	-60	
		-100 to 100	-100 to 100	-100 to 100	-100 to 100	-100 to 100	-100 to 100	
MGV	MGV	-975	-975	-975	975	975	975	
		–2000 to 2000	–2000 to 2000	–2000 to 2000	–2000 to 2000	–2000 to 2000	–2000 to 2000	
MPV	MPV	2600	2600	2600	-2600	-2600	-2600	
		–4000 to 4000	–4000 to 4000	-4000 to 4000	–4000 to 4000	–4000 to 4000	–4000 to 4000	

Table F-1 TripleTOF[®] System Parameters (continued)
6500 and 6500⁺ Series System Parameters

The first number under each scan type is the preset value. The range of numbers is the accessible range for each parameter.

Parameter ID	Access ID	Positive Ion Mode			Nega	ative Ion N	/lode
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		20 to 55	20 to 55	20 to 55	20 to 55	20 to 55	20 to 55
CAD ^{7,8}	CAD ^{7,8}	0	6	Med	0	6	Med
		N/A	N/A	Low, Medium, High	N/A	N/A	Low, Medium, High
CAD ^{9,10}	CAD ^{9,10}	0	6	9	0	6	9
		N/A	N/A	0 to 12	N/A	N/A	0 to 12
IS ^{11,12,13}	IS ^{11,12,13}	5500	5500	5500	-4500	-4500	-4500
		0 to 5500	0 to 5500	0 to 5500	-4500 to 0	-4500 to 0	-4500 to 0
IS ¹⁴	IS ¹⁴	1500	1500	1500	-1500	-1500	-1500
		0 to 2500	0 to 2500	0 to 2500	-2500 to 0	-2500 to 0	-2500 to 0
IS ¹⁵	IS ¹⁵	1000	1000	1000	-1000	-1000	-1000
		0 to 4000	0 to 4000	0 to 4000	-4000 to 0	-4000 to 0	-4000 to 0

Table G-1 6500 and 6500⁺ Series System Parameters

 $^7\,\,\text{QTRAP}^{\circledast}\,\text{6500}$ or 6500+ system Low Mass (LM)

 8 QTRAP $^{\circ}$ 6500 or 6500+ system High Mass (HM)

9 SCIEX Triple Quad[™] 6500 or 6500+ system (LM)

¹⁰SCIEX Triple Quad[™] 6500 or 6500+ system (LM)

¹¹Turbo V^{TM} ion source

¹²IonDrive[™] Turbo V ion source

¹³TurbolonSpray[®] (TIS) probe

¹⁴PhotoSpray[®] ion source

¹⁵NanoSpray[®] ion source

Parameter ID	Access ID	Positive Ion Mode			Negative Ion Mode			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
NC ^{12,14,17,16}	NC ^{12,14,17,16}	3	3	3	-3	-3	-3	
		0 to 5	0 to 5	0 to 5	–5 to 0	–5 to 0	–5 to 0	
TEM ^{11,12,14,17,13,16}	TEM ^{11,12,14,17,13,16}	0	0	0	0	0	0	
		0 to 750	0 to 750	0 to 750	0 to 750	0 to 750	0 to 750	
OR	DP	100	100	100	-100	-100	-100	
(DP = OR)		0 to 300	0 to 300	0 to 300	-300 to 0	-300 to 0	-300 to 0	
Q0	EP	10	10	10	-10	-10	-10	
(EP = -Q0)		2 to 15	2 to 15	2 to 15	–15 to –2	–15 to –2	–15 to –2	
IQ1	IQ1	Q0 + (-0.5)	Q0 +	Q0 +	Q0 + 0.5	Q0 + 0.5	Q0 + 0.5	
(IQ1 = Q0 +		–0.1 to –2	(0.5)	(0.5)	0.1 to 2	0.1 to 2	0.1 to 2	
offset)			–0.1 to –2	–0.1 to –2				
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8	
(ST = Q0 + offset)		–12 to –5	–12 to –5	-12 to –5	5 to 12	5 to 12	5 to 12	
RO1 (IE1 = Q0 - RO1)	IE1	1 0 to 3	N/A	1 0 to 3	–1 –3 to –0	N/A	–1 –3 to –0	
IQ2	IQ2	Q0+ (–10)	Q0+ (–10)	Q0+ (–10)	Q0 + 10	Q0 + 10	Q0 + 10	
(IQ2 = Q0 + offset)		–30 to –8	–30 to –8	-30 to -8	8 to 30	8 to 30	8 to 30	
RO2	RO2	-20	-20	N/A	20	20	N/A	
		N/A	N/A		N/A	N/A		
RO2	CE	N/A	N/A	30	N/A	N/A	-30	
(CE = Q0 - RO2)				5 to 180			–180 to	
							-5	
ST3	ST3	RO2 – 10	N/A	N/A	RO2 + 10	N/A	N/A	
(ST3 = RO2 + offset)		–30 to –5			5 to 30			

Table G-1 6500 and 6500⁺ Series System Parameters (continued)

¹⁶APCI probe

¹⁷DuoSpray[™] ion source

Parameter ID	Access ID	Positive Ion Mode			Negative Ion Mode			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
ST3	СХР	N/A	15	15	N/A	-15	-15	
(CXP = RO2 - ST3)			0 to 55	0 to 55		–55 to 0	–55 to 0	
RO3	RO3	-50	N/A	N/A	50	N/A	N/A	
		N/A			N/A			
RO3	IE3	N/A	1	1	N/A	-1	-1	
(IE3 = RO2 - RO3)			0 to 5	0 to 5		–5 to 0	–5 to 0	
CEM	CEM	1700	1700	1700	1700	1700	1700	
		0 to 3300	0 to 3300	0 to 3300	0 to 3300	0 to 3300	0 to 3300	
GS1	GS1	20	20	20	20	20	20	
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	
GS2	GS2	0	0	0	0	0	0	
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	
IHT ¹⁵	IHT ¹⁵	150	150	150	150	150	150	
sdp ¹⁷	sdp ¹⁷	1	1	1	1	1	1	
		1 or 2	1 or 2	1 or 2	1 or 2	1 or 2	1 or 2	

Table G-1 6500 and 6500 ⁺ Series System Parameters (contin

Table G-2 6500 and 6500⁺ Series System Parameters for LIT Scan Types Only

Parameter ID	Access ID	Positive Ion Mode	Negative Ion Mode
CAD	CAD	High	High
		Low, Medium, High	Low, Medium, High
AF2 ¹⁸	AF2	0.1	0.1
		0 to 1	0 to 1
AF3	AF3	Mass-Speed Dependent	Mass-Speed Dependent
		0 to 10	0 to 10

¹⁸MS/MS/MS only

Parameter ID	Access ID	Positive Ion Mode	Negative lon Mode
EXB	EXB	Mass-Speed Dependent	Mass-Speed Dependent
		–165 to 0	0 to 165
CES	CES	0	0
		0 to 87.5	0 to 87.5
ROS	CE	10	-10
(Q0 - ROS)		5 to 180	–5 to –180

Table G-2 6500 and 6500⁺ Series System Parameters for LIT Scan Types Only (continued)

Parameter	Access ID	Positive Ion Mode			Negative Ion Mode		
ID		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		10 to 55	10 to 55	10 to 55	10 to 55	10 to 55	10 to 55
CAD	CAD	0	6	Med (9)	0	5	Med (9
		N/A	N/A	0 to 12	N/A	N/A	0 to 12
IS ^{19,20}	IS ^{19,20}	5500	5500	5500	-4500	-4500	-4500
		0 to 5500	0 to 5500	0 to 5500	-4500 to 0	-4500 to 0	-4500 to 0
NC ²¹	NC ²¹	3	3	3	-3	-3	-3
		0 to 5	0 to 5	0 to 5	–5 to 0	–5 to 0	–5 to 0
TEM ^{20,21}	TEM ^{20,21}	0	0	0	0	0	0
		0 to 750	0 to 750	0 to 750	0 to 750	0 to 750	0 to 750
OR	DP	100	100	100	-100	-100	-100
(DP = OR)		0 to 300	0 to 300	0 to 300	-300 to 0	-300 to 0	-300 to 0
Q0	EP	10	10	10	-10	-10	-10
(EP = -Q0)		2 to 15	2 to 15	2 to 15	–15 to –2	–15 to –2	–15 to –2
IQ1	IQ1	Q0 + (-0.5)	Q0 +	Q0 +	Q0 + 0.5	Q0 + 0.5	Q0 + 0.5
(IQ1 = Q0 + offset)		–0.1 to –2	(0.5) 0.1 to2	(0.5) 0.1 to2	0.1 to 2	0.1 to 2	0.1 to 2

Table H-1 5500 Series System Parameters

¹⁹Turbo V[™] ion source

²⁰TurbolonSpray[®] probe

²¹APCI probe

Parameter	Access ID	Positi	Positive Ion Mode			Negative Ion Mode			
ID		Q1	Q3	MS/MS	Q1	Q3	MS/MS		
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8		
(ST = Q0 + offset)		–12 to –5	–12 to –5	-12 to -5	12 to 5	12 to 5	12 to 5		
RO1 (IE1 = Q0 - RO1)	IE1	1 0 to 3	N/A	1 0 to 3	–1 –3 to –0	N/A	1 3 to0		
IQ2	IQ2	Q0+ (-10)	Q0+ (-10)	Q0+ (-10)	Q0 + 10	Q0 + 10	Q0 + 10		
(IQ2 = Q0 + offset)		–30 to –8	–30 to –8	–30 to –8	8 to 30	8 to 30	8 to 30		
RO2	RO2	-20	-20	N/A	20	20	N/A		
		N/A	N/A		N/A	N/A			
RO2	CE	N/A	N/A	30	N/A	N/A	-30		
(CE = Q0 -				5 to 180			–180 to		
RO2)							-5		
ST3	ST3	RO2 – 10	N/A	N/A	RO2 + 10	N/A	N/A		
(ST3 = RO2 + offset)		–30 to –5			5 to 30				
ST3	СХР	N/A	15	15	N/A	-15	-15		
(CXP = RO2 - ST3)			0 to 55	0 to 55		–55 to 0	–55 to 0		
RO3	RO3	-50	N/A	N/A	50	N/A	N/A		
		N/A			N/A				
RO3	IE3	N/A	1	1	N/A	-1	-1		
(IE3 = RO2 - RO3)			0 to 5	0 to 5		–5 to 0	–5 to 0		
DF	DF	-200	-200	-200	200	200	200		
		-300 to 0	-300 to 0	-300 to 0	0 to 300	0 to 300	0 to 300		
CEM	CEM	1800	1800	1800	1800	1800	1800		
		0 to 3300	0 to 3300	0 to 3300	0 to 3300	0 to 3300	0 to 3300		

Table H-1 5500 Series System Parameters (continued)

Parameter	Access ID	Positive Ion Mode			Negative Ion Mode		
סו		Q1	Q3	MS/MS	Q1	Q3	MS/MS
GS1	GS1	20	20	20	20	20	20
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90
GS2	GS2	0	0	0	0	0	0
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90
IHT	IHT	150	150	150	150	150	150
		0 to 250	0 to 250	0 to 250	0 to 250	0 to 250	0 to 250
sdp ²²	sdp	1	1	1	1	1	1
		1 or 2	1 or 2	1 or 2	1 or 2	1 or 2	1 or 2

Table H-1 5500 Series System Parameters (continued)

Table H-2 QTRAP[®] 5500 System Parameters for LIT Scan Types Only

Parameter ID	Access ID	Positive Ion Mode	Negative Ion Mode
CAD	CAD	High	High
		Low–High	Low–High
AF2 ²³	AF2	0.100	0.100
		0 or 1	0 or 1
AF3	AF3	Mass-Speed Dependent	Mass-Speed Dependent
		0 to 10	0 to 10
EXB	EXB	Mass-Speed Dependent	Mass-Speed Dependent
		–165 to 0	0 to 165
CES	CES	0	0
		0 to 50	0 to 50
ROS	CE	10	-10
(Q0 - ROS)		5 to 180	–5 to –180

 $^{22}\text{DuoSpray}^{\text{TM}}$ ion source (1=TurbolonSpray probe and 2=APCI probe) $^{23}\text{MS/MS/MS}$ only

Parameter	Access ID	Positive Ion Mode			Negative Ion Mode		
סו		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	10	10	10	10	10	10
		10 to 50	10 to 50	10 to 50	10 to 50	10 to 50	10 to 50
CAD	CAD	0	1	4	0	1	4
		N/A	0 to 12	0 to 10	N/A	0 to 12	0 to 12
IS ^{24,25}	IS ^{24,25}	5500	5500	5500	-4500	-4500	-4500
		0 to 5500	0 to 5500	0 to 5500	-4500 to 0	-4500 to 0	-4500 to 0
NC ²⁶	NC ²⁶	3	3	3	-3	-3	-3
		0 to 5	0 to 5	0 to 5	–5 to 0	–5 to 0	–5 to 0
TEM ^{25,26}	TEM ^{25,26}	0	0	0	0	0	0
		0 to 750	0 to 750	0 to 750	0 to 750	0 to 750	0 to 750
OR	DP	120	120	120	-100	-100	-100
(DP = OR)		0 to 400	0 to 400	0 to 400	-400 to 0	-400 to 0	-400 to 0
Q0	EP	10	10	10	-10	-10	-10
(EP = -Q0)		15 to 2	15 to 2	15 to 2	–15 to –2	–15 to –2	–15 to –2
IQ1	IQ1	Q0 + (-1)	Q0 + (-1)	Q0 + (-1)	Q0 + 1	Q0 + 1	Q0 + 1
(IQ1 = Q0 + offset)		–0.5 to –2	–0.5 to –2	–0.5 to –2	0.5 to 2	0.5 to 2	0.5 to 2

Table I-1 API 5000[™] System Parameters

 $^{\rm 24} Turbo V^{^{\rm TM}}$ ion source

²⁵TurbolonSpray[®] probe

²⁶APCI probe

Parameter	Access ID	Positive Ion Mode			Negative Ion Mode			
ID		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
ST	ST	Q0 + (-7)	Q0 + (-7)	Q0 + (-7)	Q0 + 7	Q0 + 7	Q0 + 7	
(ST = Q0 + offset)		–12 to –5	–12 to –5	-12 to –5	12 to 5	12 to 5	12 to 5	
RO1 (IE1 = Q0 - RO1)	IE1	1 0.5 to 2	N/A	1 0.5 to 2	-1 -2 to -0.5	N/A	-1 -2 to -0.5	
RO1	RO1	N/A	Q0 + (-2)	N/A	N/A	Q0 + 2	N/A	
(IE1 = Q0 + offset)			–0.5 to –2			0.5 to 2		
IQ2	IQ2	Q0+ (–20)	Q0+ (–20)	Q0+ (-20)	Q0 + 20	Q0 + 20	Q0 + 20	
(IQ2 = Q0 + offset)		-100 to -8	N/A	N/A	100 to 8	N/A	N/A	
RO2	RO2	-100	-20	N/A	100	20	N/A	
		-200 to 200	–145 to –2		–200 to 200	2 to 145		
RO2	CE	N/A	N/A	30	N/A	N/A	-30	
(CE = Q0 -				5 to 130			–130 to	
RO2)							-5	
ST3	ST3	-120	N/A	N/A	N/A	N/A	N/A	
		–200 to 200						
ST3	СХР	N/A	20	15	N/A	-20	-15	
(CXP = RO2 - ST3)			0 to 55	0 to 55		–55 to 0	–55 to 0	
RO3	RO3	-150	N/A	N/A	100	N/A	N/A	
		-200 to 200			–200 to 200			
RO3	IE3	N/A	2	2	N/A	-1.5	-1.5	
(IE3 = RO2 - RO3)			–0.5 to 5	–0.5 to 5		–5 to 0	–5 to 0	

Table I-1 API 5000[™] System Parameters (continued)

Parameter	Access ID	Positi	Positive Ion Mode			Negative Ion Mode		
ID		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
DF	DF	-200	-200	-200	200	200	200	
		-400 to 0	-400 to 0	-400 to 0	0 to 400	0 to 400	0 to 400	
CEM	CEM	2000	2000	2000	2000	2000	2000	
		500 to 3297	500 to 3297	500 to 3297	500 to 3297	500 to 3297	500 to 3297	
GS1	GS1	20	20	20	15	15	20	
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	
GS2	GS2	0	0	0	0	0	0	
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	
ihe ²⁷	ihe	1	1	1	1	1	1	
		0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	
IHT	IHT	40	40	40	40	40	40	
		0 to 250	0 to 250	0 to 250	0 to 250	0 to 250	0 to 250	
svp ²⁸	svp	1	1	1	1	1	1	
		1 or 2	1 or 2	1 or 2	1 or 2	1 or 2	1 or 2	

Table I-1 API 5000[™] System Parameters (continued)

 $^{\rm 27}1{=}ON$ and $0{=}OFF$

 $^{28}\text{DuoSpray}^{^{\text{TM}}}$ ion source (1=TurbolonSpray $^{^{\otimes}}$ and 2=APCI probe)

Parameter ID	Access ID	Posi	tive lon M	lode	Nega	ative Ion N	tive lon Mode	
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
CUR	CUR	20	20	20	20	20	20	
		10 to 55	10 to 55					
CAD	CAD	0	6	Medium	0	6	Medium	
		N/A	N/A	(9)	N/A	N/A	(9)	
				0 to 12			0 to 12	
IS ^{29,30}	IS ^{29,30}	5500	5500	5500	-4500	-4500	-4500	
		0 to 5500	0 to 5500	0 to 5500	-4500 to 0	-4500 to 0	-4500 to 0	
NC ³¹	NC ³¹	3	3	3	-3	-3	-3	
		0 to 5	0 to 5	0 to 5	–5 to 0	–5 to 0	–5 to 0	
TEM ^{30,31}	TEM ^{30,31}	0	0	0	0	0	0	
		0 to 750	0 to 750					
OR	DP	100	100	100	-100	-100	-100	
(DP = OR)		0 to 300	0 to 300	0 to 300	-300 to 0	-300 to 0	-300 to 0	
QO	EP	10	10	10	-10	-10	-10	
(EP = -Q0)		2 to 15	2 to 15	2 to 15	–15 to –2	–15 to –2	–15 to –2	
IQ1	IQ1	Q0 +	Q0 +	Q0 +	Q0 + 0.5	Q0 + 0.5	Q0 + 0.5	
(IQ1 = Q0 + offset)		(–0.5)	(-0.5)	(–0.5)	0.1 to 2	0.1 to 2	0.1 to 2	
		–0.1 to –2	–0.1 to –2	–0.1 to –2				

Table J-1 4500 Series Instrument Parameters

²⁹Turbo V[™] ion source

³⁰TurbolonSpray[®] probe

³¹APCI probe

Parameter ID	Access ID	Posi	tive lon M	ode	Negative Ion Mode			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8	
(ST = Q0 + offset)		–12 to –5	–12 to –5	-12 to –5	12 to 5	12 to 5	12 to 5	
RO1	IE1	1	N/A	1	-1	N/A	-1	
(IE1 = Q0 - RO1)		0 to 3		0 to 3	–3 to 0		–3 to 0	
IQ2	IQ2	Q0 +(-10)	Q0 + (-11)	Q0 + (-10)	Q0 + 10	Q0 + 10	Q0 + 10	
(ST = Q0 + offset)		–30 to –8	–30 to –8	–30 to –8	8 to 30	8 to 30	8 to 30	
RO2	RO2	-20	-20	N/A	20	20	N/A	
		N/A	N/A		N/A	N/A		
RO2	CE	N/A	N/A	30	N/A	N/A	-30	
(CE = QO - RO2)				5 to 180			–180 to –5	
ST3	ST3	RO2 – 10	N/A	N/A	RO2 + 10	N/A	N/A	
(ST3 = RO2 + offset)		–30 to –5			5 to 30			
ST2	СХР	N/A	15	15	N/A	-15	-15	
(CXP = RO2 - ST3)			0 to 55	0 to 55		–55 to 0	–55 to 0	
RO3	RO3	-50	N/A	N/A	50	N/A	N/A	
		Fixed			Fixed			
RO3	IE3	N/A	1	1	N/A	-1	-1	
(IE3 = RO2 - RO3)			0 to 5	0 to 5		–5 to 0	–5 to 0	
DF	DF	-200	-200	-200	200	200	200	
		-300 to 0	-300 to 0	-300 to 0	0 to 300	0 to 300	0 to 300	
CEM	CEM	2000	2000	2000	2000	2000	2000	
		0 to 3300	0 to 3300	0 to 3300	0 to 3300	0 to 3300	0 to 3300	
GS1	GS1	20	20	20	20	20	20	
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	
GS2	GS2	0	0	0	0	0	0	
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	

Table J-1 4500 Series Instrument Parameters (continued)	Table J-1	4500 Series	Instrument	Parameters	(continued)
---	-----------	-------------	------------	------------	-------------

Parameter ID	Access ID	Positive Ion Mode			Negative Ion Mode		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
IHT	IHT	150	150	150	150	150	150
		0 to 250	0 to 250	0 to 250	0 to 250	0 to 250	0 to 250
sdp ³²	sdp	1	1	1	1	1	1
		1 or 2	1 or 2	1 or 2	1 or 2	1 or 2	1 or 2

 Table J-1 4500 Series Instrument Parameters (continued)

Table J-2 QTRAP[®]4500 System Parameters for LIT Scan Types Only

Parameter ID	Access ID	Positive Ion Mode	Negative Ion Mode
CAD	CAD	High	High
		Low–High	Low–High
AF2 ³³	AF2	0.100	0.100
		0 or 0.2	0 or 0.2
AF3	AF3	Mass-Speed Dependent	Mass-Speed Dependent
		0 to 10	0 to 10
EXB	EXB	Mass-Speed Dependent	Mass-Speed Dependent
		–165 to 0	0 to 165
CES	CES	0	0
		0 to 50	0 to 50
ROS	CE	10	-10
(Q0 - ROS)		5 to 180	–180 to –5

 $^{32}\text{DuoSpray}^{\text{TM}}$ ion source (1=TurbolonSpray probe and 2=APCI probe) $^{33}\text{MS/MS/MS}$ only

Parameter	Access ID	Positi	ve lon Mo	de	Negative Ion Mode		
ID		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		10 to 50	10 to 50	10 to 50	10 to 50	10 to 50	10 to 50
CAD ³⁴	CAD	0	1	4	0	1	4
		N/A	0 to 12	0 to 10	N/A	0 to 12	0 to 12
CAD ³⁵	CAD	0	1	6	0	1	6
		N/A	0 to 12	0 to 10	N/A	0 to 12	0 to 12
IS ^{36,37}	IS ^{36,37}	5500	5500	5500	-4500	-4500	-4500
		0 to 5500	0 to 5500	0 to 5500	-4500 to 0	-4500 to 0	-4500 to 0
NC ³⁸	NC ³⁸	3	3	3	-3	-3	-3
		0 to 5	0 to 5	0 to 5	–5 to 0	–5 to 0	–5 to 0
TEM ^{37,38}	TEM ^{37, 38}	0	0	0	0	0	0
		0 to 750	0 to 750	0 to 750	0 to 750	0 to 750	0 to 750
OR	DP	20	20	20	-20	-20	-20
(DP = OR)		0 to 400	0 to 400	0 to 400	-400 to 0	-400 to 0	-400 to 0
Q0	EP	10	10	10	-10	-10	-10
(EP = -Q0)		2 to 15	2 to 15	2 to 15	–15 to –2	–15 to –2	–15 to –2

Table K-1 4000 Series Instrument Parameters

³⁴API 4000[™] systems

³⁵4000 QTRAP[®] systems

³⁶Turbo V[™] ion source

³⁷TurbolonSpray[®] probe

³⁸APCI probe

Parameter	Access ID	Positi	ve lon Mo	de	Negative Ion Mode			
ID		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
IQ1	IQ1	Q0 + (-1)	Q0 + (-1)	Q0 + (-1)	Q0 + 1	Q0 + 1	Q0 + 1	
(IQ1 = Q0 + offset)		–0.5 to –2	-0.5 to -2	–0.5 to –2	0.5 to 2	0.5 to 2	0.5 to 2	
ST	ST	Q0 + (-5)	Q0 + (-5)	Q0 + (-5)	Q0 + 5	Q0 + 5	Q0 + 5	
(ST = Q0 + offset)		7 to4	-7 to -4	-7 to -4	4 to 7	4 to 7	4 to 7	
RO1 (IE1 = Q0 - RO1)	IE1	1 0.5 to 2	N/A	1 0.5 to 2	-1 -2 to -0.5	N/A	-1 -2 to -0.5	
RO1	RO1	N/A	Q0 + (-1)	N/A	N/A	Q0 + 1	N/A	
(IE1 = Q0 + offset)			–0.5 to –2			0.5 to 2		
IQ2	IQ2	Q0+ (-8)	Q0+ (-8)	Q0+ (8)	Q0 + 8	Q0 + 8	Q0 + 8	
(IQ2 = Q0 + offset)		N/A	N/A	N/A	N/A	N/A	N/A	
RO2	RO2	-60	-20	N/A	60	20	N/A	
		–145 to 20	–145 to –20		60 to 100	20 to 145		
RO2	CE	N/A	N/A	30	N/A	N/A	-30	
(CE = Q0 -				5 to 130			–130 to	
RO2)							-5	
ST3	ST3	-80	N/A	N/A	80	N/A	N/A	
		-80 to 200			80 to 200			
ST3	СХР	N/A	15	15	N/A	-15	-15	
(CXP = RO2 - ST3)			0 to 55	0 to 55		–55 to 0	–55 to 0	
RO3	RO3	-62	N/A	N/A	62	N/A	N/A	
		-60 to 200			60 to 200			

Table K-1 4000 Series Instrument Parameters (continued)

Parameter	Access ID	Positi	de	Negative Ion Mode			
ID		Q1	Q3	MS/MS	Q1	Q3	MS/MS
RO3	IE3	N/A	2	2	N/A	-1.5	-1.5
(IE3 = RO2 - RO3)			–0.5 to 5	–0.5 to 5		–5 to 0	–5 to 0
C2	C2	RO3 + 0	RO3 + 0	RO3 + 0	RO3 + 0	RO3 + 0	RO3 + 0
		N/A	N/A	N/A	N/A	N/A	N/A
DF	DF	0	0	0	0	0	0
		-400 to 0	-400 to 0	-400 to 0	0 to 400	0 to 400	0 to 400
CEM	CEM	1800	1800	1800	1800	1800	1800
		500 to 3297	500 to 3297	500 to 3297	500 to 3297	500 to 3297	500 to 3297
GS1	GS1	20	20	20	20	20	20
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90
GS2	GS2	0	0	0	0	0	0
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90
ihe ³⁹	ihe	1	1	1	1	1	1
		0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1
IHT	IHT	40	40	40	40	40	40
		0 to 250	0 to 250	0 to 250	0 to 250	0 to 250	0 to 250
svp ⁴⁰	svp	1	1	1	1	1	1
		1 or 2	1 or 2	1 or 2	1 or 2	1 or 2	1 or 2

Table K-1 4000 Series Instrument Parameters (continued)

³⁹1=ON and 0=OFF

⁴⁰DuoSpray[™] ion source (1=TurbolonSpray[®] probe and 2=APCI probe)

Parameter ID	Access ID	Positive Ion Mode	Negative Ion Mode
CAD	CAD	High	High
		Low–High	Low–High
AF2 ⁴¹	AF2	100	100
		0 to 200	0 to 200
AF3	AF3	Mass-Speed Dependent	Mass-Speed Dependent
		0 to 5	0 to 5
EXB	EXB	Mass-Speed Dependent	Mass-Speed Dependent
		-200 to 0	0 to 200
CES	CES	0	0
		–50 to 50	–50 to 50
ROS	CE	30	-30
(Q0 - ROS)		5 to 130	–130 to –5

Table K-2 4000 QTRAP [®]	System Parameters for LIT Scan T	ypes Only
······································	- j	J J

⁴¹MS/MS/MS only

SCIEX Triple Quad[™] 3500 System Parameters

The first number under each scan type is the preset value. The range of numbers is the accessible range for each parameter.

Parameter ID	Access ID	Posi	itive Ion M	ode	Negative Ion Mode			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
CUR	CUR	20	20	20	20	20	20	
		10 to 55	10 to 55	10 to 55	10 to 55	10 to 55	10 to 55	
CAD	CAD	0	6	Medium	0	6	Medium	
		N/A	N/A	(9)	N/A	N/A	(9)	
				0 to 12			0 to 12	
IS ^{42,43}	IS ^{42,42,43}	5500	5500	5500	-4500	-4500	-4500	
		0 to 5500	0 to 5500	0 to 5500	-4500 to 0	-4500 to 0	-4500 to 0	
NC ⁴⁴	NC ⁴⁴	3	3	3	-3	-3	-3	
		0 to 5	0 to 5	0 to 5	–5 to 0	–5 to 0	–5 to 0	
TEM ^{43,44}	TEM ^{43,44}	0	0	0	0	0	0	
		0 to 750	0 to 750	0 to 750	0 to 750	0 to 750	0 to 750	
OR	DP	100	100	100	-100	-100	-100	
(DP = OR)		0 to 300	0 to 300	0 to 300	-300 to 0	-300 to 0	-300 to 0	
Q0	EP	10	10	10	-10	-10	-10	
(EP = -Q0)		2 to 15	2 to 15	2 to 15	–15 to –2	–15 to –2	–15 to –2	
IQ1	IQ1	Q0 +	Q0 +	Q0 +	Q0 + 0.5	Q0 + 0.5	Q0 + 0.5	
(IQ1 = Q0 + offset)		(–0.5)	(–0.5)	(–0.5)	0.1 to 2	0.1 to 2	0.1 to 2	
		–0.1 to –2	–0.1 to –2	–0.1 to –2				

Table L-1 SCIEX Triple Quad[™] 3500 System Parameters

 $^{42}\mbox{Turbo}\ V^{\mbox{\scriptsize IM}}$ ion source

⁴³TurbolonSpray[®] probe

⁴⁴APCI probe

Parameter ID	Access ID	Positive Ion Mode		Negative lon Mode			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8
(ST = Q0 + offset)		–12 to –5	–12 to –5	-12 to –5	12 to 5	12 to 5	12 to 5
RO1	IE1	1	N/A	1	-1	N/A	-1
(IE1 = Q0 - RO1)		0 to 3		0 to 3	–3 to 0		–3 to 0
IQ2	IQ2	Q0 +(-10)	Q0 + (-11)	Q0 + (-10)	Q0 + 10	Q0 + 10	Q0 + 10
(ST = Q0 + offset)		–30 to –8	–30 to –8	–30 to –8	8 to 30	8 to 30	8 to 30
RO2	RO2	-20	-20	N/A	20	20	N/A
		N/A	N/A		N/A	N/A	
RO2	CE	N/A	N/A	30	N/A	N/A	-30
(CE = QO - RO2)				5 to 180			–180 to –5
ST3	ST3	RO2 – 10	N/A	N/A	RO2 + 10	N/A	N/A
(ST3 = RO2 + offset)		–30 to –5			5 to 30		
ST2	СХР	N/A	15	15	N/A	-15	-15
(CXP = RO2 - ST3)			0 to 55	0 to 55		–55 to 0	–55 to 0
RO3	RO3	-50	N/A	N/A	50	N/A	N/A
		Fixed			Fixed		
RO3	IE3	N/A	1	1	N/A	-1	-1
(IE3 = RO2 - RO3)			0 to 5	0 to 5		–5 to 0	–5 to 0
DF	DF	-200	-200	-200	200	200	200
		-300 to 0	-300 to 0	-300 to 0	0 to 300	0 to 300	0 to 300
CEM	CEM	2000	2000	2000	2000	2000	2000
		0 to 3300	0 to 3300	0 to 3300	0 to 3300	0 to 3300	0 to 3300
GS1	GS1	20	20	20	20	20	20
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90

Table L-1 SCIEX Triple Quad[™] 3500 System Parameters (continued)

Parameter ID	Access ID	Positive Ion Mode		Negative Ion Mode			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
GS2	GS2	0	0	0	0	0	0
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90
IHT	IHT	150	150	150	150	150	150
		0 to 250	0 to 250	0 to 250	0 to 250	0 to 250	0 to 250

Table L-1 SCIEX Triple Quad[™] 3500 System Parameters (continued)

Parameter	Access ID	Positive Ion Mode			Negative Ion Mode		
ID		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		10 to 50	10 to 50	10 to 50	10 to 50	10 to 50	10 to 50
CAD ⁴⁵	0	2	3	0	2	3	
	Fixed	Fixed	0 to 12	Fixed	Fixed	0 to 12	
CAD ⁴⁶	0	2	Medium	0	2	Medium	
	Fixed	Fixed	Low, Medium, High	Fixed	Fixed	Low, Medium, High	
1S ⁴⁷	IS ⁴⁷	5500	5500	5500	-4200	-4200	-4200
		0 to 5500	0 to 5500	0 to 5500	-4500 to 0	-4500 to 0	-4500 to 0
1S ⁴⁸	1S ⁴⁸	1000	1000	1000	-1000	-1000	-1000
		0 to 5500	0 to 5500	0 to 5500	-4500 to 0	-4500 to 0	-4500 to 0
1S ⁴⁹	IS ⁽⁴⁾	1500	1500	1500	-1500	-1500	-1500
		0 to 2500	0 to 2500	0 to 2500	-2500 to 0	-2500 to 0	-2500 to 0
NC ⁵⁰	NC ⁵⁰	1	1	1	-1	-1	-1
		0 to 5	0 to 5	0 to 5	–5 to 0	–5 to 0	–5 to 0

Table M-1 3200 Series System Parameters

⁴⁵API 3200[™] systems

⁴⁶3200 QTRAP[®] systems

⁴⁷Turbo V^{TM} ion source

⁴⁸NanoSpray[®] ion source

⁴⁹PhotoSpray[®] ion source

⁵⁰DuoSpray[™] ion source (1=TurbolonSpray[®] probe and 2=APCI probe)

Parameter	Access ID	Positive Ion Mode			Negative Ion Mode			
ID		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
NC ⁵¹	NC ⁵¹	1	3	3	-3	-3	-3	
		0 to 5	0 to 5	0 to 5	–5 to 0	–5 to 0	–5 to 0	
TEM ^{47,50, 49}	TEM ^{48,50}	0	0	0	0	0	0	
		0 to 750	0 to 750					
OR	DP	20	20	20	-20	-20	-20	
(DP = OR)		0 to 400	0 to 400	0 to 400	-400 to 0	-400 to 0	-400 to 0	
Q0	EP	10	10	10	-10	-10	-10	
(EP = -Q0)		1 to 12	1 to 12	1 to 12	–12 to –1	–12 to –1	–12 to –1	
IQ1	IQ1	Q0 + (-1)	Q0 + (-1)	Q0 + (-1)	Q0 + 1	Q0 + 1	Q0 + 1	
(IQ1 = Q0 + offset)		−2 to −1	–2 to –1	–2 to –1	1 to 2	1 to 2	1 to 2	
ST	ST	Q0 + (-5)	Q0 + (-5)	Q0 + (-5)	Q0 + 5	Q0 + 5	Q0 + 5	
(ST = Q0 + offset)		–8 to –2	—8 to —2	–8 to –2	2 to 8	2 to 8	2 to 8	
RO1 (IE1 = Q0 - RO1)	IE1	1 0.5 to 2	N/A	1 0.5 to 2	-1 -2 to -0.5	N/A	-1 -2 to -0.5	
RO1	RO1	N/A	Q0 + (-2)	N/A	N/A	Q0 + 2	N/A	
(IE1 = Q0 + offset)			–2 to –0.5			0.5 to 2		
IQ2 (CEP = Q0 -	CEP	Mass Dependent	N/A	Mass Dependent	Mass Dependent	N/A	Mass Dependent	
IQ2)		0 to 188		0 to 188	–188 to 0		-188 to 0	
IQ2 (IQ2 = RO2 + offset)	IQ2	N/A	RO2 + 0 0 to 2	N/A	N/A	RO2 + 0 -2 to 0	N/A	

Table M-1 3200 Series System Parameters (continued)

⁵¹APCI probe

⁵²TurbolonSpray[®] probe

Parameter	Access ID	Positive Ion Mode		Negative Ion Mode			
ID		Q1	Q3	MS/MS	Q1	Q3	MS/MS
RO2	CE	N/A	N/A	30	N/A	N/A	-30
(CE = Q0 –				5 to 130			–130 to
RO2)							-5
RO2	RO2	-100	-20	N/A	100	20	N/A
		–150 to 20	–130 to –5		20 to 150	5 to 130	
IQ3	СХР	N/A	Mass	5	N/A	Mass	-5
(CXP = RO2 - 103)			Dependent	0 to 58		Dependent	-58 to 0
			0 to 58			-58 to 0	
IQ3	IQ3	-125	N/A	N/A	125	N/A	N/A
		-200 to -100			100 to 200		
RO3	IE3	N/A	4	4	N/A	-4	-4
(IE3 = RO2 - RO3)			0.5 to 8	0.5 to 8		–8 to 0.5	–8 to 0.5
RO3	RO3	-150	N/A	N/A	150	N/A	N/A
		-200 to -100			150 to 200		
EX	EX	-200	-200	-200	200	200	200
		N/A	N/A	N/A	N/A	N/A	N/A
DF	DF	-100	-100	-100	100	100	100
		-400 to 0	-400 to 0	-400 to 0	0 to 400	0 to 400	0 to 400
CEM	CEM	1800	1800	1800	1800	1800	1800
		500 to 3297	500 to 3297	500 to 3297	500 to 3297	500 to 3297	500 to 3297
GS1	GS1	20	20	20	20	20	20
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90
GS2	GS2	0	0	0	0	0	0
		0 to 90	0 to 90	0 to 90	0 to 90	0 to 90	0 to 90

Table M-1 3200 Series System Parameters (continued)

Parameter	Access ID	Positi	Positive Ion Mode			Negative Ion Mode		
ID		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
ihe⁵³	ihe	1	1	1	1	1	1	
		0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	
C2	C2	0	0	0	0	0	0	
		N/A	N/A	N/A	N/A	N/A	N/A	
XA3	XA3	0	0	0	0	0	0	
		N/A	N/A	N/A	N/A	N/A	N/A	
XA2	XA2	0	0	0	0	0	0	
		N/A	N/A	N/A	N/A	N/A	N/A	
IHT ⁴⁸	IHT	40	40	40	40	40	40	
		0 to 250	0 to 250	0 to 250	0 to 250	0 to 250	0 to 250	
svp ⁵⁴	svp	1	1	1	1	1	1	
		1 or 2	1 or 2	1 or 2	1 or 2	1 or 2	1 or 2	

Table M-1 3200 Series System Parameters (continued)

Table M-2 3200 QTRAP[®] System Parameters for LIT Scan Types Only

Parameter ID	Access ID	Positive Ion Mode	Negative Ion Mode
CAD	CAD	High	High
		Low–Medium–High	Low–High
FI2	CEP	Mass-Speed Dependent	Mass-Speed Dependent
		0 to 188	–188 to 0
ROS	CE	30	-30
(Q0 – RO2)		5 to 130	–5 to –130
AF2 ⁵⁵	AF2	100	100
		0 to 200	0 to 200

⁵³1=ON and 0=OFF

 $^{54}\text{DuoSpray}^{\text{TM}}$ ion source (1=TurbolonSpray $^{^{\otimes}}$ probe and 2=APCI probe) $^{55}\text{MS/MS/MS}$ only

Parameter ID	Access ID	Positive Ion Mode	Negative Ion Mode
AF3	AF3	Mass-Speed Dependent	Mass-Speed Dependent
		0 to 5	0 to 5
EXB	EXB	Mass-Speed Dependent	Mass-Speed Dependent
		-200 to 0	0 to 200
DF	DF	-400	400
		N/A	N/A
C2B	C2B	Mass-Speed Dependent	Mass-Speed Dependent
		-500 to 500	–500 to 500
CES	CES	0	0
		-50 to 50	–50 to 50

Table M-2 3200 QTRAP[®] System Parameters for LIT Scan Types Only (continued)

Masses for [Glu¹]-Fibrinopeptide B

Charge	(M+nH)n ⁺ Monoisotopic m/z
+1	1570.6768
+2	785.8421*
+3	524.2305*
+4	393.4247
+5	—
+6	

Table N-1 [Glu1]-Fibrinopeptide B (Monoisotopic Molecular Weight, 1569.6696 Da)

* Indicates more commonly observed charged states.

Table N-2 contains the exact monoisotopic masses for the theoretical cleavages of [Glu1]-Fibrinopeptide B, as calculated for positive ion mode.

Table N-2 Theoretical Frag	ment lons of [Glu1]-Fibrinopeptide B
----------------------------	--------------------------------------

b ions		y ions		
m/z	Fragment	m/z	Fragment	
—	-	1570.6768	EGVNDNEEGFFSAR	
130.0499	E	1441.6342	GVNDNEEGFFSAR	
187.0713	EG	1384.6128	VNDNEEGFFSAR	
286.1397	EGV	1285.5444	NDNEEGFFSAR	
400.1827	EGVN	1171.5014	DNEEGFFSAR	
515.2096	EGVND	1056.4745	NEEGFFSAR	
629.2525	EGVNDN	942.4316	EEGFFSAR	
758.2951	EGVNDNE	813.3890	EGFFSAR	
887.3377	EGVNDNEE	684.3464	GFFSAR	

b i	ons	y ions		
944.3592	EGVNDNEEG	627.3249	FFSAR	
1091.4276	EGVNDNEEGF	480.2565	FSAR	
1238.4960	EGVNDNEEGFF	333.1881	SAR	
1325.5281	EGVNDNEEGFFS	246.1561	AR	
1396.5652	EGVNDNEEGFFSA	175.1190	R	
1552.6663	EGVNDNEEGFFSAR	—	—	

Table N-2 Theoretical Fragment Ions of [Glu1]-Fibrinopeptide B (continued)

Prepare a Reserpine Dilution 60:1 (10 pg/µL)

Follow this procedure to create the reserpine dilution from the reserpine 1 pmol/µL (PN 4405236).

- 1. Make the stock solution by adding 4.0 mL of dilution solvent to the vial.
- 2. Cap the vial and mix the contents gently or sonicate the vial to dissolve the material.

This step produces a 1 pmol/ μ L solution of reserpine.

- 3. Put 1 mL of reserpine stock solution in a clean vial and add 5 mL of dilution solvent.
- 4. Combine 1 mL of the 6:1 dilution and 9 mL of dilution solvent.

This step produces a 60:1 reserpine dilution.