

Sorgente di ionizzazione

Sistemi SCIEX Triple Quad[™], QTRAP[®] e TripleTOF[®]

Test, Specifiche e Registro dati

Questo documento viene fornito ai clienti che hanno acquistato apparecchiature SCIEX come guida all'utilizzo e al funzionamento delle stesse. Questo documento è protetto da copyright e qualsiasi riproduzione, parziale o totale, dei suoi contenuti è severamente vietata, a meno che SCIEX non abbia autorizzato per iscritto diversamente.

Il software menzionato in questo documento viene fornito con un contratto di licenza. La copia, le modifiche e la distribuzione del software con qualsiasi mezzo sono vietate dalla legge, salvo diversa indicazione contenuta nel contratto di licenza. Inoltre, il contratto di licenza può vietare che il software venga disassemblato, sottoposto a reverse engineering o decompilato per qualsiasi scopo. Le garanzie sono indicate in questo documento.

Alcune parti di questo documento possono far riferimento a produttori terzi e/o a loro prodotti, che possono contenere parti i cui nomi siano registrati come marchi e/o utilizzati come marchi dei rispettivi proprietari. Tali riferimenti mirano unicamente a designare i prodotti di terzi forniti da SCIEX e incorporati nelle sue apparecchiature e non implicano alcun diritto e/o licenza circa l'utilizzo o il permesso concesso a terzi di utilizzare i nomi di tali produttori e/o dei loro prodotti come marchi.

Le garanzie di SCIEX sono limitate alle garanzie esplicite fornite al momento della vendita o della licenza dei propri prodotti e costituiscono le uniche ed esclusive dichiarazioni, garanzie e obbligazioni di SCIEX. SCIEX non rilascia altre garanzie di nessun tipo, né espresse né implicite, comprese, a titolo di esempio, garanzie di commerciabilità o di idoneità per un particolare scopo, derivanti da leggi o altri atti normativi o dovute a pratiche e usi commerciali, tutte espressamente escluse, né si assume alcuna responsabilità o passività potenziale, compresi danni indiretti o conseguenti, per qualsiasi utilizzo da parte dell'acquirente o per eventuali circostanze avverse conseguenti.

Solo per scopi di ricerca. Non usare in procedure diagnostiche.

AB Sciex opera nel mercato come SCIEX.

I marchi qui menzionati sono di proprietà di AB Sciex Pte. Ltd. o dei rispettivi titolari.

AB SCIEX[™] è utilizzato su licenza.

© 2019 AB Sciex

AB Sciex Pte. Ltd. Blk33, #04-06 Marsiling Industrial Estate Road 3 Woodlands Central Industrial Estate, Singapore 739256

Contenuto

1 Test della sorgente di ionizzazione IonDrive TM Turbo V	5
Preparazione del test	6
Test della sonda TurbolonSpray	7
Test della sonda APCI	9
2 Test per la sorgente di ionizzazione Turbo V [™]	11
Preparazione del test	12
Test della sorgente di ionizzazione su sistemi Triple Quadrupole e QTRAP	14
Test della sonda TurbolonSpray	
Test della sonda APCI	16
Proparazione della coluzione di test	/
Tect della sonda TurbolonSprav	12
Test della sonda APCI	
3 lest per la sorgente di ionizzazione DuoSpray	
Preparazione dei test	
Prenarazione della soluzione di test	25 25
Test della sonda TurbolonSprav	
Test della sonda APCI	
Test della sorgente di ionizzazione su sistemi Triple Quadrupole e QTRAP [®]	
Test della sonda TurboIonSpray [®]	31
Test della sonda APCI	33
4 Test della sorgente di ionizzazione OptiFlow [™] Turbo V	
Preparazione del test	
Test della sorgente di ionizzazione su sistemi Triple Quadrupole e QTRAP [®]	
Test della sonda SteadySpray	
Test della sorgente di ionizzazione sui sistemi TripleTOF	
Test della sonda SteadySpray	40
5 Test per la sorgente di ionizzazione NanoSpray [®]	42
Preparazione del test	43
Preparazione della diluizione di [Glu']-Fibrinopeptide B®	45
Test della sorgente di ionizzazione sui sistemi TripleTOF	
lest e calibrazione in modalita TOF MS	47
(colo sistemi 5600/5600 L o 6600/6600 L)	54
Test e calibrazione in modalità Product Ion	
Test della sorgente di ionizzazione su sistemi Triple Quadrupole e OTRAP	
Test in modalità Q1	61
Test in modalità Q3	66
Test e calibrazione in modalità EPI (solo sistemi <code>QTRAP</code> $\"$ o sistemi	
Triple Quad 5500+ abilitati QTRAP)	68

Contenuto

Test per la sorgente di ionizzazione sui sistemi serie 3200 Preparazione di 2 ml di miscela Renin (500 fmol/µL) Test nelle modalità Q1 e MS2 Test nella modalità EPI (solo sistemi 3200 QTRAP [®]) Dispilere	
Preparazione del test Test della sorgente di ionizzazione	80
7 Suggerimenti per la risoluzione dei problemi	
A Registro dati: sorgente di ionizzazione IonDrive TM Turbo V	
Informazioni sul sistema	
Conclusione	90
Commenti ed eccezioni	91
B Registro dati: sorgente di ionizzazione Turbo V ¹¹¹	92
Conclusione	
Commenti ed eccezioni	94
C Registro dati: sorgente di ionizzazione DuoSpray TM	95
Informazioni sul sistema	95
Conclusione	96
D Registro dati: sorgente di ionizzazione OptiFlow ¹¹¹ Turbo V	98 98
Conclusione	
Commenti ed eccezioni	100
E Registro dati: sorgente di ionizzazione NanoSpray [®]	
Informazioni sul sistema	101
Conclusione Commenti ed eccezioni	106 107
Comment ed eccezion	
Informazioni sul sistema	108 I
Conclusione	109
Commenti ed eccezioni	110
G Parametri del sistema TripleTOF [®]	111
H Parametri dei sistemi serie 6500 e 6500+	115
I Parametri dei sistemi serie 5500 e 5500+	121
J Parametri del sistema API 5000 [™]	126
K Parametri dei sistemi serie 4500	130
L Parametri dei sistemi serie 4000	135
M Parametri dei sistemi SCIEX Triple Quad TM 3500	140
N Parametri dei sistemi serie 3200	144
O Masse per [Glu ¹]-Fibrinopeptide B	151
P Preparazione di una diluizione di reserpina da 60:1 (10 pg/μL)	153

Test della sorgente di ionizzazione IonDrive[™] Turbo V

Questi test riguardano la sorgente di ionizzazione IonDrive[™] Turbo V installata su un sistema serie 6500 o 6500+.

Effettuare questi test in presenza di una qualsiasi delle seguenti situazioni:

- Quando si installa una nuova sorgente di ionizzazione.
- Dopo un lavoro di manutenzione importante sulla sorgente di ionizzazione.
- Ogni volta che sia necessario valutare le prestazioni della sorgente di ionizzazione, prima di iniziare un progetto o come parte della procedura operativa standard.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Utilizzare la sorgente di ionizzazione solo se si hanno la conoscenza e l'esperienza necessarie riguardo l'utilizzo, il contenimento e l'evacuazione dei materiali tossici o nocivi utilizzati con la sorgente di ionizzazione.

AVVERTENZA! Pericolo di perforazione, pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Interrompere l'uso della sorgente di ionizzazione se la finestra della sorgente stessa risulta crepata o rotta, quindi contattare un responsabile dell'assistenza tecnica (FSE) di SCIEX. Qualsiasi materiale tossico o nocivo introdotto nell'apparecchiatura sarà presente nel sistema di scarico della sorgente. Gli scarichi rilasciati dall'apparecchiatura devono essere fatti fuoriuscire dalla stanza. Smaltire gli oggetti taglienti seguendo le procedure di sicurezza previste dal laboratorio.

AVVERTENZA! Pericolo di esposizione ad agenti chimici tossici. Indossare dispositivi di protezione individuale, inclusi camice da laboratorio, guanti e occhiali di sicurezza, per proteggere dall'esposizione gli occhi e la pelle.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. In caso di fuoriuscita di prodotti chimici, consultare le istruzioni contenute nelle schede di sicurezza dei materiali. Accertarsi che il sistema sia in modalità Standby prima di pulire una fuoriuscita vicina alla sorgente di ionizzazione. Usare i dispositivi di protezione individuale appropriati e panni assorbenti per contenere la fuoriuscita e smaltirla secondo le normative locali.

Materiali richiesti

- Solvente della fase mobile: soluzione acetonitrile-acqua 70:30
- Soluzione di test: reserpina 0,0167 pmol/μL (equivalente a 10 pg/μL). Usare la soluzione pre-diluita di reserpina 0,0167 pmol/μL inclusa nel Kit Prodotti Chimici Standard SCIEX (cod. art. 4406127).
- Per i sistemi TripleTOF[®], preparare la soluzione di test dalla miscela renin 0,167 pmol/µL e dal diluente standard fornito nel kit prodotti chimici del sistema SCIEX TripleTOF[®] (cod. art. 4456736)
- Pompa HPLC (per fase mobile)
- Iniettore manuale (Rheodyne Mod. 8125 o equivalente) con un loop da 5 μL o un autocampionatore predisposto per iniezioni da 5 μL
- Tubo in PEEK diametro esterno (d.e.) 1/16 di pollice, diametro interno (d.i.) 0,005"
- Sorgente di ionizzazione con sonda installata
- Siringa da 250 µL a 1000 µL
- Guanti senza polvere (consigliati in neoprene o nitrile)
- Occhiali di sicurezza
- Camice da laboratorio

Nota: tutte le soluzioni di test devono essere tenute in frigorifero. Se rimangono fuori dal frigorifero per più di 48 ore, occorrerà eliminarle e utilizzare soluzioni nuove.

Preparazione del test

AVVERTENZA! Pericolo di scosse elettriche. Evitare il contatto con le alte tensioni presenti sulla sorgente di ionizzazione durante il funzionamento. Porre il sistema in modalità Standby prima di regolare il tubo del campionatore o altre apparecchiature vicino alla sorgente di ionizzazione.

- Quando si installa una nuova sorgente di ionizzazione, assicurarsi che lo spettrometro di massa funzioni in conformità alle specifiche tecniche.
- Installare la sorgente di ionizzazione sullo spettrometro di massa.
- Assicurarsi che la sorgente di ionizzazione sia pienamente ottimizzata. Fare riferimento alla *Guida per l'operatore* per la sorgente di ionizzazione.
- Fare riferimento a tutte le Schede di Sicurezza dei Materiali per le precauzioni necessarie prima di maneggiare soluzioni o solventi chimici.
- Assicurarsi che gli utenti abbiano ricevuto una formazione adeguata sull'uso degli spettrometri di massa e sulle procedure di sicurezza.
- Installare la sonda da sottoporre a test.

• Collegare la giunzione di messa a terra sulla sorgente di ionizzazione a una pompa attraverso un iniettore manuale dotato di un loop da 5 μL o un autocampionatore.

Fare riferimento alla Figura 1-1.

Figura 1-1 Configurazione della pompa LC

Elemento	Descrizione
1	Pompa per ingresso del flusso
2	Iniettore o autocampionatore
3	Sorgente di ionizzazione

Test della sonda TurbolonSpray[®]

AVVERTENZA! Pericolo di superfici calde. Lasciare raffreddare la sorgente di ionizzazione per almeno 90 minuti prima di iniziare qualsiasi procedura di manutenzione. Le superfici della sorgente di ionizzazione raggiungono temperature considerevoli durante il funzionamento.

ATTENZIONE: rischio di danni al sistema. Non introdurre alcun flusso di solvente prima che la sorgente di ionizzazione abbia raggiunto la corretta temperatura.

Fare riferimento alla *Guida per l'operatore* per una panoramica della sorgente di ionizzazione.

- 1. Configurare la pompa HPLC per il rilascio di 0,5 mL/min di fase mobile.
- 2. Nel software Analyst[®] in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 3. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Parametro	Valore
Parametri MS	
Scan Mode	MRM
Q1	609,3
Q3	195,1
Scan Time (seconds)	0,200
Duration (minutes)	10
Parametri Source/Gas	
Curtain Gas [™] flow (CUR)	30 (o come da ottimizzazione)
Temperature (TEM)	700 (o come da ottimizzazione)
lon Source Gas 1 (GS1)	60 (o come da ottimizzazione)
lon Source Gas 2 (GS2)	70 (o come da ottimizzazione)
IonSpray Voltage (IS)	4500 (o come da ottimizzazione)
Parametri Compound	
Declustering Potential (DP)	100 (o come da ottimizzazione)
Collision Energy (CE)	45 (o come da ottimizzazione)
Collision Exit Potential (CXP)	Come da ottimizzazione

Tabella 1-1 Parametri del metodo

4. Fare clic su **Start** per eseguire il metodo.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Assicurarsi che l'elettrodo protenda oltre l'estremità della sonda, in modo da evitare che i vapori pericolosi fuoriescano dalla sorgente. L'elettrodo non deve essere incassato all'interno della sonda.

ATTENZIONE: rischio di danni al sistema. Ottimizzare usando il valore più alto possibile di flusso per il Curtain Gas[™] per evitare di contaminare lo spettrometro di massa.

- 5. Fare clic su **Acquire** per iniziare la raccolta dei dati.
- 6. Eseguire tre iniezioni da 5 µL di soluzione di reserpina.

Suggerimento! Si raccomanda di rabboccare il loop da 5 µL con 30 µL o 40 µL di soluzione.

- 7. Stampare i risultati.
- 8. Calcolare la media delle tre intensità degli ioni e registrare il risultato nel registro dati.
- 9. Verificare che l'intensità media sia accettabile. Fare riferimento a Registro dati: sorgente di ionizzazione IonDrive[™] Turbo V.

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

10. Dopo aver completato i test, arrestare la pompa LC, impostare **TEM** su 0 e lasciar raffreddare la sonda.

Test della sonda APCI

AVVERTENZA! Pericolo di superfici calde. Lasciare raffreddare la sorgente di ionizzazione per almeno 90 minuti prima di iniziare qualsiasi procedura di manutenzione. Le superfici della sorgente di ionizzazione raggiungono temperature considerevoli durante il funzionamento.

ATTENZIONE: rischio di danni al sistema. Non introdurre alcun flusso di solvente prima che la sorgente di ionizzazione abbia raggiunto la corretta temperatura.

Fare riferimento alla *Guida per l'operatore* per una panoramica della sorgente di ionizzazione.

- 1. Configurare la pompa HPLC per il rilascio di 1 mL/min di fase mobile.
- 2. Nel software Analyst[®] in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 3. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Tabella 1-2 Parametri del metodo

Parametro	Valore
Parametri MS	
Scan Mode	MRM
Q1	609,3
Q3	195,1
Scan Time (seconds)	0,200
Duration (minutes)	10

Tabella 1-2 Parametri del metodo (continua)

Parametro	Valore
Parametri Source/Gas	
Curtain Gas [™] flow (CUR)	30 (o come da ottimizzazione)
CAD Gas	9 (o come da ottimizzazione)
Nebulizer Current (NC)	3 (o come da ottimizzazione)
Temperature (TEM)	425
lon Source Gas 1 (GS1)	70 (o come da ottimizzazione)
Parametri Compound	
Declustering Potential (DP)	100 (o come da ottimizzazione)
Collision Energy (CE)	45 (o come da ottimizzazione)
Collision Exit Potential (CXP)	Come da ottimizzazione

4. Fare clic su **Start** per eseguire il metodo.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Assicurarsi che l'elettrodo protenda oltre l'estremità della sonda, in modo da evitare che i vapori pericolosi fuoriescano dalla sorgente. L'elettrodo non deve essere incassato all'interno della sonda.

ATTENZIONE: rischio di danni al sistema. Ottimizzare usando il valore più alto possibile di flusso per il Curtain Gas[™] per evitare di contaminare lo spettrometro di massa.

- 5. Fare clic su **Acquire** per iniziare la raccolta dei dati.
- 6. Eseguire tre iniezioni da 5 μ L di soluzione di reserpina.

Suggerimento! Si raccomanda di rabboccare il loop da 5 µL con 30 µL o 40 µL di soluzione.

- 7. Stampare i risultati.
- 8. Calcolare la media delle tre intensità degli ioni e registrare il risultato nel registro dati.
- 9. Verificare che l'intensità media sia accettabile. Fare riferimento a Registro dati: sorgente di ionizzazione IonDrive[™] Turbo V.

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

10. Dopo aver completato i test, arrestare la pompa LC, impostare **TEM** su 0 e lasciar raffreddare la sonda.

Test per la sorgente di ionizzazione Turbo V[™]

Effettuare questi test in presenza di una qualsiasi delle seguenti situazioni:

- Quando si installa una nuova sorgente di ionizzazione.
- Dopo un lavoro di manutenzione importante sulla sorgente di ionizzazione.
- Ogni volta che sia necessario valutare le prestazioni della sorgente di ionizzazione, prima di iniziare un progetto o come parte della procedura operativa standard.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Utilizzare la sorgente di ionizzazione solo se si hanno la conoscenza e l'esperienza necessarie riguardo l'utilizzo, il contenimento e l'evacuazione dei materiali tossici o nocivi utilizzati con la sorgente di ionizzazione.

AVVERTENZA! Pericolo di perforazione, pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Interrompere l'uso della sorgente di ionizzazione se la finestra della sorgente stessa risulta crepata o rotta, quindi contattare un responsabile dell'assistenza tecnica (FSE) di SCIEX. Qualsiasi materiale tossico o nocivo introdotto nell'apparecchiatura sarà presente nel sistema di scarico della sorgente. Gli scarichi rilasciati dall'apparecchiatura devono essere fatti fuoriuscire dalla stanza. Smaltire gli oggetti taglienti seguendo le procedure di sicurezza previste dal laboratorio.

AVVERTENZA! Pericolo di esposizione ad agenti chimici tossici. Indossare dispositivi di protezione individuale, inclusi camice da laboratorio, guanti e occhiali di sicurezza, per proteggere dall'esposizione gli occhi e la pelle.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. In caso di fuoriuscita di prodotti chimici, consultare le istruzioni contenute nelle schede di sicurezza dei materiali. Accertarsi che il sistema sia in modalità Standby prima di pulire una fuoriuscita vicina alla sorgente di ionizzazione. Usare i dispositivi di protezione individuale appropriati e panni assorbenti per contenere la fuoriuscita e smaltirla secondo le normative locali.

Materiali richiesti

- Solvente della fase mobile: soluzione acetonitrile-acqua 70:30
- Soluzione di test:
 - Per i sistemi 4500, 5500, 5500+, 6500 e 6500+, utilizzare la soluzione pre-diluita di reserpina 0,0167 pmol/µL inclusa nel Kit dei prodotti chimici standard SCIEX (cod. art. 4406127).
 - Per i sistemi 3200 e 3500, utilizzare la soluzione pre-diluita di reserpina 0,167 pmol/µL inclusa nel Kit dei prodotti chimici standard SCIEX (cod. art. 4406127).
 - Per i sistemi TripleTOF[®], preparare la soluzione di test dalla miscela renin 0,167 pmol/µL e dal diluente standard fornito nel kit prodotti chimici del sistema SCIEX TripleTOF[®] (cod. art. 4456736)

È richiesto un miscelatore a vortice.

- Pompa HPLC (per fase mobile)
- Iniettore manuale (Rheodyne Mod. 8125 o equivalente) con un loop da 5 μL o un autocampionatore predisposto per iniezioni da 5 μL
- Tubo in PEEK diametro esterno (d.e.) 1/16 di pollice, diametro interno (d.i.) 0,005"
- Sorgente di ionizzazione con sonda installata
- Siringa da 250 μL a 1000 μL
- Guanti senza polvere (consigliati in neoprene o nitrile)
- Occhiali di sicurezza
- Camice da laboratorio

Nota: tutte le soluzioni di test devono essere tenute in frigorifero. Se rimangono fuori dal frigorifero per più di 48 ore, occorrerà eliminarle e utilizzare soluzioni nuove.

ATTENZIONE: possibile risultato errato. Non utilizzare soluzioni scadute.

Preparazione del test

AVVERTENZA! Pericolo di scosse elettriche. Evitare il contatto con le alte tensioni presenti sulla sorgente di ionizzazione durante il funzionamento. Porre il sistema in modalità Standby prima di regolare il tubo del campionatore o altre apparecchiature vicino alla sorgente di ionizzazione.

- Quando si installa una nuova sorgente di ionizzazione, assicurarsi che lo spettrometro di massa funzioni in conformità alle specifiche tecniche.
- Installare la sorgente di ionizzazione sullo spettrometro di massa.

- Assicurarsi che la sorgente di ionizzazione sia pienamente ottimizzata. Fare riferimento alla *Guida per l'operatore* per la sorgente di ionizzazione.
- Fare riferimento a tutte le Schede di Sicurezza dei Materiali per le precauzioni necessarie prima di maneggiare soluzioni o solventi chimici.
- Installare la sonda da sottoporre a test.
- Collegare la giunzione di messa a terra sulla sorgente di ionizzazione a una pompa attraverso un iniettore manuale dotato di un loop da 5 μL o un autocampionatore.

Fare riferimento alla Figura 2-1.

Figura 2-1 Configurazione della pompa LC

Elemento	Descrizione
1	Pompa per ingresso del flusso
2	Iniettore o autocampionatore
3	Sorgente di ionizzazione

Test della sorgente di ionizzazione su sistemi Triple Quadrupole e QTRAP[®]

Test della sonda TurbolonSpray®

AVVERTENZA! Pericolo di superfici calde. Lasciare raffreddare la sorgente di ionizzazione per almeno 30 minuti prima di iniziare qualsiasi procedura di manutenzione. Le superfici della sorgente di ionizzazione raggiungono temperature considerevoli durante il funzionamento.

ATTENZIONE: rischio di danni al sistema. Non introdurre alcun flusso di solvente prima che la sorgente di ionizzazione abbia raggiunto la corretta temperatura.

Fare riferimento alla *Guida per l'operatore* per una panoramica della sorgente di ionizzazione.

- 1. Configurare la pompa HPLC per il rilascio di 0,2 mL/min di fase mobile.
- 2. Nel software Analyst[®] in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 3. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Parametro	Valore	
Parametri MS		
Scan Mode	MRM	
Q1	609,3 (o come da ottimizzazione)	
Q3	195,1 (o come da ottimizzazione)	
Scan Time (seconds)	0,200	
Duration (minutes)	10	
Parametri Source/Gas		
Curtain Gas [™] flow (CUR)	20 (o come da ottimizzazione)	
Temperature (TEM)	700 (o come da ottimizzazione)	
lon Source Gas 1 (GS1)	60 (o come da ottimizzazione)	
lon Source Gas 2 (GS2)	70 (o come da ottimizzazione)	
lonSpray [™] Voltage (IS)	4500 (o come da ottimizzazione)	

Tabella 2-1 Parametri del metodo

Tabella 2-1 Parametri del metodo (continua)

Parametro	Valore
Parametri Compound	
Declustering Potential (DP)	100 (o come da ottimizzazione)
Collision Energy (CE)	45 (o come da ottimizzazione)
Collision Exit Potential (CXP)	Come da ottimizzazione

4. Fare clic su **Start** per eseguire il metodo.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Assicurarsi che l'elettrodo protenda oltre l'estremità della sonda, in modo da evitare che i vapori pericolosi fuoriescano dalla sorgente. L'elettrodo non deve essere incassato all'interno della sonda.

ATTENZIONE: rischio di danni al sistema. Ottimizzare usando il valore più alto possibile di flusso per il Curtain Gas[™] per evitare di contaminare lo spettrometro di massa.

- 5. Eseguire diverse iniezioni da 5 µL di soluzione di reserpina mentre si ottimizzano i seguenti parametri per ottenere la massima intensità e stabilità del segnale:
 - Posizione orizzontale e verticale della sonda
 - Estensione della punta dell'elettrodo
 - CUR, TEM, GS1, GS2 e IS
- 6. Fare clic su **Acquire** per iniziare la raccolta dei dati.
- 7. Eseguire tre iniezioni da 5 μ L di soluzione di reserpina.

Suggerimento! Si raccomanda di rabboccare il loop da 5 µL con 30 µL o 40 µL di soluzione.

- 8. Stampare i risultati.
- 9. Calcolare la media delle tre intensità degli ioni e registrare il risultato nel registro dati.
- 10. Verificare che l'intensità media sia accettabile. Fare riferimento a Registro dati: sorgente di ionizzazione Turbo V[™].

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

11. Dopo aver completato i test, arrestare la pompa LC, impostare **TEM** su 0 e lasciar raffreddare la sonda.

Test della sonda APCI

AVVERTENZA! Pericolo di superfici calde. Lasciare raffreddare la sorgente di ionizzazione per almeno 30 minuti prima di iniziare qualsiasi procedura di manutenzione. Le superfici della sorgente di ionizzazione raggiungono temperature considerevoli durante il funzionamento.

ATTENZIONE: rischio di danni al sistema. Non introdurre alcun flusso di solvente prima che la sorgente di ionizzazione abbia raggiunto la corretta temperatura.

Fare riferimento alla *Guida per l'operatore* per una panoramica della sorgente di ionizzazione.

- 1. Configurare la pompa HPLC per il rilascio di 1 mL/min di fase mobile.
- 2. Nel software Analyst[®] in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 3. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Parametro	Valore
Parametri MS	
Scan Mode	MRM
Q1	609,3 (o come da ottimizzazione)
Q3	195,1 (o come da ottimizzazione)
Scan Time (seconds)	0,200
Duration (minutes)	10
Parametri Source/Gas	
Curtain Gas [™] flow (CUR)	20 (o come da ottimizzazione)
CAD Gas	9 (o come da ottimizzazione)
Nebulizer Current (NC)	3 (o come da ottimizzazione)
Temperature (TEM)	425
Ion Source Gas 1 (GS1)	70 (o come da ottimizzazione)
Parametri Compound	
Declustering Potential (DP)	100 (o come da ottimizzazione)
Collision Energy (CE)	45 (o come da ottimizzazione)
Collision Exit Potential (CXP)	Come da ottimizzazione

Tabella 2-2 Parametri del metodo

4. Fare clic su **Start** per eseguire il metodo.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Assicurarsi che l'elettrodo protenda oltre l'estremità della sonda, in modo da evitare che i vapori pericolosi fuoriescano dalla sorgente. L'elettrodo non deve essere incassato all'interno della sonda.

ATTENZIONE: rischio di danni al sistema. Ottimizzare usando il valore più alto possibile di flusso per il Curtain Gas[™] per evitare di contaminare lo spettrometro di massa.

- 5. Eseguire diverse iniezioni da 5 µL di soluzione di reserpina mentre si ottimizzano i seguenti parametri per ottenere la massima intensità e stabilità del segnale:
 - Posizione orizzontale e verticale della sonda
 - Estensione della punta dell'elettrodo
 - CUR, GS1 e NC
- 6. Fare clic su **Acquire** per iniziare la raccolta dei dati.
- 7. Eseguire tre iniezioni da 5 μ L di soluzione di reserpina.

Suggerimento! Si raccomanda di rabboccare il loop da 5 μ L con 30 μ L o 40 μ L di soluzione.

- 8. Stampare i risultati.
- 9. Calcolare la media delle tre intensità degli ioni e registrare il risultato nel registro dati.
- 10. Verificare che l'intensità media sia accettabile. Fare riferimento a Registro dati: sorgente di ionizzazione Turbo V[™].

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

11. Dopo aver completato i test, arrestare la pompa LC, impostare **TEM** su 0 e lasciar raffreddare la sonda.

Test della sorgente di ionizzazione su sistemi TripleTOF[®]

Nota: Le specifiche per il sistema TripleTOF[®] La sorgente consigliata per i sistemi TripleTOF[®].DuoSpray[™]

Preparazione della soluzione di test

1. Unire 100 μ L della soluzione di reserpina 0,167 pmol/ μ L e 900 μ L del diluente standard.

2. Mescolare per 30 secondi utilizzando un mixer a vortice.

Questa operazione produce la soluzione di reserpina 0,0167 pmol/µL.

Test della sonda TurbolonSpray[®]

AVVERTENZA! Pericolo di superfici calde. Lasciare raffreddare la sorgente di ionizzazione per almeno 30 minuti prima di iniziare qualsiasi procedura di manutenzione. Le superfici della sorgente di ionizzazione raggiungono temperature considerevoli durante il funzionamento.

ATTENZIONE: rischio di danni al sistema. Non introdurre alcun flusso di solvente prima che la sorgente di ionizzazione abbia raggiunto la corretta temperatura.

Fare riferimento alla *Guida per l'operatore* per una panoramica della sorgente di ionizzazione.

- 1. Configurare la pompa HPLC per il rilascio di 0,2 mL/min di fase mobile.
- 2. Nel software Analyst[®] TF in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 3. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Parametro	Valore
Parametri MS	
Scan Mode	Ione prodotto
High Sensitivity (solo sistemi 5600/5600+ e 6600/ 6600+)	Sopra
Product Of	609,2807
TOF Masses (Da)	Da 150 a 650
Accumulation time (seconds)	0,200
Duration (minutes)	10
Parametri Source/Gas	
Curtain Gas [™] flow (CUR)	20
Temperature (TEM)	700
lon Source Gas 1 (GS1)	50
lon Source Gas 2 (GS2)	50
IonSpray Voltage Floating (ISVF)	5000
Parametri Compound	

Tabella 2-3 Parametri del metodo

Sorgente di ionizzazione 18 / 153 Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C

Parametro	Valore
Declustering Potential (DP)	100
Collision Energy (CE)	45
Parametri Resolution	
Q1 Resolution	Unità

Tabella 2-3 Parametri del metodo (continua)

4. Fare clic su **Start** per eseguire il metodo.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Assicurarsi che l'elettrodo protenda oltre l'estremità della sonda, in modo da evitare che i vapori pericolosi fuoriescano dalla sorgente. L'elettrodo non deve essere incassato all'interno della sonda.

ATTENZIONE: rischio di danni al sistema. Ottimizzare usando il valore più alto possibile di flusso per il Curtain Gas[™] per evitare di contaminare lo spettrometro di massa.

- 5. Eseguire diverse iniezioni da 5 µL di soluzione di reserpina 0,0167 pmol/µL mentre si ottimizzano i seguenti parametri per ottenere la massima intensità e stabilità del segnale:
 - Posizione orizzontale e verticale della sonda
 - Estensione della punta dell'elettrodo
 - CUR, TEM, GS1, GS2 e ISVF
- 6. Fare clic su **Acquire** per iniziare la raccolta dei dati.
- 7. Eseguire tre iniezioni da 5 μ L di soluzione di reserpina.

Suggerimento! Si raccomanda di rabboccare il loop da 5 µL con 30 µL o 40 µL di soluzione.

- 8. Stampare i risultati.
- 9. Calcolare la media delle tre intensità degli ioni e registrare il risultato nel registro dati.
- 10. Verificare che l'intensità media sia accettabile. Fare riferimento a Registro dati: sorgente di ionizzazione Turbo V[™].

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

11. Dopo aver completato i test, arrestare la pompa LC, impostare **TEM** su 0 e lasciar raffreddare la sonda.

Test della sonda APCI

AVVERTENZA! Pericolo di superfici calde. Lasciare raffreddare la sorgente di ionizzazione per almeno 30 minuti prima di iniziare qualsiasi procedura di manutenzione. Le superfici della sorgente di ionizzazione raggiungono temperature considerevoli durante il funzionamento.

ATTENZIONE: rischio di danni al sistema. Non introdurre alcun flusso di solvente prima che la sorgente di ionizzazione abbia raggiunto la corretta temperatura.

Fare riferimento alla *Guida per l'operatore* per una panoramica della sorgente di ionizzazione.

- 1. Configurare la pompa HPLC per il rilascio di 1 mL/min di fase mobile.
- 2. Nel software Analyst[®] TF in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 3. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Parametro	Valore	
Parametri MS		
Scan Mode	lone prodotto	
High Sensitivity (solo sistemi 5600/5600+ e 6600/ 6600+)	Sopra	
Product Of	609,2807	
TOF Masses (Da)	Da 150 a 650	
Accumulation time (seconds)	0,200	
Duration (minutes)	10	
Parametri Source/Gas		
Curtain Gas [™] flow (CUR)	20 (o come da ottimizzazione)	
Temperature (TEM)	425	
Ion Source Gas 1 (GS1)	70 (o come da ottimizzazione)	
Nebulizer Current (NC)	3 (o come da ottimizzazione)	
Parametri Compound		
Declustering Potential (DP)	100	
Collision Energy (CE)	45	

Tabella 2-4 Parametri del metodo

Tabella 2-4 Parametri del metodo (continua)

Parametro	Valore
Parametri Resolution	
Q1 Resolution	Unità

4. Fare clic su **Start** per eseguire il metodo.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Assicurarsi che l'elettrodo protenda oltre l'estremità della sonda, in modo da evitare che i vapori pericolosi fuoriescano dalla sorgente. L'elettrodo non deve essere incassato all'interno della sonda.

ATTENZIONE: rischio di danni al sistema. Ottimizzare usando il valore più alto possibile di flusso per il Curtain Gas[™] per evitare di contaminare lo spettrometro di massa.

- 5. Eseguire diverse iniezioni da 5 µL di soluzione di reserpina mentre si ottimizzano i seguenti parametri per ottenere la massima intensità e stabilità del segnale:
 - Posizione orizzontale e verticale della sonda
 - Estensione della punta dell'elettrodo
 - CUR, GS1 e NC
- 6. Fare clic su **Acquire** per iniziare la raccolta dei dati.
- 7. Eseguire tre iniezioni da 5 µL di soluzione di reserpina.

Suggerimento! Si raccomanda di rabboccare il loop da 5 μ L con 30 μ L o 40 μ L di soluzione.

- 8. Stampare i risultati.
- 9. Calcolare la media delle tre intensità degli ioni e registrare il risultato nel registro dati.
- 10. Verificare che l'intensità media sia accettabile. Fare riferimento a Registro dati: sorgente di ionizzazione Turbo V[™].

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

11. Dopo aver completato i test, arrestare la pompa LC, impostare TEM su 0 e lasciar raffreddare la sonda.

Test per la sorgente di ionizzazione DuoSpray[™]

Effettuare questi test in presenza di una qualsiasi delle seguenti situazioni:

- Quando si installa una nuova sorgente di ionizzazione.
- Dopo un lavoro di manutenzione importante sulla sorgente di ionizzazione.
- Ogni volta che sia necessario valutare le prestazioni della sorgente di ionizzazione, prima di iniziare un progetto o come parte della procedura operativa standard.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Utilizzare la sorgente di ionizzazione solo se si hanno la conoscenza e l'esperienza necessarie riguardo l'utilizzo, il contenimento e l'evacuazione dei materiali tossici o nocivi utilizzati con la sorgente di ionizzazione.

AVVERTENZA! Pericolo di perforazione, pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Interrompere l'uso della sorgente di ionizzazione se la finestra della sorgente stessa risulta crepata o rotta, quindi contattare un responsabile dell'assistenza tecnica (FSE) di SCIEX. Qualsiasi materiale tossico o nocivo introdotto nell'apparecchiatura sarà presente nel sistema di scarico della sorgente. Gli scarichi rilasciati dall'apparecchiatura devono essere fatti fuoriuscire dalla stanza. Smaltire gli oggetti taglienti seguendo le procedure di sicurezza previste dal laboratorio.

AVVERTENZA! Pericolo di esposizione ad agenti chimici tossici. Indossare dispositivi di protezione individuale, inclusi camice da laboratorio, guanti e occhiali di sicurezza, per proteggere dall'esposizione gli occhi e la pelle.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. In caso di fuoriuscita di prodotti chimici, consultare le istruzioni contenute nelle schede di sicurezza dei materiali. Accertarsi che il sistema sia in modalità Standby prima di pulire una fuoriuscita vicina alla sorgente di ionizzazione. Usare i dispositivi di protezione individuale appropriati e panni assorbenti per contenere la fuoriuscita e smaltirla secondo le normative locali.

Materiali richiesti

- Solvente della fase mobile: soluzione acetonitrile-acqua 70:30
- Soluzione di test:
 - Per i sistemi 4500, 5500, 5500+, 6500 e 6500+, utilizzare la soluzione pre-diluita di reserpina 0,0167 pmol/µL inclusa nel Kit dei prodotti chimici standard SCIEX (cod. art. 4406127).
 - Per i sistemi 3200 e 3500, utilizzare la soluzione pre-diluita di reserpina 0,167 pmol/µL inclusa nel Kit dei prodotti chimici standard SCIEX (cod. art. 4406127).
 - Per i sistemi TripleTOF[®], preparare la soluzione di test dalla miscela renin 0,167 pmol/µL e dal diluente standard fornito nel kit prodotti chimici del sistema SCIEX TripleTOF[®] (cod. art. 4456736)

È richiesto un miscelatore a vortice.

- Pompa HPLC (per fase mobile)
- Iniettore manuale (Rheodyne Mod. 8125 o equivalente) con un loop da 5 μL o un autocampionatore predisposto per iniezioni da 5 μL
- Tubo in PEEK diametro esterno (d.e.) 1/16 di pollice, diametro interno (d.i.) 0,005"
- Sorgente di ionizzazione con sonda installata
- Siringa da 250 μL a 1000 μL
- Guanti senza polvere (consigliati in neoprene o nitrile)
- Occhiali di sicurezza
- Camice da laboratorio

Nota: tutte le soluzioni di test devono essere tenute in frigorifero. Se rimangono fuori dal frigorifero per più di 48 ore, occorrerà eliminarle e utilizzare soluzioni nuove.

ATTENZIONE: possibile risultato errato. Non utilizzare soluzioni scadute.

Preparazione del test

AVVERTENZA! Pericolo di scosse elettriche. Evitare il contatto con le alte tensioni presenti sulla sorgente di ionizzazione durante il funzionamento. Porre il sistema in modalità Standby prima di regolare il tubo del campionatore o altre apparecchiature vicino alla sorgente di ionizzazione.

- Quando si installa una nuova sorgente di ionizzazione, assicurarsi che lo spettrometro di massa funzioni in conformità alle specifiche tecniche.
- Installare la sorgente di ionizzazione sullo spettrometro di massa.

- Assicurarsi che la sorgente di ionizzazione sia pienamente ottimizzata. Fare riferimento alla *Guida per l'operatore* per la sorgente di ionizzazione.
- Fare riferimento a tutte le Schede di Sicurezza dei Materiali per le precauzioni necessarie prima di maneggiare soluzioni o solventi chimici.
- Collegare la giunzione di messa a terra sulla sorgente di ionizzazione a una pompa attraverso un iniettore manuale dotato di un loop da 5 μL o un autocampionatore.

Fare riferimento a Figura 3-1 e Figura 3-2.

Figura 3-1 Configurazione della pompa LC: sonda TurbolonSpray[®]

Elemento	Descrizione
1	Pompa LC
2	Iniettore o autocampionatore
3	Sorgente di ionizzazione

Test per la sorgente di ionizzazione sui sistemi TripleTOF[®]

Preparazione della soluzione di test

- 1. Unire 100 μL della soluzione di reserpina 0,167 pmol/ μL e 900 μL del diluente standard.
- 2. Mescolare per 30 secondi utilizzando un mixer a vortice.

Questa operazione produce la soluzione di reserpina 0,0167 pmol/µL.

Test della sonda TurbolonSpray®

AVVERTENZA! Pericolo di superfici calde. Lasciare raffreddare la sorgente di ionizzazione per almeno 30 minuti prima di iniziare qualsiasi procedura di manutenzione. Le superfici della sorgente di ionizzazione raggiungono temperature considerevoli durante il funzionamento.

ATTENZIONE: rischio di danni al sistema. Non introdurre alcun flusso di solvente prima che la sorgente di ionizzazione abbia raggiunto la corretta temperatura.

Fare riferimento alla *Guida per l'operatore* per una panoramica della sorgente di ionizzazione.

- 1. Configurare la pompa HPLC per il rilascio di 0,2 mL/min di fase mobile.
- 2. Nel software Analyst[®] TF in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 3. Regolare le posizioni del probe come illustrato nella tabella di seguito.

Tabella 3-1 Posizioni della sonda

Sonda	Posizione verticale	Posizione orizzontale	Estensione della punta dell'elettrodo
APCI	5	—	0,5 mm
TurbolonSpray	5	5	0,5 mm

4. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Tabella 3-2 Parametri del metodo

Parametro	Valore	
Parametri MS		
Scan Mode	lone prodotto	
High Sensitivity (solo sistemi 5600/5600+ e 6600/ 6600+)	Sopra	
Product Of	609,2807	
TOF Masses (Da)	Da 150 a 650	
Accumulation time (seconds)	0,200	
Duration (minutes)	10	

Parametro	Valore	
Parametri Source/Gas		
Curtain Gas [™] flow (CUR)	20	
Temperature (TEM)	650	
lon Source Gas 1 (GS1)	50	
lon Source Gas 2 (GS2)	70	
IonSpray Voltage Floating (ISVF)	5500	
Parametri Compound		
Declustering Potential (DP)	100	
Collision Energy (CE)	45	
Parametri Resolution		
Q1 Resolution	Unità	

Tabella 3-2 Parametri del metodo (continua)

5. Fare clic su **Start** per eseguire il metodo.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Assicurarsi che l'elettrodo protenda oltre l'estremità della sonda, in modo da evitare che i vapori pericolosi fuoriescano dalla sorgente. L'elettrodo non deve essere incassato all'interno della sonda.

ATTENZIONE: rischio di danni al sistema. Ottimizzare usando il valore più alto possibile di flusso per il Curtain Gas[™] per evitare di contaminare lo spettrometro di massa.

- 6. Eseguire diverse iniezioni da 5 μL di soluzione di reserpina 0,0167 pmol/μL mentre si ottimizzano i seguenti parametri per ottenere la massima intensità e stabilità del segnale:
 - Posizione orizzontale e verticale della sonda
 - Estensione della punta dell'elettrodo
 - CUR, TEM, GS1, GS2 e ISVF
- 7. Fare clic su **Acquire** per iniziare la raccolta dei dati.
- 8. Eseguire tre iniezioni da 5 µL di soluzione di reserpina.

Suggerimento! Si raccomanda di rabboccare il loop da 5 μ L con 30 μ L o 40 μ L di soluzione.

- 9. Dopo l'acquisizione, per ogni iniezione generare un XIC della finestra 50 mDa centrata su m/z 195,0652 (o sulla massa osservata in base alla calibrazione). Registrare l'intensità (altezza del picco) per ogni iniezione.
- 10. Stampare i risultati.

I risultati devono essere simili alla figura seguente.

Figura 3-3 XIC per la finestra 50 mDa intorno alla massa centroide di m/z 195

- 11. Calcolare la media delle tre intensità degli ioni e registrare il risultato nel registro dati.
- 12. Verificare che l'intensità media sia accettabile. Fare riferimento a Registro dati: sorgente di ionizzazione DuoSpray[™].

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

13. Dopo aver completato i test, arrestare la pompa LC, impostare **TEM** su 0 e lasciar raffreddare la sonda.

Test della sonda APCI

AVVERTENZA! Pericolo di superfici calde. Lasciare raffreddare la sorgente di ionizzazione per almeno 30 minuti prima di iniziare qualsiasi procedura di manutenzione. Le superfici della sorgente di ionizzazione raggiungono temperature considerevoli durante il funzionamento.

ATTENZIONE: rischio di danni al sistema. Non introdurre alcun flusso di solvente prima che la sorgente di ionizzazione abbia raggiunto la corretta temperatura.

Fare riferimento alla *Guida per l'operatore* per una panoramica della sorgente di ionizzazione.

- 1. Configurare la pompa HPLC per il rilascio di 1 mL/min di fase mobile.
- 2. Nel software Analyst[®] TF in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 3. Regolare le posizioni del probe come illustrato nella tabella di seguito.

Sonda	Posizione verticale	Posizione orizzontale	Estensione della punta dell'elettrodo
APCI	5	—	0,5 mm
TurbolonSpray	5	5	0,5 mm

Tabella 3-3 Posizioni della sonda

4. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Tabella 3-4 Parametri del metodo

Parametro	Valore	
Parametri MS		
Scan Mode	lone prodotto	
High Sensitivity (solo sistemi 5600/5600+ e 6600/ 6600+)	Sopra	
Product Of	609,2807	
TOF Masses (Da)	Da 150 a 650	
Accumulation time (seconds)	0,200	
Duration (minutes)	10	
Parametri Source/Gas		
Curtain Gas [™] flow (CUR)	20	
Temperature (TEM)	650	
lon Source Gas 2 (GS2)	70	
IonSpray Voltage Floating (ISVF)	5500	
Parametri Compound		
Declustering Potential (DP)	100	
Collision Energy (CE)	45	
Parametri Resolution		
Q1 Resolution	Unità	

5. Fare clic su **Start** per eseguire il metodo.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Assicurarsi che l'elettrodo protenda oltre l'estremità della sonda, in modo da evitare che i vapori pericolosi fuoriescano dalla sorgente. L'elettrodo non deve essere incassato all'interno della sonda.

ATTENZIONE: rischio di danni al sistema. Ottimizzare usando il valore più alto possibile di flusso per il Curtain Gas[™] per evitare di contaminare lo spettrometro di massa.

- 6. Eseguire diverse iniezioni da 5 μL di soluzione di reserpina 0,0167 pmol/μL mentre si ottimizzano i seguenti parametri per ottenere la massima intensità e stabilità del segnale:
 - Posizione verticale della sonda
 - Estensione della punta dell'elettrodo
 - CUR, TEM, GS2 e ISVF
- 7. Fare clic su **Acquire** per iniziare la raccolta dei dati.
- 8. Eseguire tre iniezioni da 5 µL di soluzione di reserpina.

Suggerimento! Si raccomanda di rabboccare il loop da 5 µL con 30 µL o 40 µL di soluzione.

- 9. Dopo l'acquisizione, per ogni iniezione generare un XIC della finestra 50 mDa centrata su m/z 195,0652 (o sulla massa osservata in base alla calibrazione). Registrare l'intensità (altezza del picco) per ogni iniezione.
- 10. Stampare i risultati.

I risultati devono essere simili alla figura seguente.

Figura 3-4 XIC per la finestra 50 mDa intorno alla massa centroide di m/z 195

11. Verificare che l'intensità media sia accettabile. Fare riferimento a Registro dati: sorgente di ionizzazione DuoSpray[™].

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

12. Dopo aver completato i test, arrestare la pompa LC, impostare **TEM** su 0 e lasciar raffreddare la sonda.

Test della sorgente di ionizzazione su sistemi Triple Quadrupole e QTRAP[®]

Test della sonda TurbolonSpray[®]

AVVERTENZA! Pericolo di superfici calde. Lasciare raffreddare la sorgente di ionizzazione per almeno 30 minuti prima di iniziare qualsiasi procedura di manutenzione. Le superfici della sorgente di ionizzazione raggiungono temperature considerevoli durante il funzionamento.

ATTENZIONE: rischio di danni al sistema. Non introdurre alcun flusso di solvente prima che la sorgente di ionizzazione abbia raggiunto la corretta temperatura.

Fare riferimento alla *Guida per l'operatore* per una panoramica della sorgente di ionizzazione.

- 1. Configurare la pompa HPLC per il rilascio di 0,2 mL/min di fase mobile.
- 2. Nel software Analyst[®] in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 3. Nella scheda Source/Gas, selezionare TIS dall'elenco
- 4. Regolare le posizioni del probe come illustrato nella tabella di seguito.

Tabella 3-5 Posizioni della sonda

Sonda	Posizione verticale	Posizione orizzontale	Estensione della punta dell'elettrodo
APCI	5	—	0,5 mm
TurbolonSpray	5	5	0,5 mm

5. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Parametro	Valore
Parametri MS	lone prodotto
Scan Mode	MRM
Q1	609,3
Q3	195,1
Scan Time (ms)	200
Duration (minutes)	10
Parametri Source/Gas	
Curtain Gas [™] flow (CUR)	20 (o come da ottimizzazione)
IonSpray Voltage (IS)	4500 (o come da ottimizzazione)
Temperature (TEM)	700 (o come da ottimizzazione)
Ion Source Gas 1 (GS1)	60 (o come da ottimizzazione)
Ion Source Gas 2 (GS2)	70 (o come da ottimizzazione)
Parametri Compound	
Declustering Potential (DP)	100 (o come da ottimizzazione)
Collision Energy (CE)	45 (o come da ottimizzazione)
Collision Exit Potential (CXP)	Come da ottimizzazione

Tabella 3-6 Parametri del metodo

6. Fare clic su **Start** per eseguire il metodo.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Assicurarsi che l'elettrodo protenda oltre l'estremità della sonda, in modo da evitare che i vapori pericolosi fuoriescano dalla sorgente. L'elettrodo non deve essere incassato all'interno della sonda.

ATTENZIONE: rischio di danni al sistema. Ottimizzare usando il valore più alto possibile di flusso per il Curtain Gas[™] per evitare di contaminare lo spettrometro di massa.

- 7. Eseguire diverse iniezioni da 5 μL di soluzione di reserpina mentre si ottimizzano i seguenti parametri per ottenere la massima intensità e stabilità del segnale:
 - Posizione orizzontale e verticale della sonda
 - Estensione della punta dell'elettrodo
 - CUR, TEM, GS1, GS2 e IS

- 8. Fare clic su Acquire per iniziare la raccolta dei dati.
- 9. Eseguire tre iniezioni da 5 μL della soluzione di test 10 pg/μL durante il monitoraggio della finestra 50 mDa intorno alla massa centroide di m/z 195.

Suggerimento! Si raccomanda di rabboccare il loop da 5 µL con 30 µL o 40 µL di soluzione.

10. Stampare i risultati.

I risultati devono essere simili alla figura seguente.

- 11. Calcolare la media delle tre intensità degli ioni e registrare il risultato nel registro dati.
- 12. Verificare che l'intensità media sia accettabile. Fare riferimento a Registro dati: sorgente di ionizzazione DuoSpray[™].

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

13. Dopo aver completato i test, arrestare la pompa LC, impostare **TEM** su 0 e lasciar raffreddare la sonda.

Test della sonda APCI

AVVERTENZA! Pericolo di superfici calde. Lasciare raffreddare la sorgente di ionizzazione per almeno 30 minuti prima di iniziare qualsiasi procedura di manutenzione. Le superfici della sorgente di ionizzazione raggiungono temperature considerevoli durante il funzionamento.

ATTENZIONE: rischio di danni al sistema. Non introdurre alcun flusso di solvente prima che la sorgente di ionizzazione abbia raggiunto la corretta temperatura.

Fare riferimento alla *Guida per l'operatore* per una panoramica della sorgente di ionizzazione.

- 1. Configurare la pompa HPLC per il rilascio di 1 mL/min di fase mobile.
- 2. Nel software Analyst[®] in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.

3. Regolare le posizioni del probe come illustrato nella tabella di seguito.

Tabella 3-7 Posizioni della sonda

Sonda	Posizione verticale	Posizione orizzontale	Estensione della punta dell'elettrodo
APCI	5	—	0,5 mm
TurbolonSpray	5	5	0,5 mm

4. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Tabella 3-8 Parametri del metodo

Parametro	Valore	
Parametri MS		
Scan Mode	MRM	
Q1	609,3	
Q3	195,1	
Scan Time (ms)	200	
Duration (minutes)	10	
Parametri Source/Gas		
Curtain Gas [™] flow (CUR)	20 (o come da ottimizzazione)	
Nebulizer Current (NC)	3 (o come da ottimizzazione)	
Temperature (TEM)	350 (o come da ottimizzazione)	
lon Source Gas 2 (GS2)	70 (o come da ottimizzazione)	
Parametri Compound		
Declustering Potential (DP)	100 (o come da ottimizzazione)	
Collision Energy (CE)	45 (o come da ottimizzazione)	
Collision Exit Potential (CXP)	Come da ottimizzazione	

5. Fare clic su **Start** per eseguire il metodo.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Assicurarsi che l'elettrodo protenda oltre l'estremità della sonda, in modo da evitare che i vapori pericolosi fuoriescano dalla sorgente. L'elettrodo non deve essere incassato all'interno della sonda.

ATTENZIONE: rischio di danni al sistema. Ottimizzare usando il valore più alto possibile di flusso per il Curtain Gas[™] per evitare di contaminare lo spettrometro di massa.

- 6. Eseguire diverse iniezioni da 5 μL di soluzione di reserpina mentre si ottimizzano i seguenti parametri per ottenere la massima intensità e stabilità del segnale:
 - Posizione orizzontale e verticale della sonda
 - Estensione della punta dell'elettrodo
 - CUR, GS1 e NC
- 7. Fare clic su **Acquire** per iniziare la raccolta dei dati.
- 8. Eseguire tre iniezioni da 5 µL di soluzione di reserpina.

Suggerimento! Si raccomanda di rabboccare il loop da 5 μ L con 30 μ L o 40 μ L di soluzione.

- 9. Dopo l'acquisizione, per ogni iniezione generare un XIC della finestra 50 mDa centrata su m/z 195,0652 (o sulla massa osservata in base alla calibrazione). Registrare l'intensità (altezza del picco) per ogni iniezione.
- 10. Stampare i risultati.
- 11. Verificare che l'intensità media sia accettabile. Fare riferimento a Registro dati: sorgente di ionizzazione DuoSpray[™].

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

12. Dopo aver completato i test, arrestare la pompa LC, impostare **TEM** su 0 e lasciar raffreddare la sonda.

Test della sorgente di ionizzazione OptiFlow[™] Turbo V

Effettuare questi test in presenza di una qualsiasi delle seguenti situazioni:

- Quando si installa una nuova sorgente di ionizzazione.
- Dopo un lavoro di manutenzione importante sulla sorgente di ionizzazione.
- Ogni volta che sia necessario valutare le prestazioni della sorgente di ionizzazione, prima di iniziare un progetto o come parte della procedura operativa standard.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Utilizzare la sorgente di ionizzazione solo se si hanno la conoscenza e l'esperienza necessarie riguardo l'utilizzo, il contenimento e l'evacuazione dei materiali tossici o nocivi utilizzati con la sorgente di ionizzazione.

AVVERTENZA! Pericolo di perforazione, pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Interrompere l'uso della sorgente di ionizzazione se la finestra della sorgente stessa risulta crepata o rotta, quindi contattare un responsabile dell'assistenza tecnica (FSE) di SCIEX. Qualsiasi materiale tossico o nocivo introdotto nell'apparecchiatura sarà presente nel sistema di scarico della sorgente. Gli scarichi rilasciati dall'apparecchiatura devono essere fatti fuoriuscire dalla stanza. Smaltire gli oggetti taglienti seguendo le procedure di sicurezza previste dal laboratorio.

AVVERTENZA! Pericolo di esposizione ad agenti chimici tossici. Indossare dispositivi di protezione individuale, inclusi camice da laboratorio, guanti e occhiali di sicurezza, per proteggere dall'esposizione gli occhi e la pelle.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. In caso di fuoriuscita di prodotti chimici, consultare le istruzioni contenute nelle schede di sicurezza dei materiali. Accertarsi che il sistema sia in modalità Standby prima di pulire una fuoriuscita vicina alla sorgente di ionizzazione. Usare i dispositivi di protezione individuale appropriati e panni assorbenti per contenere la fuoriuscita e smaltirla secondo le normative locali.
Materiali richiesti

 Soluzione del test preparata con miscela renin 0,167 pmol/μL e diluente standard forniti nel kit di prodotti chimici per sistemi SCIEX TripleTOF[®] (PN 4456736)

Nota: La soluzione viene anche usata per testare la sorgente di ionizzazione OptiFlow[™] Turbo V e gli spettrometri di massa SCIEX Triple Quad[™] e QTRAP[®].

- Tubo in PEEK diametro esterno (d.e.) 1/16 di pollice, diametro interno (d.i.) 0,005"
- Sorgente di ionizzazione con una sonda MICRO installata con un elettrodo a microflusso basso.
- Siringa da 250 µL a 1000 µL
- Guanti senza polvere (consigliati in neoprene o nitrile)
- Occhiali di sicurezza
- Camice da laboratorio

Nota: tutte le soluzioni di test devono essere tenute in frigorifero. Se rimangono fuori dal frigorifero per più di 48 ore, occorrerà eliminarle e utilizzare soluzioni nuove.

ATTENZIONE: possibile risultato errato. Non utilizzare soluzioni scadute.

Preparazione del test

AVVERTENZA! Pericolo di scosse elettriche. Evitare il contatto con le alte tensioni presenti sulla sorgente di ionizzazione durante il funzionamento. Porre il sistema in modalità Standby prima di regolare il tubo del campionatore o altre apparecchiature vicino alla sorgente di ionizzazione.

- Quando si installa una nuova sorgente di ionizzazione, assicurarsi che lo spettrometro di massa funzioni in conformità alle specifiche tecniche.
- Installare la sorgente di ionizzazione sullo spettrometro di massa.
- Assicurarsi che la sorgente di ionizzazione sia pienamente ottimizzata. Fare riferimento alla *Guida per l'operatore* per la sorgente di ionizzazione.
- Fare riferimento a tutte le Schede di Sicurezza dei Materiali per le precauzioni necessarie prima di maneggiare soluzioni o solventi chimici.
- Installare la sonda da sottoporre a test.

Test della sorgente di ionizzazione su sistemi Triple Quadrupole e QTRAP[®]

Test della sonda SteadySpray

AVVERTENZA! Pericolo di superfici calde. Lasciare raffreddare la sorgente di ionizzazione per almeno 60 minuti prima di iniziare qualsiasi procedura di manutenzione. Le superfici della sorgente di ionizzazione raggiungono temperature considerevoli durante il funzionamento.

ATTENZIONE: rischio di danni al sistema. Non introdurre alcun flusso di solvente prima che la sorgente di ionizzazione abbia raggiunto la corretta temperatura.

Nota: La sorgente di ionizzazione OptiFlow[™] Turbo V è disponibile unicamente per i sistemi serie 5500, 5500+, 6500 e 6500+.

Nota: Questo test riguarda unicamente la sonda MICRO e l'elettrodo a microflusso basso.

Fare riferimento alla *Guida per l'operatore* per una panoramica della sorgente di ionizzazione.

- 1. Eseguire l'infusione della miscela renin a una velocità di flusso di 5 µL/min.
- 2. Nel software Analyst[®] in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 3. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Parametro Valore Parametri MS Scan Mode MRM 609,3 (o come da ottimizzazione) Q1 Q3 195,1 (o come da ottimizzazione) Scan Time (seconds) 0,200 **Duration** (minutes) 10 Parametri Source/Gas Curtain Gas[™] flow (CUR) 20 (o come da ottimizzazione) Temperature (TEM) 350 (da ottimizzzione, con un massimo di 350 °C.) Ion Source Gas 1 (GS1) 25 (o come da ottimizzazione)

Tabella 4-1 Parametri del metodo

Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C

Tabella 4-1 Parametri del metodo (conti	inua)
---	-------

Parametro	Valore					
Ion Source Gas 2 (GS2)	65 (o come da ottimizzazione)					
IonSpray [™] Voltage (IS)	4500 (massimo 4500)					
Parametri Compound						
Declustering Potential (DP)	100 (o come da ottimizzazione)					
Collision Energy (CE)	45 (o come da ottimizzazione)					
Parametri Syringe Pump Method						
Flow rate (µL/min)	5					
Syringe Size (µL)	250 μL - 1000 μL					

4. Fare clic su **Start** per eseguire il metodo.

ATTENZIONE: rischio di danni al sistema. Ottimizzare usando il valore più alto possibile di flusso per il Curtain Gas[™] per evitare di contaminare lo spettrometro di massa.

- 5. Eseguire l'infusione di miscela renin a 5 μL/min per almeno 5 minuti ottimizzando CUR, TEM, GS1, GS2 e IS per l'intensità e la stabilità massime del segnale
- 6. Fare clic su **Acquire** per iniziare la raccolta dei dati.
- 7. Stampare i risultati.
- 8. Registrare i risultati nel registro dati.
- 9. Calcolare la media delle tre intensità degli ioni e registrare il risultato nel registro dati.
- 10. Verificare che l'intensità media sia accettabile. Fare riferimento a Registro dati: sorgente di ionizzazione OptiFlow[™] Turbo V.

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

Test della sorgente di ionizzazione sui sistemi TripleTOF[®]

Nota: La sorgente di ionizzazione OptiFlow[™] Turbo V è disponibile unicamente per il sistema TripleTOF[®] 6600 + e per qualsiasi sistema TripleTOF[®] 6600 aggiornato per l'utilizzo della sorgente di ionizzazione OptiFlow[™] Turbo V.

Test della sonda SteadySpray

AVVERTENZA! Pericolo di superfici calde. Lasciare raffreddare la sorgente di ionizzazione per almeno 60 minuti prima di iniziare qualsiasi procedura di manutenzione. Le superfici della sorgente di ionizzazione raggiungono temperature considerevoli durante il funzionamento.

ATTENZIONE: rischio di danni al sistema. Non introdurre alcun flusso di solvente prima che la sorgente di ionizzazione abbia raggiunto la corretta temperatura.

Fare riferimento alla Guida per l'operatore per una panoramica della sorgente di ionizzazione.

Nota: Questo test riguarda unicamente la sonda MICRO e l'elettrodo a microflusso basso.

- 1. Eseguire l'infusione della miscela renin a una velocità di flusso di 5 µL/min.
- 2. Nel software Analyst[®] TF in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 3. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Tabella	4-2	Parametri	del	metodo

Parametro	Valore
Parametri MS	
Scan Mode	lone prodotto
High sensitivity	Sopra
Product Of	609,2807
TOF Masses (Da)	Da 150 a 650
Accumulation time (seconds)	0,200
Duration (minutes)	10
Parametri Source/Gas	
Curtain Gas [™] flow (CUR)	20 (o come da ottimizzazione)
Temperature (TEM)	350 (da ottimizzzione, con un massimo di 350 °C.)
Ion Source Gas 1 (GS1)	25 (o come da ottimizzazione)
lon Source Gas 2 (GS2)	65 (o come da ottimizzazione)
IonSpray Voltage Floating (ISVF)	4500 (massimo 4500)
Parametri Compound	
Declustering Potential (DP)	100 (o come da ottimizzazione)

Tabella 4-2 Parametri del metodo (continua)	Tabella 4-	2 Parametri	del metodo	(continua)
---	------------	-------------	------------	------------

Parametro	Valore		
Collision Energy (CE)	45 (o come da ottimizzazione)		
Parametri Resolution			
Q1 Resolution	Unità		
Parametri Syringe Pump Method			
Flow rate (μL/min)	5		
Syringe Size (µL)	250 μL - 1000 μL		

4. Fare clic su **Start** per eseguire il metodo.

ATTENZIONE: rischio di danni al sistema. Ottimizzare usando il valore più alto possibile di flusso per il Curtain Gas[™] per evitare di contaminare lo spettrometro di massa.

- 5. Eseguire l'infusione di miscela renine a 0,167 pmol/ μ L ottimizzando CUR, TEM, GS1, GS2 e ISVF per l'intensità e la stabilità massime del segnale.
- 6. Fare clic su **Acquire** per avviare la raccolta dei dati per un minimo di 5 minuti.
- 7. Stampare i risultati.
- Verificare che l'intensità media sia accettabile. Fare riferimento a Registro dati: sorgente di ionizzazione Turbo V[™].

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

Test per la sorgente di ionizzazione NanoSpray[®]

I test di questa sezione si riferiscono alla sorgente di ionizzazione NanoSpray III. Fare riferimento al *Manuale di installazione* di New Objective per vedere i test per la sorgente di ionizzazione Nanospray PV-450 Digital PicoView[®] Sorgente di ionizzazione Nanospray per gli spettrometri di massa SCIEX.

Effettuare questi test in presenza di una qualsiasi delle seguenti situazioni:

- Quando si installa una nuova sorgente di ionizzazione.
- Dopo un lavoro di manutenzione importante sulla sorgente di ionizzazione.
- Ogni volta che sia necessario valutare le prestazioni della sorgente di ionizzazione, prima di iniziare un progetto o come parte della procedura operativa standard.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Utilizzare la sorgente di ionizzazione solo se si hanno la conoscenza e l'esperienza necessarie riguardo l'utilizzo, il contenimento e l'evacuazione dei materiali tossici o nocivi utilizzati con la sorgente di ionizzazione.

AVVERTENZA! Pericolo di scosse elettriche. Non utilizzare la sorgente di ionizzazione NanoSpray[®] senza l'illuminatore, la telecamera, il fine corsa e i coperchi correttamente montati. Non toccare mai il separatore di interfaccia né consentire il contatto tra quest'ultimo e la punta di emissione. Se lo spettrometro di massa è operativo e la sorgente di ionizzazione è installata, il separatore di interfaccia è in tensione, anche se l'unità di posizionamento X-Y-Z viene allontanata dall'interfaccia.

AVVERTENZA! Pericolo di esposizione ad agenti chimici tossici. Indossare dispositivi di protezione individuale, inclusi camice da laboratorio, guanti e occhiali di sicurezza, per proteggere dall'esposizione gli occhi e la pelle.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. In caso di fuoriuscita di prodotti chimici, consultare le istruzioni contenute nelle schede di sicurezza dei materiali. Accertarsi che il sistema sia in modalità Standby prima di pulire una fuoriuscita vicina alla sorgente di ionizzazione. Usare i dispositivi di protezione individuale appropriati e panni assorbenti per contenere la fuoriuscita e smaltirla secondo le normative locali.

Preparazione del test

AVVERTENZA! Pericolo di scosse elettriche. Evitare il contatto con le alte tensioni presenti sulla sorgente di ionizzazione durante il funzionamento. Porre il sistema in modalità Standby prima di regolare il tubo del campionatore o altre apparecchiature vicino alla sorgente di ionizzazione.

- Quando si installa una nuova sorgente di ionizzazione, assicurarsi che lo spettrometro di massa funzioni in conformità alle specifiche tecniche.
- Installare la sorgente di ionizzazione sullo spettrometro di massa.
- Assicurarsi che la sorgente di ionizzazione sia pienamente ottimizzata. Fare riferimento alla *Guida per l'operatore* per la sorgente di ionizzazione.
- Fare riferimento a tutte le Schede di Sicurezza dei Materiali per le precauzioni necessarie prima di maneggiare soluzioni o solventi chimici.

Figura 5-1 Flusso di lavoro del test

Preparazione della diluizione di [Glu¹]-Fibrinopeptide B

Materiale richiesto

- [Glu1]-Fibrinopeptide B, incluso nel Kit di calibrazione peptidica LC/MS (PN 4465867)
- Diluente standard, incluso nel Kit di calibrazione peptidica LC/MS
- Guanti senza polvere (consigliati in neoprene o nitrile)
- Occhiali di sicurezza
- Camice da laboratorio

Per l'elenco delle masse di [Glu¹]-Fibrinopeptide B, fare riferimento a Masse per [Glu¹]-Fibrinopeptide B.

Nota: preparare sempre la diluizione appena prima di eseguire il test.

Nota: il [Glu¹]-Fibrinopeptide B può rimanere incastrato nel setto in gomma della fiala. Picchiettare delicatamente o agitare prima di aprire la fiala. Rimuovere parzialmente il setto per far apparire uno slot, attraverso il quale aggiungere il solvente di diluizione. Riposizionare il setto e miscelare bene per sciogliere.

ATTENZIONE: possibile risultato errato. Non utilizzare soluzioni scadute.

- Aggiungere 900 μL di diluente standard (0,1% acido formico, 10% acetonitrile) alla fiala di vetro color ambra contenente 0,1 mg di [Glu¹]-Fibrinopeptide B.
- 2. Coprire saldamente la fiala, agitare con movimento rotatorio per almeno 2 minuti, per assicurarsi che il peptide sia completamente disciolto.

Nota: la concentrazione del peptide può variare in base al contenuto totale del peptide e la purezza della soluzione standard del peptide. Fare riferimento al Certificato di Analisi fornito dal fornitore. Con purezza al 100%, 0,1 mg di [Glu¹]-Fibrinopeptide B disciolti come descritto nelle fasi precedenti producono una soluzione madre con una concentrazione di circa 66,67 pmol/µL.

- 3. Aliquotare la soluzione madre con volumi di 50 μ L in provette pulite. Surgelare le aliquote inutilizzate a -20° C per usi futuri.
- 4. Porre 50 μ L di soluzione madre in una provetta pulita, quindi aggiungere 450 μ L di diluente standard.
- 5. Agitare la provetta con movimento rotatorio per 30 secondi.

Questa è una diluizione 1:10, che fornisce 500 μ L, di una soluzione 6,7 pmol/ μ L.

- 6. Porre 50 μ L della soluzione 6,7 pmol/ μ L in un'altra provetta pulita.
- 7. Aggiungere 450 µL di diluente standard.

8. Agitare la provetta con movimento rotatorio per 30 secondi.

Questa è una diluizione 1:10, che fornisce 500 µL della soluzione 667 fmol/µL.

- 9. Porre 50 μ L della soluzione 667 fmol/ μ L in un'altra provetta pulita.
- 10. Aggiungere 450 µL di diluente standard.
- 11. Agitare la provetta con movimento rotatorio per 30 secondi.

Questa è la diluizione 1:10, che fornisce 500 μ L della soluzione finale 66,7 fmol/ μ L, da utilizzare per il test di infusione.

Test della sorgente di ionizzazione sui sistemi TripleTOF[®]

AVVERTENZA! Pericolo di scosse elettriche. Non utilizzare la sorgente di ionizzazione NanoSpray[®] senza l'illuminatore, la telecamera, il fine corsa e i coperchi correttamente montati. Non toccare mai il separatore di interfaccia né consentire il contatto tra quest'ultimo e la punta di emissione. Se lo spettrometro di massa è operativo e la sorgente di ionizzazione è installata, il separatore di interfaccia è in tensione, anche se l'unità di posizionamento X-Y-Z viene allontanata dall'interfaccia.

AVVERTENZA! Pericolo di superfici calde. Non toccare il binario ad alta tensione o la punta di emissione.

Fare riferimento alla Figura 5-1

Per i sistemi TripleTOF[®] 4600, eseguire le operazioni seguenti:

- Preparazione della diluizione di [Glu¹]-Fibrinopeptide B
- Test e calibrazione in modalità TOF MS
- Test e calibrazione in modalità Product Ion

Per i sistemi TripleTOF[®] 5600/5600+ e 6600/6600+, eseguire le operazioni seguenti:

- Preparazione della diluizione di [Glu¹]-Fibrinopeptide B
- Test e calibrazione in modalità TOF MS
- Test e calibrazione nella modalitlà Product Ion (High Sensitivity) (solo sistemi 5600/5600+ e 6600/6600+)
- Test e calibrazione in modalità Product Ion. Questo test viene eseguito in modalità High Resolution.

Materiali richiesti

- Diluizione [Glu1]-Fibrinopeptide B. Fare riferimento a Preparazione della diluizione di [Glu¹]-Fibrinopeptide B.
- Siringa da 100 μL (1,46 mm d.i.) o equivalente per infusione con la sorgente di ionizzazione NanoSpray[®]
- (Opzionale) Siringa da 1 mL (4,61 mm d.i.) o equivalente per infusione con la sorgente di ionizzazione DuoSpray[™]
- Guanti senza polvere (consigliati in neoprene o nitrile)
- Occhiali di sicurezza
- Camice da laboratorio

Test e calibrazione in modalità TOF MS

(Opzionale) Esecuzione del test TOF MS con la sorgente di ionizzazione DuoSpray[™]

Questa procedura conferma l'integrità della diluizione.

Nota: prima di riempire la siringa con la soluzione [Glu¹]-Fibrinopeptide B, lavarla tre volte con la soluzione di lavaggio. Collegare la siringa al tubo appropriato e lavare nuovamente prima del collegamento con la giunzione sul binario dell'alta tensione. Quindi, lavare i tubi con la soluzione [Glu¹]-Fibrinopeptide B.

- 1. Installare la sorgente di ionizzazione DuoSpray[™] sullo spettrometro di massa. Fare riferimento alla *Guida per l'operatore della sorgente di ionizzazione DuoSpray*[™].
- 2. Utilizzando la siringa da 1 mL, eseguire l'infusione della soluzione di [Glu¹]-Fibrinopeptide B a una portata di 5 μ L/min.
- 3. Nel software Analyst[®] TF in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 4. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Tabella 5-1 Parametri per il test TOF MS con la sorgente di ionizzazione DuoSpray[™]

Parametro	Valore				
Parametri MS					
Scan type	TOF MS				
Accumulation time (sec)					
Polarity	Positiva				
TOF masses (Da)	Da 400 a 1800				
Duration (min)	0,5				

Tabella 5-1 Parametri per il test TOF MS con la sorgente di ionizzazione DuoSpray[™] (continua)

Parametro	Valore						
Parametri Advanced MS							
МСА	Via						
Auto Adjust with mass	Sopra						
Q1 Transmission Window	Predefinito (con auto-regolazione)						
Pulsar Frequency	Predefinito (con auto-regolazione)						
Time bins to sum	4						
Settling time	Predefinito						
Pause between mass ranges	Predefinito						
Parametri Source/Gas	·						
Ion Source Gas 1 (GS1)	20						
Curtain Gas [™] flow (CUR)	20						
Temperature (TEM) (°C)	0						
IonSpray Voltage Floating (ISVF)	5500						
Parametri Compound	^ 						
Declustering Potential (DP)	100						
Parametri Syringe Pump Method	<u> </u>						
Flow rate (µL/min)	5						
Syringe Size	1 mL (4,61 mm i.d.)						

5. Salvare il nuovo metodo.

Suggerimento! Salvare i metodi usati per i test della sorgente di ionizzazione NanoSpray[®] in una cartella separata, nominata NanoSpray Installation <data>.

- 6. Fare clic su **Acquire** per acquisire 30 secondi di dati.
- 7. Evidenziare 30 secondi nella finestra **TIC of +TOF MS** nel pannello in basso a sinistra e fare doppio clic per visualizzare uno spettro medio.
- 8. Fare clic col pulsante destro sullo spettro di media, che appare nel pannello in basso, poi fare clic su **List Data**. Quindi registrare l'intensità del centroide e la risoluzione.
- 9. Verificare che l'intensità del centroide e la risoluzione siano accettabili. Fare riferimento a Registro dati: sorgente di ionizzazione NanoSpray[®].

Linee guida: l'intensità del centroide e la risoluzione ottenute con la sorgente di ionizzazione DuoSpray[™] devono soddisfare le specifiche fornite per la sorgente di ionizzazione NanoSpray[®]. In caso contrario, preparare una nuova diluizione.

Esecuzione del test TOF MS con la sorgente di ionizzazione NanoSpray®

Nota: prima di riempire la siringa con la soluzione [Glu¹]-Fibrinopeptide B, lavarla tre volte con la soluzione di lavaggio. Collegare la siringa al tubo appropriato e lavare nuovamente prima del collegamento con la giunzione sul binario dell'alta tensione. Quindi, lavare i tubi con la soluzione [Glu¹]-Fibrinopeptide B.

- 1. Installare la sorgente di ionizzazione NanoSpray[®] sullo spettrometro di massa. Fare riferimento alla *Guida per l'operatore della sorgente di ionizzazione NanoSpray*[®].
- 2. Preparare la testina NanoSpray III. Fare riferimento alla *Guida per l'operatore della sorgente di ionizzazione NanoSpray*[®].
- 3. Utilizzando la siringa da 100 μ L, eseguire l'infusione della soluzione di [Glu¹]-Fibrinopeptide B a una portata di 0,5 μ L/min.
- 4. Nel software Analyst[®] TF in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- Se viene eseguita la procedura opzionale, (Opzionale) Esecuzione del test TOF MS con la sorgente di ionizzazione DuoSpray[™], aprire il metodo e impostare i parametri come illustrato nella tabella seguente. Se la procedura non viene eseguita, creare un metodo utilizzando questi parametric. Se la procedura non viene eseguita, creare un metodo questi parametri.

Parametro	Valore
Parametri MS	
Scan type	TOF MS
Accumulation time (sec)	1,0
Polarity	Positiva
TOF masses (Da)	Da 400 a 1800
Duration (min)	0,5
Parametri Advanced MS	
МСА	Via
Auto Adjust with mass	Sopra
Q1 Transmission Window	Predefinito (con auto-regolazione)
Pulsar Frequency	Predefinito (con auto-regolazione)
Time bins to sum	4
Settling time	Predefinito

Tabella 5-2 Parametri del metodo TOF MS con la sorgente di ionizzazione NanoSpray®

Tabella 5-2 Parametri del metodo TOF MS con la sorgente di ionizzazione NanoSpray	B
(continua)	

Parametro	Valore
Pause between mass ranges	Predefinito
Parametri Source/Gas	
lon Source Gas 1 (GS1)	3
Curtain Gas [™] flow (CUR)	25
Interface Heater Temperature (IHT) (°C)	75
IonSpray Voltage Floating (ISVF)	2100
Parametri Compound	
Declustering Potential (DP)	100
Parametri Syringe Pump Method	
Flow rate (µL/min)	0,5
Syringe Size	100 Gastight (1,46 mm)

6. Fare clic su **Start** per eseguire il metodo.

ATTENZIONE: rischio di danni al sistema. Non consentire il contatto tra la punta di emissione e il curtain plate. Utilizzare la manopola di regolazione fine asse Z per correggere la posizione del nebulizzatore, per evitare di danneggiare la punta di emissione.

ATTENZIONE: rischio di contaminazione del sistema. Non inserire l'estremità della punta di emissione nella fenditura del curtain plate. Assicurarsi che la punta di emissione fuoriesca dalla fenditura di almeno 2-5 mm. Una nebulizzazione troppo vicina alla fenditura può contaminare lo spettrometro di massa.

- 7. Regolare la posizione della testina di nebulizzazione relativa alla fenditura del curtain plate per ottimizzare l'intensità del segnale. Registrare i valori XYZ per utilizzi futuri.
- 8. Regolare **ISVF** con incrementi di 100 V per ottenere il miglior segnale e il miglior rapporto segnale/rumore.

Nota: se la tensione di lonSpray[™] è troppo alta, può verificarsi una scarica a corona. Ciò si manifesta come un bagliore blu all'estremità della sonda. Una scarica a corona comporta una perdita di sensibilità e di stabilità del segnale.

9. Aumentare **GS1** finché il segnale non inizia a diminuire, quindi ridurre **GS1** finché il segnale non raggiunge il suo valore massimo.

Solitamente **GS1** ottimizza tra 3 e 10. Se **GS1** è al di fuori di questo intervallo, allora la sporgenza della punta non è corretta (da 1 a 2 mm) o la punta potrebbe aver bisogno di essere riposizionata.

Nota: il parametro GS1 può essere ottimizzato a zero.

10. Aumentare **CUR** finché il segnale non inizia a diminuire, quindi ridurre **CUR** finché il segnale non raggiunge il suo valore massimo.

Nota: usare il valore maggiore possibile per il CUR in modo da impedire la contaminazione senza compromettere la sensibilità. Non impostare il CUR a valori più bassi di 20. Ciò contribuisce a evitare la penetrazione del flusso di Curtain Gas[™], che può generare un segnale rumoroso, a evitare la contaminazione della fenditura e ad aumentare il rapporto segnale-rumore complessivo.

- 11. Se si sposta la testina di nebulizzazione per ottimizzare l'intensità del segnale, regolare la posizione dell'illuminatore dell'illuminatore se necessario.
- 12. Salvare il nuovo metodo.

Suggerimento! Salvare i metodi usati per i test della sorgente di ionizzazione NanoSpray[®] in una cartella separata, nominata NanoSpray Installation <data>.

- 13. Eseguire il metodo per almeno 20 minuti. Monitorare la stabilità della nebulizzazione. Se la nebulizzazione è stabile, sono visibili nel TIC solo le fluttuazioni minime.
- 14. Dopo che la nebulizzazione sia stata ottimizzata, fare clic su **Acquire** e acquisire 30 secondi di dati.
- 15. Evidenziare 30 secondi nella finestra **TIC of +TOF MS** nel pannello in basso a sinistra e fare doppio clic per visualizzare uno spettro medio.
- 16. Fare clic col pulsante destro sullo spettro di media, che appare nel pannello in basso, poi fare clic su **List Data**. Registrare l'intensità del centroide e la risoluzione.
- 17. Verificare che l'intensità del centroide e la risoluzione siano accettabili. Fare riferimento alla Figura 5-2 e a Registro dati: sorgente di ionizzazione NanoSpray[®].

Se i risultati non sono accettabili, fare riferimento a Suggerimenti per la risoluzione dei problemi.

18. Stampare una copia dei risultati e registrare la risoluzione e l'intensità del centroide nel registro dati.

Aggiornamento della tabella di riferimento per la calibrazione di [Glu¹]-Fibrinopeptide B

- 1. Nel software Analyst[®] TF in modalità **Tune and Calibrate** fare clic su **Tools > Settings > Tuning Options.**
- 2. Nella scheda Calibration fare clic su Reference.
- 3. In Reference Table Editor, nel campo Name selezionare Glu-fibrinopeptide B.
- Nella tabella Reference Ions for TOF MS Calibration (sul lato sinistro) aggiungere le masse mostrate in Figura 5-3. Per l'elenco delle masse di [Glu¹]-Fibrinopeptide B, fare riferimento a Masse per [Glu¹]-Fibrinopeptide B.

-			2000									- Sector -
fere	nce Ions	for TOF MS Calibrat	ion:						Refer	ence Ions	for MS/MS Calibrat	tion:
	Use	Compound Name	Precursor m/z	Use for MS/MS	CE for MS/MS	DP for MS/MS	Retention Time (min)	^	(Produ	Use	Fragment Name	Fragment m/z
	2	y4	480.25650	Г	45.000	100.000	0.00	-	1	<u> </u>	y1	175.11900
	ম	y6	684.34640	Г	45.000	100.000	0.00		2	ম	y3	333.18810
	ম	Glu-fibrinopeptide	785.84210	ম	45.000	100.000	0.00		3	<u> </u>	y4	480.25650
	2	y7	813.38900	Г	45.000	100.000	0.00		4	ম	y6	684.3464
	N	y8	942.43160	Г	45.000	100.000	0.00		5	N	Parent	785.84210
	ন	у9	1056.47450	Г	45.000	100.000	0.00		6	N	y8	942.43160
	ব	y10	1171.50140		45.000	100.000	0.00		7	N	y10	1171.50140
	J	y11	1285.54440		45.000	100.000	0.00		8	N	y11	1285.54440
	Г								9			
									10			
									11			
_									12			
								~	13			

Figura 5-3 Reference Table Editor: Ioni di Riferimento per la Calibrazione TOF MS

- 5. Fare clic su OK.
- 6. Nella finestra di dialogo **Tuning Options** fare clic su **OK**.

Calibrazione in modalità TOF MS

- 1. In modalità **Manual Tune**, assicurarsi che i parametri siano impostati con i valori specificati nella Esecuzione del test TOF MS con la sorgente di ionizzazione NanoSpray[®]. Fare riferimento a Tabella 5-2.
- 2. Nella scheda Compound impostare Collision Energy (CE) su 35 V.
- 3. Quando la nebulizzazione è stabile, fare clic su **Acquire** e acquisire 30 secondi di dati di scansione.
- 4. Nella finestra **TIC of +TOF MS** (in basso a sinistra), evidenziare 30 secondi del segnale TIC per la media e fare doppio clic.
- 5. Nella nuova finestra che viene visualizzata (nella parte inferiore della finestra del software Analyst[®] TF), fare clic con il pulsante destro del mouse e fare clic su **Re-Calibrate TOF**.
- 6. Nella finestra di dialogo **TOF Calibration**, nell'elenco **Reference Table**, selezionare **Glu-fibrinopeptide B**.
- 7. Assicurarsi che nello spettro di infusione siano state identificate le masse sperimentali corrette e che corrispondano alla tabella di riferimento delle masse teoriche.
- 8. Verificare il valore **Average Error** visualizzato a destra del pulsante **Calculate New Calibrations**.
- 9. Fare clic su **Calculate New Calibrations** e assicurarsi che il valore **Average Error** scenda sotto a 2 ppm.
- 10. In Calibration Values, fare clic su Calibrate Spectrum.
- 11. In Save Current Calibration, selezionare Set as Instrument Default e Overwrite Current File.

12. Fare clic su **Entire File**.

13. Fare clic su **Close**.

Test e calibrazione nella modalitlà Product Ion (High Sensitivity) (solo sistemi 5600/5600+ e 6600/6600+)

Esecuzione del test nella modalità Product Ion (High Sensitivity) (solo sistemi 5600/5600+ e 6600/6600+)

- 1. Nel software Analyst[®] TF in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 2. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Parametro	Valore
Parametri MS	
Scan type	lone prodotto
Product Of	785,8
Accumulation time (sec)	1,0
Polarity	Positiva
TOF masses (Da)	Da 100 a 1800
High sensitivity	Sopra
Duration (min)	0,5
Parametri Advanced MS	
МСА	Via
Auto Adjust with mass	Sopra
Q1 Transmission Window	Predefinito (con auto-regolazione)
Pulsar Frequency	Predefinito (con auto-regolazione)
Time bins to sum	4
Settling time	Predefinito
Pause between mass	Predefinito
Parametri Source/Gas	
lon Source Gas 1 (GS1)	come da ottimizzazione
Curtain Gas [™] flow (CUR)	come da ottimizzazione

Tabella 5-3 Parametri Metodo Ione Prodotto

Parametro	Valore
Interface Heater Temperature (IHT) (°C)	75
IonSpray Voltage Floating (ISVF)	come da ottimizzazione
Parametri Compound	
Collision Energy (CE) (V)	45 (o come da ottimizzazione)
Parametri Resolution	
Q1 resolution	Unità

Nota: CE normalmente ottimizza tra 40 e 48 V. Se CE non si trova in questo intervallo, il valore gas CAD potrebbe essere troppo basso. Se l'intensità dello ione precursore a m/z 785,9 non è il 10% o meno dell'intensità originale, l'interazione tra CE e gas CAD non è corretta. Contattare l'assistenza tecnica di SCIEX per maggiori informazioni.

- 3. Salvare il nuovo metodo.
- 4. Quando la nebulizzazione è stabile, fare clic su **Acquire** per acquisire almeno 30 secondi di scansioni.
- 5. Evidenziare 30 secondi nella finestra **TIC of +TOF Product** nel pannello in basso a sinistra e fare doppio clic per visualizzare uno spettro medio.
- 6. Fare clic col pulsante destro sullo spettro di media, che appare nel pannello in basso, poi fare clic su **List Data**.
- 7. Fare clic sulla scheda **Peak List** .
- 8. Fare clic col pulsante destro sulla riga di intestazione colonna e fare clic su **Column Options**.

Figura 5-4 Finestra di dialogo Select Columns for Peak List

- 9. Selezionare le caselle di controllo m/z (Da), Intensity, Centroid mass, Centroid Intensity, Width (Da), e Resolution.
- 10. Fare clic su **OK**.
- 11. Verificare che l'intensità del centroide e la risoluzione siano accettabili. Fare riferimento alla Figura 5-5 e a Registro dati: sorgente di ionizzazione NanoSpray[®].

Figura 5-5 Spettro campione: Test Product Ion High Sensitivity

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

12. Stampare una copia dei risultati e registrare la risoluzione e l'intensità del centroide nel registro dati.

Calibrazione in modalità Product Ion (High Sensitivity)

- 1. In modalità **Manual Tune**, assicurarsi che i parametri siano impostati con i valori specificati nella Esecuzione del test nella modalità Product Ion (High Sensitivity) (solo sistemi 5600/5600+ e 6600/6600+). Fare riferimento a Tabella 5-3.
- 2. Quando la nebulizzazione è stabile, fare clic su **Acquire** e acquisire almeno 30 secondi di dati di scansione.
- 3. Nella finestra **TIC of +TOF Product** (in basso a sinistra), evidenziare 30 secondi del segnale TIC per la media e fare doppio clic.
- 4. Nella nuova finestra che viene visualizzata (nella parte inferiore della finestra del software Analyst[®] TF), fare clic con il pulsante destro del mouse e fare clic su **Re-Calibrate TOF**.
- 5. Nella finestra di dialogo **TOF Calibration**, nell'elenco **Reference Table**, selezionare **Glu-fibrinopeptide B**.

- 6. Assicurarsi che nello spettro di infusione siano state identificate le masse sperimentali corrette e che corrispondano alla tabella di riferimento delle masse teoriche.
- 7. Selezionare il valore Average Error mostrato a destra del pulsante Calculate New Calibrations.
- 8. Fare clic su **Calculate New Calibrations** e assicurarsi che il valore **Average Error** scenda sotto a 2 ppm.
- 9. In Calibration Values, fare clic su Calibrate Spectrum.
- 10. In Save Current Calibration, selezionare Set as Instrument Default e Overwrite Current File.
- 11. Fare clic su **Entire File**.

12. Fare clic su **Close**.

Test e calibrazione in modalità Product Ion

Per i sistemi SCIEX TripleTOF[®] 5600/5600+ e 6600/6600+, questo test viene eseguito in modalità High Resolution.

Esecuzione del test Product Ion

- 1. Nel software Analyst[®] TF in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 2. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Parametro	Valore
Parametri MS	
Scan type	Ione prodotto
Product Of	785,8
Accumulation time (sec)	1,0
Polarity	Positiva
TOF masses (Da)	Da 100 a 1800
High resolution	Sopra
(solo sistemi 5600/5600+ e 6600/6600+)	
Duration (min)	0,5
Parametri Advanced MS	
МСА	Via
Auto Adjust with mass	Sopra

Tabella 5-4 Parametri Metodo Ione Prodotto

Parametro	Valore
Q1 Transmission Window	Predefinito (con auto-regolazione)
Pulsar Frequency	Predefinito (con auto-regolazione)
Time bins to sum	4
Settling time	Predefinito
Pause between mass	Predefinito
Parametri Source/Gas	
Ion Source Gas 1 (GS1)	come da ottimizzazione
Curtain Gas [™] flow (CUR)	come da ottimizzazione
Interface Heater Temperature (IHT) (°C)	75
IonSpray Voltage Floating (ISVF)	come da ottimizzazione
Parametri Compound	
Collision Energy (CE) (V)	45 (o come da ottimizzazione)
Parametri Resolution	
Q1 resolution	Unità

Tabella 5-4 Parametri Metodo Ione Prodotto (continua)

Nota: CE normalmente ottimizza tra 40 e 48 V. Se CE non si trova in questo intervallo, il valore gas CAD potrebbe essere troppo basso. Se l'intensità dello ione precursore a m/z 785,9 non è il 10% o meno dell'intensità originale, l'interazione tra CE e gas CAD non è corretta. Contattare l'assistenza tecnica di SCIEX per maggiori informazioni.

- 3. Salvare il nuovo metodo.
- 4. Quando la nebulizzazione è stabile, fare clic su **Acquire** per acquisire almeno 30 secondi di scansioni.
- 5. Evidenziare 30 secondi nella finestra **TIC of +TOF Product** nel pannello in basso a sinistra e fare doppio clic per visualizzare uno spettro medio.
- 6. Fare clic col pulsante destro sullo spettro di media, che appare nel pannello in basso, poi fare clic su **List Data**.
- 7. Fare clic sulla scheda **Peak List** .
- 8. Verificare che l'intensità del centroide e la risoluzione siano accettabili. Fare riferimento alla Figura 5-6 e a Registro dati: sorgente di ionizzazione NanoSpray[®].

Figura 5-6 Spettro campione: Test Product Ion, Sistema TripleTOF 5600

Se i risultati non sono accettabili, fare riferimento a Suggerimenti per la risoluzione dei problemi.

9. Stampare una copia dei risultati e registrare la risoluzione e l'intensità del centroide nel registro dati.

Calibrazione in modalità Product Ion

Per i sistemi SCIEX TripleTOF[®] 5600/5600+ e 6600/6600+, questa procedura calibra la modalità High Resolution.

- 1. In modalità **Manual Tune**, assicurarsi che i parametri siano impostati con i valori specificati nella Esecuzione del test Product Ion. Fare riferimento a Tabella 5-4.
- 2. Quando la nebulizzazione è stabile, fare clic su **Acquire** e acquisire almeno 30 secondi di dati di scansione.
- 3. Nella finestra **TIC of +TOF Product** (in basso a sinistra), evidenziare 30 secondi del segnale TIC per la media e fare doppio clic.
- 4. Nella nuova finestra che viene visualizzata (nella parte inferiore della finestra del software Analyst[®] TF), fare clic con il pulsante destro del mouse e fare clic su **Re-Calibrate TOF**.
- 5. Nella finestra di dialogo **TOF Calibration**, nell'elenco **Reference Table**, selezionare **Glu-fibrinopeptide B**.
- 6. Assicurarsi che nello spettro di infusione siano state identificate le masse sperimentali corrette e che corrispondano alla tabella di riferimento delle masse teoriche.
- 7. Verificare il valore Average Error visualizzato a destra del pulsante Calculate New Calibrations .
- 8. Fare clic su **Calculate New Calibrations** e assicurarsi che il valore **Average Error** scenda sotto a 2 ppm.

- 9. In Calibration Values, fare clic su Calibrate Spectrum.
- 10. In Save Current Calibration, fare clic su Entire File.
- 11. Fare clic su Close.

Riepilogo

Nota: il responsabile dell'assistenza tecnica (FSE) di SCIEX deve inviare una e-mail all'indirizzo servicedata@sciex.com con i risultati del test di accettazione NanoSpray[®] eseguito dopo l'installazioneservicedata@sciex.com.

- 1. Lavare accuratamente la punta e la linea di infusione.
- 2. Eseguire una copia del registro dati completo e dei risultati del test e fornire gli originali al cliente.

Test della sorgente di ionizzazione su sistemi Triple Quadrupole e QTRAP[®]

AVVERTENZA! Pericolo di superfici calde. Non toccare il binario ad alta tensione o la punta di emissione.

AVVERTENZA! Pericolo di scosse elettriche. Non utilizzare la sorgente di ionizzazione NanoSpray[®] senza l'illuminatore, la telecamera, il fine corsa e i coperchi correttamente montati. Non toccare mai il separatore di interfaccia né consentire il contatto tra quest'ultimo e la punta di emissione. Se lo spettrometro di massa è operativo e la sorgente di ionizzazione è installata, il separatore di interfaccia è in tensione, anche se l'unità di posizionamento X-Y-Z viene allontanata dall'interfaccia.

Fare riferimento alla Figura 5-1

Per i sistemi Triple Quad[™], tranne i sistemi serie 3200, eseguire le operazioni seguenti:

- Preparazione della diluizione di [Glu¹]-Fibrinopeptide B
- Test in modalità Q1
- Test in modalità Q3

Per i sistemi QTRAP[®], tranne i sistemi 3200 QTRAP[®], eseguire le operazioni seguenti:

- Preparazione della diluizione di [Glu¹]-Fibrinopeptide B
- Test in modalità Q1
- Test in modalità Q3
- Test e calibrazione in modalità EPI (solo sistemi QTRAP[®] o sistemi Triple Quad 5500+ abilitati QTRAP[®])

Per i sistemi API 3200[™] e 3200 QTRAP[®], fare riferimento a Test per la sorgente di ionizzazione sui sistemi serie 3200.

Materiali richiesti

- [Glu¹]-Fibrinopeptide B, incluso nel Kit di calibrazione peptidica LC/MS (cod. art. 4465867)
- Diluente standard
- Siringa da 100 μL (1,46 mm d.i.) o equivalente per infusione con la sorgente di ionizzazione NanoSpray[®]
- (Opzionale) Siringa da 1 mL (4,61 mm d.i.) o equivalente per infusione con la sorgente di ionizzazione Turbo V[™]
- Guanti senza polvere (consigliati in neoprene o nitrile)
- Occhiali di sicurezza
- Camice da laboratorio

Test in modalità Q1

(Opzionale) Esecuzione del test Q1 con la sorgente di ionizzazione Turbo V[™]

Questa procedura conferma l'integrità della diluizione.

Nota: prima di riempire la siringa con la soluzione [Glu¹]-Fibrinopeptide B, lavarla tre volte con la soluzione di lavaggio. Collegare la siringa al tubo appropriato e lavare nuovamente prima del collegamento con la giunzione sul binario dell'alta tensione. Quindi, lavare i tubi con la soluzione [Glu¹]-Fibrinopeptide B.

- 1. Installare la sorgente di ionizzazione Turbo V^{TM} sullo spettrometro di massa. Fare riferimento alla *Guida* per l'operatore della sorgente di ionizzazione Turbo V^{TM} .
- 2. Utilizzando la siringa da 1 mL, eseguire l'infusione della soluzione di [Glu¹]-Fibrinopeptide B a una portata di 5 μ L/min.
- 3. Nel software Analyst[®]in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 4. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Tabella 5-5 Parametri per il test Q1 con la sorgente di ionizzazione Turbo V[™]

Parametro	Valore
Parametri MS	
Scan type	Scansione Q1
Mass mode (sistemi serie 6500 e 6500+)	Massa bassa
Polarity	Positiva

Parametro	Valore
Display masses (Da)	Centro: 785,9
	Larghezza: 20
Scan Speed (Da/sec)	10
МСА	Sopra
Cycles	10
Parametri Source/Gas	
Curtain Gas [™] flow (CUR)	20
IonSpray Voltage (IS)	5500
Ion Source Gas 1 (GS1)	20
Interface Heater (IHT)	Non usato
Parametri Compound	I
Declustering Potential (DP)	100
Parametri Syringe Pump Method	i
Flow rate (µL/min)	5
Syringe Size	1 mL (4,61 mm i.d.)

Tabella 5-5 Parametri per il test Q1 con la sorgente di ionizzazione Turbo V[™] (continua)

5. Salvare il metodo.

Suggerimento! Salvare i metodi usati per i test della sorgente di ionizzazione NanoSpray[®] in una cartella separata, nominata NanoSpray Installation <data>.

- 6. Fare clic su **Acquire** per acquisire 30 secondi di dati.
- 7. Registrare l'intensità del picco a m/z 785,8421.
- 8. Ripetere la procedura dal punto 6 al punto 7 altre due volte.
- 9. Fare la media dei risultati delle tre scansioni.
- 10. Confrontare l'intensità del centroide e la risoluzione con le specifiche della sorgente di ionizzazione NanoSpray[®] illustrate in Registro dati: sorgente di ionizzazione NanoSpray[®].

Linee guida: l'intensità del centroide e la risoluzione ottenute con la sorgente di ionizzazione Turbo V devono soddisfare le specifiche fornite per la sorgente di ionizzazione NanoSpray[®]. In caso contrario, preparare una nuova diluizione.

Esecuzione del test Q1 con la sorgente di ionizzazione NanoSpray®

Nota: prima di riempire la siringa con la soluzione [Glu¹]-Fibrinopeptide B, lavarla tre volte con la soluzione di lavaggio. Collegare la siringa al tubo appropriato e lavare nuovamente prima del collegamento con la giunzione sul binario dell'alta tensione. Quindi, lavare i tubi con la soluzione [Glu¹]-Fibrinopeptide B.

- 1. Installare la sorgente di ionizzazione NanoSpray[®] sullo spettrometro di massa. Fare riferimento alla *Guida per l'operatore della sorgente di ionizzazione NanoSpray*[®].
- 2. Preparare la testina NanoSpray[®] III. Fare riferimento alla *Guida per l'operatore della sorgente di ionizzazione NanoSpray*[®].
- 3. Utilizzando la siringa da 100 μ L, eseguire l'infusione della soluzione di [Glu¹]-Fibrinopeptide B a una portata di 0,5 μ L/min.
- 4. Nel software Analyst[®] in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 5. Se viene eseguita la procedura opzionale, (Opzionale) Esecuzione del test Q1 con la sorgente di ionizzazione Turbo V[™], aprire il metodo creato e impostare i parametri come specificato nella (Opzionale) Esecuzione del test Q1 con la sorgente di ionizzazione Turbo V[™]. Fare riferimento a Tabella 5-5. Se la procedura non è stata eseguita, creare un metodo utilizzando questi parametri.

Parametro	Valore
Parametri MS	-
Scan type	Scansione Q1
Mass mode (sistemi serie 6500 e 6500+)	Massa bassa
Polarity	Positiva
Mass Range	Da 400 a 1000
Scan Speed (Da/sec)	2000
(sistemi serie 4500, 5500/5500+ e 6500/6500+)	
Scan Time (sec)	3
(sistemi serie 4000)	
МСА	Via
Cycles	Nota : il numero di cicli, se fissato per lo specifico strumento analizzato. Fare riferimento ai parametri sopra.
	500 (sistemi serie 4000)
	50 (sistemi serie 4500, 5500/5500+ e 6500/6500+)
Parametri Source/Gas	

Tabella 5-6 Parametri del metodo con la sorgente di ionizzazione NanoSpray®

Parametro	Valore
CAD Gas	Bassa (sistemi serie 4000) Medio (o come da ottimizzazione) (sistemi serie 4500, 5500/5500+ e 6500/6500+)
IonSpray Voltage (IS)	2100
lon Source Gas 1 (GS1)	10
Interface Heater Temperature (IHT) (°C)	75
Parametri Compound	
Declustering Potential (DP)	70 (sistemi serie 4000)
	100 (sistemi serie 4500, 5500/5500+ e 6500/6500+)
Parametri Syringe Pump Method	
Flow rate (µL/min)	0,5
Syringe Size (µL)	100 Gastight (1,46 mm)

Tabella 5-6 Parametri del metodo con la sorgente di ionizzazione NanoSpray[®] (continua)

6. Fare clic su **Start** per eseguire il metodo.

ATTENZIONE: rischio di danni al sistema. Non consentire il contatto tra la punta di emissione e il curtain plate. Utilizzare la manopola di regolazione fine asse Z per correggere la posizione del nebulizzatore, per evitare di danneggiare la punta di emissione.

ATTENZIONE: rischio di contaminazione del sistema. Non inserire l'estremità della punta di emissione nella fenditura del curtain plate. Assicurarsi che la punta di emissione fuoriesca dalla fenditura di almeno 2-5 mm. Una nebulizzazione troppo vicina alla fenditura può contaminare lo spettrometro di massa.

- 7. Regolare la posizione della testina di nebulizzazione relativa alla fenditura del curtain plate per ottimizzare l'intensità del segnale. Registrare i valori XYZ per utilizzi futuri.
- 8. Regolare IS con incrementi di 100 V per ottenere il miglior segnale e il miglior rapporto segnale/rumore.

Nota: se la tensione di lonSpray[™] è troppo alta, può verificarsi una scarica a corona. Ciò si manifesta come un bagliore blu all'estremità della sonda. Una scarica a corona comporta una perdita di sensibilità e di stabilità del segnale.

9. Aumentare GS1 finché il segnale non inizia a diminuire, quindi ridurre GS1 finché il segnale non raggiunge il suo valore massimo.

Nota: il parametro GS1 può essere ottimizzato a zero.

10. Aumentare CUR finché il segnale non inizia a diminuire, quindi ridurre CUR finché il segnale non raggiunge il suo valore massimo.

Nota: usare il valore maggiore possibile per il CUR in modo da impedire la contaminazione senza compromettere la sensibilità. Non impostare il CUR a valori più bassi di 20. Ciò contribuisce a evitare la penetrazione del flusso di Curtain Gas[™], che può generare un segnale rumoroso, a evitare la contaminazione della fenditura e ad aumentare il rapporto segnale-rumore complessivo.

- 11. Se si sposta la testina di nebulizzazione per ottimizzare l'intensità del segnale, regolare la posizione dell'illuminatore se necessario.
- 12. Salvare il nuovo metodo.

Suggerimento! Salvare i metodi usati per i test della sorgente di ionizzazione NanoSpray[®] in una cartella separata, nominata NanoSpray Installation <data>.

13. Monitorare la stabilità della nebulizzazione per 5 minuti. Se la nebulizzazione è stabile, sono visibili nel TIC solo le fluttuazioni minime.

Figura 5-7 Spettro Campione: Modalità Test Q1 in un sistema 4000 QTRAP[®]

- 14. Dopo che la nebulizzazione sia stata stabilizzata, modificare **Scan Speed** a **10**.
- 15. Selezionare Center/Width, digitare 785,9 nella colonna Center e 20 nella colonna Width .
- 16. Attivare MCA .
- 17. Fare clic su **Acquire** per iniziare la raccolta dei dati.
- 18. Registrare l'intensità del picco a m/z 785,9.
- 19. Ripetere il punto 17 e il punto 18 altre due volte.
- 20. Fare una media delle tre intensità.
- 21. Verificare che l'intensità media sia accettabile. Fare riferimento a Registro dati: sorgente di ionizzazione NanoSpray[®].

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

22. Stampare una copia dei risultati e registrare l'intensità nel registro dati.

Test in modalità Q3

Nota: prima di riempire la siringa con la soluzione [Glu¹]-Fibrinopeptide B, lavarla tre volte con la soluzione di lavaggio. Collegare la siringa al tubo appropriato e lavare nuovamente prima del collegamento con la giunzione sul binario dell'alta tensione. Quindi, lavare i tubi con la soluzione [Glu¹]-Fibrinopeptide B.

- 1. Nel software Analyst[®] in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 2. Aprire il metodo utilizzato per il test Q1.
- 3. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Tabella 5-7 Parametri Metodo Q3

Parametro	Valore
Parametri MS	
Scan type	Scansione Q3
Mass mode (sistemi serie 6500/6500+)	Massa bassa
Display masses (Da)	Centro: 785,9 Larghezza: 20
Scan Speed (Da/sec)	10
МСА	Via
Cycles	10

Tabella 5-7 Parametri Metodo Q3 (continua)

Parametro	Valore
Parametri Compound	
Collision Cell Exit Potential (CXP) (V)	15 (o come da ottimizzazione) (sistemi serie 4000)
	30 (o come da ottimizzazione) (sistemi serie 4500, 5500/5500+, e 6500/6500+)

- 4. Salvare il nuovo metodo.
- 5. Fare clic su **Start** per eseguire il metodo.
- 6. Quando la nebulizzazione è stabile, attivare MCA.
- 7. Fare clic su **Acquire** per iniziare la raccolta dei dati.
- 8. Registrare l'intensità del picco a m/z 785,9.
- 9. Ripetere la procedura dal punto 7 al punto 8 altre due volte.

- 10. Stampare i risultati.
- 11. Calcolare la media delle tre intensità degli ioni e registrare il risultato nel registro dati.
- 12. Verificare che l'intensità media sia accettabile. Fare riferimento a Registro dati: sorgente di ionizzazione NanoSpray[®].

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

Test e calibrazione in modalità EPI (solo sistemi QTRAP[®] o sistemi Triple Quad 5500+ abilitati QTRAP[®])

Esecuzione del test in modalità EPI

- 1. Utilizzando la siringa da 100 μ L, eseguire l'infusione della soluzione di [Glu1]-Fibrinopeptide B a una portata di 0,5 μ L/min.
- 2. Nel software Analyst[®] in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 3. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Parametro	Valore
Parametri MS	
Scan type	Scansione EPI
Mass mode (sistemi serie 6500/6500+)	Massa bassa
Polarity	Positiva
Mass Range (Da)	Da 100 a 1500 (sistemi serie 4000)
	100 - 1000 (sistemi serie 4500, 5500/5500+ e 6500/ 6500+)
Scan speed (Da/sec)	4000 (sistemi serie 4000)
	10.000 (sistemi serie 4500, 5500/5500+ e 6500/ 6500+)
Precursors of	785,9
МСА	Sopra
Scans to sum	1
Cycles	10 (sistemi serie 4000)
	50 (sistemi serie 4500, 5500/5500+ e 6500/6500+)
Parametri Advanced MS	
Fixed LIT Fill Time (ms)	50 (sistemi serie 4000)
	10 (sistemi serie 4500, 5500/5500+ e 6500/6500+)
Parametri Compound	
Collision Energy (CE) (V)	45 (o come da ottimizzazione)
Declustering Potential (DP)	70 (o come da ottimizzazione)

Tabella 5-8 Parametri Metodo EPI

Tabella 5-8 Parametri Metodo EPI (continua)

Parametro	Valore			
Parametri Syringe Pump Method				
Flow rate (µL/min)	0,5			
Syringe Size (µL)	100 Gastight (1,46 mm)			

Nota: CE normalmente ottimizza tra 40 e 48 V. Se CE non si trova in questo intervallo, il valore gas CAD potrebbe essere troppo basso. Se l'intensità dello ione precursore a m/z 785,9 non è il 10% o meno dell'intensità originale, l'interazione tra CE e gas CAD non è corretta. Contattare l'assistenza tecnica di SCIEX per maggiori informazioni.

- 4. Fare clic su **Start** per eseguire il metodo.
- 5. Ottimizzare CE per massimizzare l'intensità per i frammenti a *m/z* 480,3, 813,4, 942,4, e 1171,7.
- 6. Salvare il nuovo metodo.
- 7. Quando la nebulizzazione è stabile, fare clic su **Acquire** e acquisire i dati.
- 8. Registrare le intensità dei frammenti a *m/z* 480,3, 813,4, 942,4, e 1171,7.
- 9. Ripetere la procedura dal punto 7 al punto 8 altre due volte.
- 10. Stampare i risultati.
- 11. Calcolare la media delle tre intensità degli ioni e registrare il risultato nel registro dati.
- 12. Verificare che le intensità medie siano accettabili. Fare riferimento a Registro dati: sorgente di ionizzazione NanoSpray[®].

Se i risultati non sono accettabili, fare riferimento a Suggerimenti per la risoluzione dei problemi.

Creazione di un tabella di riferimento per la calibrazione

Prima di calibrare lo spettrometro di massa da uno spettro di dati, si deve definire la tabella di riferimento per i calibranti utilizzati. Se non esiste una tabella di riferimento per [Glu¹]-Fibrinopeptide B, eseguire i seguenti passi per crearla.

- 1. Fare clic su **Tools > Settings > Tuning Options.**
- 2. Fare clic su **Reference**.

Figura 5-9 Reference Table Editor

1	175.120	1.000	1		1 0
2	333,190	1.000	1		
3	480.260	1.000	1	V	1
4	684.350	1.000	1	(V)	1
5	813.390	1.000	1		1
6	942.430	1.000	1	V	1
7	1285.544	1.000	1		1
8				(FT)	1
9				(177)]
10				(m)]
11				(m)]
12				(m)]
13				(C)]
14				(11)] -
4					

- 3. Creare una tabella di riferimento per [Glu1]-Fibrinopeptide B, con le voci mostrate nella figura precedente. Assicurarsi di immettere i valori per i frammenti di massa più bassi e più elevati rispettivamente nei campi Low Mass e High Mass.
- 4. Fare clic su Update Ref.
- 5. Fare clic su **Close**.
- 6. Fare clic su **New**.

Figura 5-10 Finestra di dialogo Tuning Options

Tuning Options
Calibration Resolution
Standard: GluFb.pce New
Positive
Reference: Glu Fb pox
Q1 Method: Q1 Pos PPG.dam
Q3 Method: Q3 Pos PPG.dam
LIT Nethod: GluFib pos EPL dam
Negative
Reference:
Q1 Method:
Q3 Method:
LIT Nethod:
Update Std. Delete Std. <u>R</u> eference
Print and Save CK Cancel Heip

- 7. Nel campo Standard digitare GluFib pos.
- 8. Selezionare la caselle di spunta **Positive**.

- 9. Nel campo **Q1 Method**, selezionare il metodo utilizzato per la calibrazione Q1.
- 10. Nel campo Q3 Method , selezionare il metodo utilizzato per la calibrazione Q3.
- 11. Nel campo LIT Method selezionare il metodo creato in Esecuzione del test in modalità EPI.
- 12. Fare clic su **Update Std**.
- 13. Fare clic su **OK**.

Calibrazione in modalità EPI

- 1. In modalità **Manual Tune**, assicurarsi che i parametri siano impostati con i valori specificati nella Esecuzione del test in modalità EPI. Fare riferimento a Tabella 5-8.
- 2. Quando la nebulizzazione è stabile, fare clic su **Acquire** e acquisire almeno 30 secondi di dati di scansione.
- 3. Fare clic sul pannello dello spettro EPI.
- 4. Fare clic sul pulsante Calibrate ().

Figura 5-11 Finestra di dialogo LIT Mass Calibration per i sistemi serie 4000

Figura 5-12 Finestra di dialogo LIT Mass Calibration per sistemi della serie 4500, 5500, 5500+, 6500 e 6500+

- 5. Nel campo **Standard**, selezionare lo standard creato nel punto 7 Creazione di un tabella di riferimento per la calibrazione (**GluFib pos**).
- 6. Fare clic su Start.

Viene visualizzato il riquadro Mass Calibration Report. Il grafico in altro mostra lo spostamento di massa negli ioni di calibrazione, rispetto all'ultima calibrazione.

Figura 5-13 Report di Calibrazione delle Masse

7. Se lo spettro dei dati sembra buono e gli spostamenti della massa sono nell'intervallo specificato, fare clic su **Replace Calibration** (¹²⁾).

Figura 5-14 Finestra di dialogo TuneDir

8. Fare clic su Yes.

I valori per la nuova calibrazione vengono mostrati in fondo al pannello del report di riepilogo della calibrazione.

Nota: se la massa o l'intensità di uno dei frammenti ionici cambiasse drasticamente, determinare perché sia avvenuta la modifica prima di utilizzare questo ione nella calibrazione. Fare clic su **No** nella finestra di dialogo **TuneDir** e rivedere il report di riepilogo della calibrazione. Trovare la massa nella colonna **Found Mass** e osservare la qualità dello ione nello spettro dei dati grezzi. Se è stato scelto uno ione non corretto, allargare o restringere **Search Range** nella finestra di dialogo LIT Mass Calibration. Il software utilizza il centroide dei picchi di maggiore intensità nella ricerca intervallo per la calibrazione.

Figura 5-15 Rapporto dei Risultati della Calibrazione Massa LIT

LIT Bass Calibration Results for Positive Ions at 4000 daltons per second			
Generated On: August 18, 2003 13:27:59			
Last Calibration: August 18, 2003 13:26:39			
Peak Search Parameters: Search Respe: 0.250 Threshold: 200.000 Peak Width At: 50.000			
Config. table ver.: 03 Firmware ver.: M401400 B4T0301 M3L1408 B3T0306 Instrument name: Linear Ion Trap Quadrupole LC/MS/MS Mass Spectrometer Instrument ID: OTrap Manufacturer: AB Solex Instruments Seriel number: 027170c Operator page: settince Solex Instrument BIOPR04			
Acq. Nethod: testTune.dan			
Data Filename: D:\Analyst Data\Projects\API Instrument\Tuning Cache\MT20030818132658.wiff Standard name: GluFib TIS Reference table name: GluFib cal Spectral information:			
Expected Bass Found Mass Xass Shift Peak Vidth PV Shift Intensity Change(%) 175.115 175.020 0.099 0.350 0.350 43.65 480.257 480.323 -0.066 0.498 0.292 37.68 013.305 013.420 -0.031 0.435 0.204 21.10 1285.544 1285.584 -0.040 0.576 0.124 24.76			
The Slope Variations for Active Calibration Table Average Stope (DAC/enu): 37.326 Nass DAC 480.257 12908 613.369 30344 1285.544 42966 1.000 32.322			

9. La calibrazione per le altre due scansioni viene accelerata cambiando la velocità di scansione nel metodo e ripetendo questa procedura.

Riepilogo

Nota: il responsabile dell'assistenza tecnica (FSE) di SCIEX deve inviare una e-mail all'indirizzo servicedata@sciex.com con i risultati del test di accettazione NanoSpray[®] eseguito dopo l'installazioneservicedata@sciex.com.

1. Lavare accuratamente la punta e la linea di infusione.

2. Eseguire una copia del registro dati completo e dei risultati del test e fornire gli originali al cliente.

Test per la sorgente di ionizzazione sui sistemi serie 3200

AVVERTENZA! Pericolo di superfici calde. Non toccare il binario ad alta tensione o la punta di emissione.

AVVERTENZA! Pericolo di scosse elettriche. Non utilizzare la sorgente di ionizzazione NanoSpray[®] senza l'illuminatore, la telecamera, il fine corsa e i coperchi correttamente montati. Non toccare mai il separatore di interfaccia né consentire il contatto tra quest'ultimo e la punta di emissione. Se lo spettrometro di massa è operativo e la sorgente di ionizzazione è installata, il separatore di interfaccia è in tensione, anche se l'unità di posizionamento X-Y-Z viene allontanata dall'interfaccia.

Per i sistemi API 3200[™], eseguire il test seguente:

• Test nelle modalità Q1 e MS2

Per i sistemi 3200 QTRAP[®], eseguire i test seguenti:

- Test nelle modalità Q1 e MS2
- Test nella modalità EPI (solo sistemi 3200 QTRAP[®])

Nota: la sorgente di ionizzazione NanoSpray[®] non è supportata sugli strumenti della serie 3200. Contattare un rappresentante di vendita per ulteriori informazioni.

Materiali richiesti

- Renin 10 pmol/µL, inclusa nel kit MS Chemical Kit2 Higher Concentration PPGs (PN 5512399)
- Solvente di diluizione
- Siringa 100 µL (1,46 mm diametro interno) o equivalente per infusione
- Guanti senza polvere (consigliati in neoprene o nitrile)
- Occhiali di sicurezza
- Camice da laboratorio

Preparazione di 2 ml di miscela Renin (500 fmol/µL)

- 1. Misurare 2 ml di solvente di diluizione (fornito nel kit) in una fiala.
- 2. Rimuovere e scartare 100 µL di solvente.

- 3. Aggiungere 100 μ L di renin 10 pmol/ μ L alla fiala.
- 4. Miscelare.

Test nelle modalità Q1 e MS2

- 1. Installare la sorgente di ionizzazione NanoSpray sullo spettrometro di massa. Fare riferimento alla Guida per l'operatore della sorgente di ionizzazione *NanoSpray*[®].
- 2. Preparare la testina NanoSpray III. Fare riferimento alla Guida per l'operatore della sorgente di ionizzazione NanoSpray[®].
- 3. Eseguire l'infusione della miscela renin a una velocità di flusso di 0,5 µL/min.

ATTENZIONE: rischio di contaminazione del sistema. Non inserire l'estremità della punta di emissione nella fenditura del curtain plate. Assicurarsi che la punta di emissione fuoriesca dalla fenditura di almeno 2-5 mm. Una nebulizzazione troppo vicina alla fenditura può contaminare lo spettrometro di massa.

- 4. Regolare GS1 finché si ottiene una nebulizzazione stabile. Iniziare da un valore basso (2 o 3) e incrementarlo lentamente, finché la nebulizzazione sia stabile senza picchi di rumore larghezza zero. La stabilizzazione della nebulizzazione può richiedere qualche minuto.
- 5. Nel software Analyst[®] in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 6. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Parametro	Valore	
Parametri MS Method		
Scan type	Q1 MS (Q1)	
Mass range	Da 100 a 1200	
Parametri Advanced MS		
Step size (Da)	0.1	
Parametri Source/Gas		
Curtain Gas [™] flow (CUR)	20	
IonSpray Voltage (IS)	2100	
Ion Source Gas 1 (GSI)	3	
Interface Heater Temperature (IHT) (°C)	75	

Tabella 5-9 Parametri Metodo Q1

Tabella 5-9 Parametri Metodo Q1 (continua)

Parametro	Valore
Parametri Compound	
Declustering Potential (DP)	70 (o come da ottimizzazione)

7. Eseguire il metodo.

ATTENZIONE: rischio di danni al sistema. Non consentire il contatto tra la punta di emissione e il curtain plate. Utilizzare la manopola di regolazione fine asse Z per correggere la posizione del nebulizzatore, per evitare di danneggiare la punta di emissione.

ATTENZIONE: rischio di contaminazione del sistema. Non inserire l'estremità della punta di emissione nella fenditura del curtain plate. Assicurarsi che la punta di emissione fuoriesca dalla fenditura di almeno 2-5 mm. Una nebulizzazione troppo vicina alla fenditura può contaminare lo spettrometro di massa.

- 8. Regolare la posizione della testina di nebulizzazione relativa alla fenditura del curtain plate per ottimizzare l'intensità del segnale. Registrare i valori XYZ per utilizzi futuri.
- 9. Regolare IS con incrementi di 100 V fino a ottenere il miglior segnale e il miglior rapporto segnale/rumore.

Nota: se la tensione di lonSpray[™] è troppo alta, può verificarsi una scarica a corona. Ciò si manifesta come un bagliore blu all'estremità della sonda. Una scarica a corona comporta una perdita di sensibilità e di stabilità del segnale.

10. Aumentare GS2 finché il segnale non inizia a diminuire, quindi ridurre GS1 finché il segnale non raggiunge il suo valore massimo.

Nota: il parametro GS1 può essere ottimizzato a zero.

11. Aumentare CUR finché il segnale non inizia a diminuire, quindi ridurre CUR finché il segnale non raggiunge il suo valore massimo.

Nota: usare il valore maggiore possibile per il CUR in modo da impedire la contaminazione senza compromettere la sensibilità. Non impostare il CUR a valori più bassi di 20. Ciò contribuisce a evitare la penetrazione del flusso di Curtain Gas[™], che può generare un segnale rumoroso, a evitare la contaminazione della fenditura e ad aumentare il rapporto segnale-rumore complessivo.

- 12. Stampare una copia dei risultati e salvare il metodo di acquisizione Q1 ottimizzato.
- 13. Impostare Scan type a Product Ion (MS2), e impostare Product Of a 587.
- 14. Impostare CAD su Medium (6).

- 15. Regolare **CE** per ottimizzare l'intensità degli ioni del frammento a *m*/*z* 136 e 784.
- 16. Stampare una copia dei risultati e salvare il metodo **Product Ion** ottimizzato.
- 17. Verificare che l'intensità nella modalità MS2 soddisfi le specifiche in Registro dati: sorgente di ionizzazione NanoSpray[®].

Se i risultati non sono accettabili, fare riferimento a Suggerimenti per la risoluzione dei problemi.

18. Registrare i risultati nel registro dati.

Test nella modalità EPI (solo sistemi 3200 QTRAP[®])

1. Eseguire l'infusione della miscela renin a una velocità di flusso di 0,5 μ L/min.

ATTENZIONE: rischio di contaminazione del sistema. Non inserire l'estremità della punta di emissione nella fenditura del curtain plate. Assicurarsi che la punta di emissione fuoriesca dalla fenditura di almeno 2-5 mm. Una nebulizzazione troppo vicina alla fenditura può contaminare lo spettrometro di massa.

- 2. Nel software Analyst[®] in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 3. Aprire il metodo Q1 ottimizzato salvato nel punto 12 Test nelle modalità Q1 e MS2.
- 4. Impostare i parametri del metodo come mostrato nella tabella seguente.

Tabella 5-10 Parametri Metodo EPI

Parametro	Valore	
Parametri MS		
Scan type	EPI	
Mass range (Da)	Da 100 a 1200	
Product Of (Da)	587.4	
Duration (sec)	120	
Parametri Advanced MS		
Fixed LIT fill time (msec)	20	
Q0 Trapping	Via	
Q3 entry barrier	8	
Parametri Source/Gas		
Curtain Gas [™] flow (CUR)	Come da ottimizzazione	
Collision Gas (CAD)	Alto	
IonSpray Voltage (IS)	Come da ottimizzazione	

Parametro	Valore	
Temperature (TEM) (°C)	150	
Ion Source Gas 1 (GSI)	Come da ottimizzazione	
lon Source Gas 2 (GS2)	0	
Interface Heater Temperature (IHT)	Sopra	
Parametri Compound		
Declustering Potential (DP)	80	
Collision Energy (CE) (V)	45 (o come da ottimizzazione)	
Collision Energy Spread (CES)	0	
Parametri Resolution		
Q1 resolution	Basso	

Tabella 5-10 Parametri Metodo EPI (continua)

- 5. Eseguire il metodo.
- 6. Regolare **CE** per ottimizzare l'intensità dei picchi a 136, 647, 784 e 1028.
- 7. Stampare una copia dei risultati e salvare il metodo di acquisizione EPI ottimizzato.
- 8. Verificare che l'intensità soddisfi le specifiche in Registro dati: sorgente di ionizzazione NanoSpray[®].

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

9. Rivedere la copia stampata dei risultati e registrare i risultati nel registro dati.

Riepilogo

Nota: il responsabile dell'assistenza tecnica (FSE) di SCIEX deve inviare una e-mail all'indirizzo servicedata@sciex.com con i risultati del test di accettazione NanoSpray[®] eseguito dopo l'installazioneservicedata@sciex.com.

- 1. Lavare accuratamente la punta e la linea di infusione.
- 2. Eseguire una copia del registro dati completo e dei risultati del test e fornire gli originali al cliente.

Test per la sorgente di ionizzazione PhotoSpray[®]

Effettuare questi test in presenza di una qualsiasi delle seguenti situazioni:

- Quando si installa una nuova sorgente di ionizzazione.
- Dopo un lavoro di manutenzione importante sulla sorgente di ionizzazione.
- Ogni volta che sia necessario valutare le prestazioni della sorgente di ionizzazione, prima di iniziare un progetto o come parte della procedura operativa standard.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Utilizzare la sorgente di ionizzazione solo se si hanno la conoscenza e l'esperienza necessarie riguardo l'utilizzo, il contenimento e l'evacuazione dei materiali tossici o nocivi utilizzati con la sorgente di ionizzazione.

AVVERTENZA! Pericolo di perforazione, pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. Interrompere l'uso della sorgente di ionizzazione se la finestra della sorgente stessa risulta crepata o rotta, quindi contattare un responsabile dell'assistenza tecnica (FSE) di SCIEX. Qualsiasi materiale tossico o nocivo introdotto nell'apparecchiatura sarà presente nel sistema di scarico della sorgente. Gli scarichi rilasciati dall'apparecchiatura devono essere fatti fuoriuscire dalla stanza. Smaltire gli oggetti taglienti seguendo le procedure di sicurezza previste dal laboratorio.

AVVERTENZA! Pericolo di esposizione ad agenti chimici tossici. Indossare dispositivi di protezione individuale, inclusi camice da laboratorio, guanti e occhiali di sicurezza, per proteggere dall'esposizione gli occhi e la pelle.

AVVERTENZA! Pericolo di contaminazione da radiazioni ionizzanti, rischio biologico o pericolo di esposizione ad agenti chimici tossici. In caso di fuoriuscita di prodotti chimici, consultare le istruzioni contenute nelle schede di sicurezza dei materiali. Accertarsi che il sistema sia in modalità Standby prima di pulire una fuoriuscita vicina alla sorgente di ionizzazione. Usare i dispositivi di protezione individuale appropriati e panni assorbenti per contenere la fuoriuscita e smaltirla secondo le normative locali.

Materiali richiesti

- Metanolo per MS
- Acqua deionizzata per HPLC
- Solvente della fase mobile: soluzione acetonitrile-acqua 70:30
- Agente di drogaggio: toluene (grado HPLC) infuso a 100 150 μL/min. L'agente di drogaggio deve essere infuso tramite una pompa HPLC separata.
- Soluzione pre-diluita di reserpina 0,0167 pmol/µL inclusa nel Kit dei prodotti chimici standard AB SCIEX (cod. art. 4406127).
- Pompa HPLC (per fase mobile)
- Pompa HPLC per infusione di agente di drogaggio.
- Iniettore manuale (Rheodyne Mod. 8125 o equivalente) con un loop da 5 μ L o un autocampionatore predisposto per iniezioni da 5 μ L
- Tubo in PEEK diametro esterno (d.e.) 1/16 di pollice, diametro interno (d.i.) 0,005"
- Siringa da 250 μL a 1000 μL
- Guanti senza polvere (consigliati in neoprene o nitrile)
- Occhiali di sicurezza
- Camice da laboratorio

Nota: tutte le soluzioni di test devono essere tenute in frigorifero. Se rimangono fuori dal frigorifero per più di 48 ore, occorrerà eliminarle e utilizzare soluzioni nuove.

ATTENZIONE: possibile risultato errato. Non utilizzare soluzioni scadute.

Preparazione del test

AVVERTENZA! Pericolo di scosse elettriche. Evitare il contatto con le alte tensioni presenti sulla sorgente di ionizzazione durante il funzionamento. Porre il sistema in modalità Standby prima di regolare il tubo del campionatore o altre apparecchiature vicino alla sorgente di ionizzazione.

- Quando si installa una nuova sorgente di ionizzazione, assicurarsi che lo spettrometro di massa funzioni in conformità alle specifiche tecniche.
- Installare la sorgente di ionizzazione sullo spettrometro di massa.
- Assicurarsi che la sorgente di ionizzazione sia pienamente ottimizzata. Fare riferimento alla *Guida per l'operatore* per la sorgente di ionizzazione.

• Fare riferimento a tutte le Schede di Sicurezza dei Materiali per le precauzioni necessarie prima di maneggiare soluzioni o solventi chimici.

Nota: indipendentemente dalla pompa utilizzata, è presente una significativa contropressione sulla linea dell'agente di drogaggio.

Test della sorgente di ionizzazione

AVVERTENZA! Pericolo di superfici calde. Lasciare raffreddare la sorgente di ionizzazione per almeno 30 minuti prima di iniziare qualsiasi procedura di manutenzione. Le superfici della sorgente di ionizzazione raggiungono temperature considerevoli durante il funzionamento.

ATTENZIONE: rischio di danni al sistema. Non introdurre alcun flusso di solvente prima di aver verificato che la sorgente di ionizzazione abbia raggiunto la giusta temperatura.

ATTENZIONE: rischio di danni al sistema. Ottimizzare usando il valore più alto possibile di flusso per il Curtain Gas[™] per evitare di contaminare lo spettrometro di massa.

Nota: la tensione ottimale di trasferimento ioni dipende dall'altezza della lampada UV. Vi è solo una tensione ottimale di trasferimento ioni per un'altezza impostata della lampada UV e solo un'altezza ottimale della lampada UV per una tensione specifica di trasferimento ioni. Se l'utente modifica l'altezza della lampada UV, ottimizzare la tensione di trasferimento ioni su ciascuna nuova impostazione dell'altezza per individuare la migliore impostazione per l'altezza della lampada UV e per la tensione di trasferimento ioni.

- 1. Nel software Analyst[®] in modalità **Tune and Calibrate** fare doppio clic su **Manual Tune**.
- 2. Aprire un metodo ottimizzato in precedenza oppure impostare i parametri del metodo come illustrato nella tabella seguente.

Tabella 6-1 Parametri del metodo

Parametro	Valore	
Parametri Probe		
Sample concentration	10 pg/µL	
Mobile phase	70:30 ACN:H ₂ O	
Flow rate (µL/min)	500	
Injection volume (µL)	25 (overfill the loop)	
Sample loop (µL)	5	
Ionization mode	Positiva	

Parametro	Valore
Probe vertical micrometer setting	2
Probe horizontal micrometer setting	5
UV Lamp vertical micrometer setting	5
Dopant	100 μL/min a 150 μL/min flusso
Parametri MS	
Scan mode	MRM
Q1 mass (Da)	609,3 (o massa esatta)
Q3 mass (Da)	195,1 (o massa esatta)
Parametri Source/Gas	
Curtain Gas [™] (CUR)	30 (o come da ottimizzazione)
Collision Gas (CAD)	Medio
Ion Transfer Voltage (IS)	800 (o come da ottimizzazione)
Temperature (TEM)	400 (o come da ottimizzazione)
lon Source Gas 1 (GS1)	60 (o come da ottimizzazione)
lon Source Gas 2 (GS2)	20 (o come da ottimizzazione)
Parametri Compound	
Declustering Potential (DP)	100 (o come da ottimizzazione)
Collision Energy (CE)	45 (o come da ottimizzazione)
Collision Exit Potential (CXP)	Come da ottimizzazione
Parametri Resolution	
Resolution	Unità/Unità
l valori iniziali ottenuti durante la convalida dello s tabella.	strumento possono differire da quelli contenuti in questa

Tabella 6-1 Parametri del metodo (continua)

- 3. Fare clic su **Acquire** per iniziare la raccolta dei dati.
- 4. Introdurre acetonitrile/soluzione acquosa 70:30 a una velocità di flusso di 500 μL/min attraverso il sistema di inserimento campione.
- 5. Introdurre l'agente di drogaggio a una velocità di flusso di 75 μL/min attraverso il sistema di inserimento campione.
- 6. Rabboccare il loop del campione con la soluzione di test.
- 7. Iniettare 10 pg/μL di soluzione di test di reserpina mentre si monitora la transizione di monitoraggio creazione multipla (MRM) 609/195.

- 8. Ottimizzare i parametri specifici del composto.
- 9. Ottimizzare le posizioni della sonda e della lampada UV.
- 10. Ottimizzare i parametri della sorgente di ionizzazione.
- 11. Stampare i risultati.
- 12. Riesaminare la copia stampata dei risultati.
- 13. Verificare che l'intensità media delle cinque iniezioni sia accettabile. Fare riferimento a Registro dati: sorgente di ionizzazione PhotoSpray[®].

Se il risultato non è accettabile, fare riferimento a Suggerimenti per la risoluzione dei problemi.

Suggerimenti per la risoluzione dei problemi

Problema	Probabile causa	Azioni da intraprendere
 Nessun segnale Non viene prodotta alcuna nebulizzazione. (Sorgente di ionizzazione NanoSpray[®]) La posizione della testina della sorgente di ionizzazione non è 	 Fare riferimento alla <i>Guida per</i> <i>l'operatore</i> della sorgente di ionizzazione per risolvere i problemi di nebulizzazione. Utilizzare le manopole di regolazione X-Y-Z per correggere la posizione della 	
	corretta.	punta di emissione.
Picchi LC inaspettatamente ampi o scodamento	(Sorgente di ionizzazione NanoSpray [®]) La giunzione ha un volume morto.	 Assicurarsi che tutti i tubi post-colonna abbiano un diametro interno inferiore o uguale a 25 micron.
		• Controllare tutte le connessioni per assicurarsi che siano adeguatamente sigillate.
		• Lavare tutti i tagli.
		• Sostituire la punta di emissione.
Bassa intensità picco	1. La posizione della sorgente,	1. Ottimizzare la sorgente.
	la sporgenza della punta o i valori dei parametri della	2. Verificare la presenza di perdite.
	sorgente sono errati.	3. Utilizzare la procedura guidata
	2. La siringa o la linea di flusso del campione hanno una	calibrare Q1 o Q3.
	perdita.	4. Verificare la concentrazione del
3. 4.	3. Q1 o Q3 non è calibrato.	nuovo o un campione congelato.
	 Il campione si è degradato oppure ha una concentrazione bassa. 	5. Risoluzione dei problemi del sistema LC.
	5. C'è un problema con il sistema LC.	
Scarsa risoluzione	Lo strumento non è ottimizzato.	Ottimizzare lo strumento.

Problema	Probabile causa	Azioni da intraprendere
Sensibilità scarsa	 I componenti dell'interfaccia (parte frontale) sono sporchi. 	 Pulire le componenti dell'interfaccia e riposizionare la sorgente di ionizzazione.
	 Vapori di solvente o altri composti ignoti sono presenti nella regione dell'analizzatore. Il campione non era preparato a dovere o era degradato. Sono presenti perdite nella linea di flusso di ingresso del campione. La sorgente di ionizzazione è guasta. 	 Ottimizzare il flusso di Curtain Gas[™]. Verificare che il campione sia stato preparato correttamente. Verificare che gli attacchi siano stretti e sostituire gli attacchi se sussistono ancora delle perdite. Non stringere eccessivamente gli attacchi. Installare e ottimizzare una sorgente di ionizzazione alternativa. Se il problema persiste contattare un responsabile dell'assistenza tecnica (FSE).
Segnale basso	 Il Declustering Potential (DP) non è ottimizzato. L'elettrodo potrebbe essere sporco o ostruito. 	 Ottimizzare il declustering per ottenere il miglior segnale o rapporto segnale/ rumore. I valori ottimali potrebbero differire da quelli trovati utilizzando altre sorgenti ioniche. Pulire l'elettrodo.
Basso rapporto segnale/rumore	 La posizione della sorgente, la sporgenza della punta o i valori dei parametri della sorgente sono errati. La siringa o la linea di flusso del campione hanno una perdita. Il diluente è contaminato. 	 Ottimizzare la sorgente. Verificare eventuali perdite. Utilizzare diluente appena preparato con reagenti di grado MS (0,1% acido formico e 10% acetonitrile).

Problema	Probabile causa	Azioni da intraprendere
Alto rumore di fondo	 Il diluente è contaminato. La siringa o la linea del flusso del campione sono sporchi 	 Utilizzare diluente appena preparato con reagenti di grado MS (0,1% acido formico, 10% acetonitrile). Puliro o sostituiro la siringa o la linoa
	 La siringa o la linea del flusso del campione sono sporchi. C'è del residuo sull'interfaccia. La temperatura (TEM) è troppo alta. La velocità di flusso del gas ausiliario (GS2) è troppo alta. La sorgente di ionizzazione è contaminata. 	 con reagenti di grado MS (0,1% acido formico, 10% acetonitrile). Pulire o sostituire la siringa o la linea del flusso del campione. Pulire la curtain plate e il separatore di vuoto (fare riferimento alla <i>Guida per l'addetto alla manutenzione qualificato</i> per lo spettrometro di massa). Se necessario, scaldare l'interfaccia. Qualora il problema non fosse risolto, pulire Q0 o la guida di ionizzazione QJet[®]. Ottimizzare la temperatura. Ottimizzare il flusso del gas del sistema di riscaldamento. Pulire o sostituire i componenti della sorgente di ionizzazione e mettere a punto la sorgente e la parte frontale: a. Spostare la sonda APCI o TIS nella posizione più lontana dalla fenditura (verticalmente e orizzontalmente) b. Infondere o iniettare una soluzione metanolo/acqua 50:50 con una portata di 1 mL/min. c. Nel software Analyst[®]/Analyst[®] TF, impostare TEM su 650, GS1 su 60 e GS2 su 60. d. Impostare il flusso del Curtain Gas su 45 o 50.
		e. Far girare per un minimo di 2 ore, oppure ancora meglio per tutta la notte, per ottenere i risultati migliori.
		 Regolare la posizione della punta di emissione.

Suggerimenti per la risoluzione dei problemi

Problema	Probabile causa	Azioni da intraprendere
Durante il test, la sorgente di ionizzazione non soddisfa le specifiche	Lo spettrometro di massa non ha superato i test di installazione.	Eseguire i test di installazione sullo spettrometro di massa con la sorgente predefinita.
Temperatura non raggiunta o temperatura troppo elevata o instabile	Il sistema di riscaldamento dell'interfaccia è guasto.	Aprire la finestra di dialogo Mass Spectrometer Detailed Status . Il campo Source Temperature dovrebbe contenere la temperatura impostata e Interface Heater Status dovrebbe essere Ready . In caso contrario, contattare un addetto alla manutenzione qualificato (QMP) o un responsabile dell'assistenza tecnica (FSE) per sostituire il riscaldatore dell'interfaccia.

Registro dati: sorgente di ionizzazione IonDrive[™] Turbo V

Informazioni sul sistema

Tabella A-1 Informazioni sullo spettrometro di massa

Numero di serie dello spettrometro di massa

Informazioni sulla sorgente di ionizzazione

Componente	Numero di serie
Sorgente di ionizzazione	
Sonda TurbolonSpray [®]	
Sonda APCI	

IonDrive Turbo V

Nota: La sorgente di ionizzazione IonDrive[™] Turbo V è supportata solo dalle serie 6500 e 6500+ di strumenti e dai sistemi 6600/6600+ .

Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C Sorgente di ionizzazione 89 / 153

Sonda	Intensità (cps)	Intensità (cps)	Risultati (cps)
	6500	6500+	
Sonda TurbolonSpray [®]	1,25 × 10 ⁶	1,9 × 10 ⁶	
Sonda APCI	5,0 × 10 ⁵	7,5 × 10 ⁵	

Conclusione

Organizzazione		
Nome del Responsabile dell'assistenza tecnica (FSE)	Data (aaaa-mm-gg)	
Firma responsabile assistenza tecnica (FSE)		

Commenti ed eccezioni

Registro dati: sorgente di ionizzazione Turbo V[™]

Informazioni sul sistema

Tabella B-1 Informazioni sullo spettrometro di massa

Numero di serie dello spettrometro di massa

Informazioni sulla sorgente di ionizzazione

Componente	Numero di serie
Sorgente di ionizzazione	
Sonda TurbolonSpray [®]	
Sonda APCI	

Turbo V

Nota: Le specifiche non sono disponibili per il sistema TripleTOF[®] 4600. La sorgente consigliata per questo sistema è la sorgente di ionizzazione DuoSpray[™].

Sorgente di ionizzazione 92 / 153 Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C **Nota:** I test per i sistemi serie 6500 e 6500+ vengono eseguiti in modalità a massa bassa.

Intensità (cps)					Risultati			
3200	3500	4000	4500	5000 e 5500/ 5500+	5600/5600+ e 6600/6600+	6500	6500+	
Sonda Turbolo	onSpray [®]		·	·	-	<u>.</u>		
1,0 × 10 ⁴	2,0 × 10 ⁴	1,0 × 10 ⁵	2,0 × 10 ⁵	5,0 × 10 ⁵	1,0 × 10 ⁴	1,0 × 10 ⁶	1,5 × 10 ⁶	
Sonda APCI				·				
5,0 × 10 ³	1,0 × 10 ⁴	5,0 × 10 ⁴	1,0 × 10 ⁵	2,5 × 10 ⁵	5,0 × 10 ³	5,0 × 10 ⁵	7,5 × 10 ⁵	

Conclusione

Organizzazione		
Nome del Responsabile dell'assistenza tecnica (FSE)	Data (aaaa-mm-gg)	
Firma responsabile assistenza tecnica (FSE)		

Commenti ed eccezioni

Registro dati: sorgente di ionizzazione DuoSpray[™]

Informazioni sul sistema

Tabella C-1 Informazioni sullo spettrometro di massa

Numero di serie dello spettrometro di massa

Informazioni sulla sorgente di ionizzazione

Componente	Numero di serie
Sorgente di ionizzazione	
Sonda TurbolonSpray [®]	
Sonda APCI	

Risultati del test della sorgente di ionizzazione DuoSpray

Nota: I test per i sistemi serie 6500 e 6500+ vengono eseguiti in modalità a massa bassa.

Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C Sorgente di ionizzazione 95 / 153

Registro dati: sorgente di ionizzazione DuoSpray[™]

Intensità (cps)					Risultati			
3200	4000	4500	4600	5000 e 5500/ 5500+	5600/5600+ e 6600/6600+	6500	6500+	
Sonda Turbolo	onSpray [®]							
5,0 × 10 ³	5,0 × 10 ⁴	1,0 × 10 ⁵	2,0 × 10 ³	2,5 × 10 ⁵	5,0 × 10 ³	5,0 × 10 ⁵	7,5 × 10 ⁵	
Sonda APCI								
2,5 × 10 ³	$2,5 \times 10^4$	5,0 × 10 ⁴	1,0 × 10 ³	1,25 × 10 ⁵	2,5 × 10 ³	2,5 × 10 ⁵	3,8 × 10 ⁵	

Conclusione

Organizzazione		
Nome del Responsabile dell'assistenza tecnica (FSE)	Data (aaaa-mm-gg)	
Firma responsabile assistenza tecnica (FSE)		

Commenti ed eccezioni

Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C Sorgente di ionizzazione 97 / 153

Registro dati: sorgente di ionizzazione OptiFlow[™] Turbo V

D

Informazioni sul sistema

Tabella D-1 Informazioni sullo spettrometro di massa

Numero di serie dello spettrometro di massa

Informazioni sulla sorgente di ionizzazione

Componente	Numero di serie
Sorgente di ionizzazione	
Sonda SteadySpray	
Numero lotto elettrodo	

OptiFlow Turbo V

Nota: I test per i sistemi serie 6500 e 6500+ vengono eseguiti in modalità a massa bassa.

Sorgente di ionizzazione 98 / 153 Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C

Registro dati: sorgente di ionizzazione OptiFlow[™] Turbo V

Intensità (cps)				Risultati	
5500/5500+	5500/5500+ 6500 6500+ 6600/6600+				
Sonda SteadySpray					
5,0 × 10 ⁵	1,0 × 10 ⁶	1,5 × 10 ⁶	$1,0 \times 10^4$		

Conclusione

Organizzazione		
Nome del Responsabile dell'assistenza tecnica (FSE)	Data (aaaa-mm-gg)	
Firma responsabile assistenza tecnica (FSE)		

Commenti ed eccezioni

Sorgente di ionizzazione 100 / 153 Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C

Registro dati: sorgente di ionizzazione NanoSpray[®]

Informazioni sul sistema

Tabella E-1 Informazioni sullo spettrometro di massa

Numero di serie dello spettrometro di massa

Informazioni sulla sorgente di ionizzazione

Componente	Numero di serie
Sorgente di ionizzazione	
Sonda TurbolonSpray [®]	
Sonda APCI	

Ε

Risultati del test della sorgente di ionizzazione NanoSpray (sistemi TripleTOF)

Nota: il responsabile dell'assistenza tecnica (FSE) di SCIEX deve inviare una e-mail all'indirizzo servicedata@sciex.com con i risultati del test di accettazione NanoSpray[®] eseguito dopo l'installazioneservicedata@sciex.com.

Tabella E-2 Risultati del test TOF MS

Massa 786	Specifica		Risultato	
	4600	5600/5600+ e 6600/6600+		
Intensità del centroide (altezza del picco, cps)	≥ 1500	≥ 4000		
Resolution	≥ 25.000	≥ 30.000		
Stampe richieste: 785,8421				

Tabella E-3 Risultati del test Product Ion High Sensitivity (solo sistemi 5600/5600+ e 6600/6600+)

Massa	Intensità del centroide (cps)		Resolution	
	Specifica	Risultato	Specifica	Risultato
187,0713	≥ 60		N/A	N/A
480,2565	≥ 212		≥ 15.000	
813,3890	≥ 375		≥ 15.000	

Tabella E-3 Risultati del test Product Ion High Sensitivity (solo sistemi 5600/5600+ e 6600/6600+) (continua)

Massa	Intensità del centroide (cps)		Resolution		
	Specifica	Risultato	Specifica	Risultato	
1056,4745	≥ 225		≥ 15.000		
Stampe richieste: 187,0713, 480,2565, 813,3890 e 1056,4745					

Tabella E-4 Risultati del test Product Ion

Massa	Intensità del centroide (cps)				Resolution		
	4600	5600/5600+ e 6600/ 6600+	Risultato	4600	5600/5600+ e 6600/ 6600+	Risultato	
187,0713	≥ 8	≥ 20		N/A	N/A	N/A	
480,2565	≥ 25	≥ 65		≥ 24.000	≥ 25.000		
813,3890	≥ 35	≥ 125		≥ 25.000	≥ 25.000		
1056,4745	≥ 25	≥ 65		≥ 25.000	≥ 25.000		
Nota: Per i sistemi 5600/5600+ e 6600/6600+, questo test viene eseguito nella modalità High Resolution.							

Risultati del test della sorgente di ionizzazione NanoSpray (solo sistemi 4000, 4500, 5500, 5500+, 6500 e 6500+)

Le specifiche in questa sezione riguardano la sorgente di ionizzazione NanoSpray[®] III. Fare riferimento al *Manuale di installazione* di New Objective per le specifiche della sorgente di ionizzazione Nanospray DPV-450 Digital PicoView[®] per gli spettrometri di massa SCIEX.

Nota: il responsabile dell'assistenza tecnica (FSE) di SCIEX deve inviare una e-mail all'indirizzo servicedata@sciex.com con i risultati del test di accettazione NanoSpray[®] eseguito dopo l'installazioneservicedata@sciex.com.

Tabella E-5 Risultati del test nella modalità Q1

Massa	Intensità (cps)					
	4000	4500	5500/5500+	6500	6500+	Risultato
786	1,0 × 10 ⁵	2,5 × 10 ⁵	5,0 × 10 ⁵	1,0 × 10 ⁶	1,5 × 10 ⁶	

Tabella E-6 Risultati del test nella modalità Q3

Massa	Intensità (cps)					
	4000	4500	5500/5500+	6500	6500+	Risultato
786	1,0 × 10 ⁵	2,5 × 10 ⁵	5,0 × 10 ⁵	1,0 × 10 ⁶	1,5 × 10 ⁶	

Tabella E-7 Risultati del test nella modalità EPI (solo sistemi QTRAP[®])

Massa	Intensità (cps)					
	4000	4000 4500 5500/5500+ 6500 6500+ F				
	Intensità (cps)	Intensità (cps)	Intensità (cps)	Intensità (cps)	Intensità (cps)	
480,3	1,0 × 10 ⁵	5,0 × 10 ⁵	1,0 × 10 ⁶	5,0 × 10 ⁶	7,5 × 10 ⁶	
813,4	1,0 × 10 ⁵	5,0 × 10 ⁵	1,0 × 10 ⁶	5,0 × 10 ⁶	7,5 × 10 ⁶	
942,4	5,0 × 10 ⁴	2,5 × 10 ⁵	5,0 × 10 ⁵	2,5 × 10 ⁶	3,8 × 10 ⁶	
1171,7	$4,0 \times 10^4$	2,0 × 10 ⁵	N/A	N/A	N/A	

Risultati del test della sorgente di ionizzazione NanoSpray (sistemi serie 3200)

Tabella E-8 Risultati del test nella modalità MS2

Massa	Intensità (cps)	Risultati (cps)
136,1	≥ 1,6 × 105	
784,4	≥ 5.000	

Registro dati: sorgente di ionizzazione NanoSpray®

Tabella E-9 Risultati del test nella modalità EPI

Massa	Intensità (cps)	Risultati (cps)
136,1	1,0 × 10 ⁵	
647,3	$4,0 \times 10^4$	
784,4	8,0 × 10 ⁴	
1028,5	1,0 × 10 ⁴	

Conclusione

Organizzazione			
Nome del Responsabile dell'assistenza tecnica (FSE)	Data (aaaa-mm-gg)		
Firma responsabile assistenza tecnica (FSE)			

Commenti ed eccezioni

Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C Sorgente di ionizzazione 107 / 153

Registro dati: sorgente di ionizzazione PhotoSpray[®]

Informazioni sul sistema

Tabella F-1 Informazioni sullo spettrometro di massa

Numero di serie dello spettrometro di massa

Informazioni sulla sorgente di ionizzazione

Componente	Numero di serie
Sorgente di ionizzazione	
Sonda TurbolonSpray [®]	
Sonda APCI	

Risultati del test della sorgente di ionizzazione PhotoSpray

Nota: I test per i sistemi serie 6500 e 6500+ vengono eseguiti in modalità a massa bassa.

Sorgente di ionizzazione 108 / 153 Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C
Intensità (cps)									
3200 4000 4500 5000 e 5500 6500 6500+ Risul									
2,5 × 10 ³	5,0 × 10 ⁴	1,0 × 10 ⁵	2,5 × 10 ⁵	5,0 × 10 ⁵	7,5 × 10 ⁵				

Conclusione

Organizzazione	
Nome del Responsabile dell'assistenza tecnica (FSE)	Data (aaaa-mm-gg)
Firma responsabile assistenza tecnica (FSE)	

Commenti ed eccezioni

Sorgente di ionizzazione 110 / 153

Parametri del sistema TripleTOF®

G

Nella tabella seguente sono contenuti parametri generici per i sistemi TripleTOF[®] 4600, 5600, 5600+, 6600 e 6600+.

Il primo numero sotto ogni tipo di scansione è il valore preimpostato. L'intervallo di numeri è la gamma accessibile per ciascun parametro.

ID Parametro	ID Accesso	M	lodalità Ioni Posit	vi Modalità Ioni Negativi			
		Q1	TOF MS	MS/MS	Q1	TOF MS	MS/MS
GS1	GS1	20	20	20	20	20	20
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90
GS2	GS2	15	15	15	15	15	15
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90
CUR	CUR	25	25	25	25	25	25
		Da 10 a 55	Da 10 a 55	Da 10 a 55	Da 10 a 55	Da 10 a 55	Da 10 a 55

Tabella G-1 Parametri del sistema TripleTOF®

Parametri del sistema TripleTOF®

ID Parametro	ID Accesso	. In the second	Modalità Ioni Positivi			Modalità Ioni Negativi			
		Q1	TOF MS	MS/MS	Q1	TOF MS	MS/MS		
TEM ^{1,2,3,4,5,15}	TEM	0	0	0	0	0	0		
		Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750		
ISVF ^{1,4,15}	IS	5000	5000	5000	-4000	-4000	-4000		
(ISVF = IS - OR)		Da 0 a 5500	Da 0 a 5500	Da 0 a 5500	Da -4500 a 0	Da -4500 a 0	Da -4500 a 0		
ISVF ⁷	IS	1.000	1.000	1.000	-1000	-1000	-1000		
(ISVF = IS - OR)		Da 0 a 4000	Da 0 a 4000	Da 0 a 4000	Da -4000 a 0	Da -4000 a 0	Da -4000 a 0		
NC⁵	NC	3	3	3	-3	-3	-3		
		Da 0 a 5	Da 0 a 5	Da 0 a 5	Da -5 a 0	Da -5 a 0	Da -5 a 0		
IHT ⁷	IHT	150	150	150	150	150	150		
		Da 0 a 225	Da 0 a 225	Da 0 a 225	Da 0 a 225	Da 0 a 225	Da 0 a 225		

Tabella G-1 Parametri del sistema TripleTOF[®] (continua)

¹ Sorgente di ionizzazione DuoSpray[™]

² Sorgente di ionizzazione Turbo V[™]

³ Sorgente di ionizzazione IonDrive[™] Turbo V, se applicabile

⁴ Sonda TurbolonSpray[®]

⁵ Sonda APCI

⁶ OptiFlow[™] Turbo V

⁷ Sorgente di ionizzazione NanoSpray[®]

Sorgente di ionizzazione 112 / 153

Tabella G-1 Parametri del sistema TripleTOF	^{:®} (continua)
---	--------------------------

ID Parametro	ID Accesso	N	Modalità Ioni Positivi			Modalità Ioni Negativi			
		Q1	TOF MS	MS/MS	Q1	TOF MS	MS/MS		
OR	DP	80	100	80	-80	-80	-80		
(DP=OR-Q0)		Da 0 a 300	Da 0 a 300	Da 0 a 300	Da -300 a 0	Da -300 a 0	Da -300 a 0		
Q0	Q0	40	N/A	N/A	-40	N/A	N/A		
		Da -300 a 300			Da -300 a 300				
Q0	CE	N/A	10	30	N/A	-10	-30		
(CE = Q0 - RO2)			Da 5 a 150	Da 0 a 150		Da -150 a -5	Da -150 a 0		
CES	CES	N/A	N/A	0	N/A	N/A	0		
				Da 0 a 50			Da 0 a 50		
RO1	IE1	2	2	2	-2	-2	-2		
(IE1 = Q0 - RO1)		Da -300 a 300	Da -300 a 300	Da -300 a 300	Da -300 a 300	Da -300 a 300	Da -300 a 300		
IQ2	IQ2	0	25	0	0	-25	0		
		Da -300 a 300	Da -300 a 300	Da -300 a 300	Da -300 a 300	Da -300 a 300	Da -300 a 300		
CAD	CAD	6	6	6	6	6	6		
		Da 0 a 12	Da 0 a 12	Da 0 a 12	Da 0 a 12	Da 0 a 12	Da 0 a 12		
RO2	RO2	30	30	30	-30	-30	-30		
		Da -57 a 57	Da -57 a 57	Da -57 a 57	Da -57 a 57	Da -57 a 57	Da -57 a 57		

Parametri del sistema TripleTOF $^{\circ}$

ID Parametro	ID Accesso	M	odalità Ioni Posit	ivi	Modalità Ioni Negativi			
		Q1	TOF MS	MS/MS	Q1	TOF MS	MS/MS	
IRD	IRD	30	30	30	30	30	30	
		Da 6 a 1000	Da 6 a 1000	Da 6 a 1000	Da 6 a 1000	Da 6 a 1000	Da 6 a 1000	
IRW	IRW	15	15	15	15	15	15	
		Da 5 a 1000	Da 5 a 1000	Da 5 a 1000	Da 5 a 1000	Da 5 a 1000	Da 5 a 1000	
LNR	LNR	-15000	-15000	-15000	15000	15000	15000	
		Da -20000 a 20000	Da -20000 a 20000	Da -20000 a 20000	Da -20000 a 20000	Da -20000 a 20000	Da -20000 a 20000	
CEM	CEM	2300	2200	2200	2200	2200	2200	
		Da 0 a 3000	Da 0 a 3000	Da 0 a 3000	Da 0 a 3000	Da 0 a 3000	Da 0 a 3000	
OFS	OFS	30	30	30	-60	-60	-60	
		Da -100 a 100	Da -100 a 100	Da -100 a 100	Da -100 a 100	Da -100 a 100	Da -100 a 100	
MGV	MGV	-975	-975	-975	975	975	975	
		Da -2000 a 2000	Da -2000 a 2000	Da -2000 a 2000	Da -2000 a 2000	Da -2000 a 2000	Da -2000 a 2000	
MPV	MPV	2600	2600	2600	-2600	-2600	-2600	
		Da -4000 a 4000	Da -4000 a 4000	Da -4000 a 4000	Da -4000 a 4000	Da -4000 a 4000	Da -4000 a 4000	

Tabella G-1 Parametri del sistema TripleTOF[®] (continua)

Parametri dei sistemi serie 6500 e 6500+

Il primo numero sotto ogni tipo di scansione è il valore preimpostato. L'intervallo di numeri è la gamma accessibile per ciascun parametro.

Tabella H-1 Parametri dei sistemi serie 6500 e 6500+

ID Parametro	ID Accesso	Modalità Ioni Positivi			Modalità Ioni Negativi			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
CUR	CUR	20	20	20	20	20	20	
		Da 20 a 55	Da 20 a 55	Da 20 a 55	Da 20 a 55	Da 20 a 55	Da 20 a 55	
CAD 8,9	CAD ^{8,9}	0	6	Med.	0	6	Med.	
		N/A	N/A	Basso, Medio, Alto	N/A	N/A	Basso, Medio, Alto	
CAD ^{10,11}	CAD ^{10,11}	0	6	9	0	6	9	
		N/A	N/A	Da 0 a 12	N/A	N/A	Da 0 a 12	

⁸ Sistema QTRAP[®] 6500 o 6500+, Low Mass (LM)

 9 Sistema QTRAP $^{\circ}$ 6500 or 6500+, High Mass (HM)

¹⁰Sistema SCIEX Triple Quad[™] 6500 o 6500+, Low Mass (LM)

¹¹Sistema SCIEX Triple Quad[™] 6500 o 6500+, High Mass (HM)

ID Parametro	ID Accesso	Мо	Modalità Ioni Positivi			Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
IS ^{12,13,14,15}	IS ^{12,13,14}	5.500 V	5.500 V	5.500 V	-4500	-4500	-4500	
		Da 0 a 5500	Da 0 a 5500	Da 0 a 5500	Da -4500 a 0	Da -4500 a 0	Da -4500 a 0	
IS ¹⁶	IS ¹⁶	1500	1500	1500	-1500	-1500	-1500	
		Da 0 a 2500	Da 0 a 2500	Da 0 a 2500	da -2500 a 0	da -2500 a 0	da -2500 a 0	
IS ¹⁷	IS ¹⁷	1.000	1.000	1.000	-1000	-1000	-1000	
		Da 0 a 4000	Da 0 a 4000	Da 0 a 4000	da -4000 a 0	da -4000 a 0	da -4000 a 0	
NC ^{13,16,19,18}	NC ^{13,16,19,18}	3	3	3	-3	-3	-3	
		Da 0 a 5	Da 0 a 5	Da 0 a 5	Da -5 a 0	Da -5 a 0	Da -5 a 0	
TEM ^{12,13,16,19,14,18,15}	TEM ^{12,13,16,19,14,18}	0	0	0	0	0	0	
		Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	

¹²Sorgente di ionizzazione Turbo V[™]

¹³Sorgente di ionizzazione IonDrive[™] Turbo V

¹⁴Sonda TurbolonSpray[®] (TIS)

¹⁵OptiFlow[™] Turbo V

¹⁶Sorgente di ionizzazione PhotoSpray®

¹⁷Sorgente di ionizzazione NanoSpray[®]

¹⁸Sonda APCI

¹⁹Sorgente di ionizzazione DuoSpray[™]

Sorgente di ionizzazione 116 / 153

ID Parametro	ID Accesso	N	Aodalità Ioni Pos	itivi	N	Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
OR	DP	100	100	100	-100	-100	-100	
(DP=OR)		Da 0 a 300	Da 0 a 300	Da 0 a 300	Da -300 a 0	Da -300 a 0	Da -300 a 0	
Q0	EP	10	10	10	-10	-10	-10	
(EP = -Q0)		da 2 a 15	da 2 a 15	da 2 a 15	da -15 a -2	da -15 a -2	da -15 a -2	
IQ1	IQ1	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + 0.5	Q0 + 0.5	Q0 + 0.5	
(IQ1 = Q0 + offset)		Da -0.1 a -2	Da -0.1 a -2	Da -0.1 a -2	Da 0.1 a 2	Da 0.1 a 2	Da 0.1 a 2	
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8	
(ST = Q0 + offset)		Da -12 a -5	Da -12 a -5	Da -12 a -5	Da 5 a 12	Da 5 a 12	Da 5 a 12	
RO1 (IE1 = Q0 - RO1)	IE1	1 Da 0 a 3	N/A	1 Da 0 a 3	–1 Da -3 a 0	N/A	–1 Da -3 a 0	
IQ2	IQ2	Q0 + (-10)	Q0 + (-10)	Q0 + (-10)	Q0 + 10	Q0 + 10	Q0 + 10	
(IQ2 = Q0 + offset)		Da -30 a -8	Da -30 a -8	Da -30 a -8	Da 8 a 30	Da 8 a 30	Da 8 a 30	
RO2	RO2	-20	-20	N/A	20	20	N/A	
		N/A	N/A		N/A	N/A		
RO2	CE	N/A	N/A	30	N/A	N/A	-30	
(CE = Q0 - RO2)				da 5 a 180			Da -180 a	
							-5	

Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C Sorgente di ionizzazione 117 / 153

ID Parametro	ID Accesso	Ν	Modalità Ioni Positivi			Modalità Ioni Negativi			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS		
ST3	ST3	RO2 - 10	N/A	N/A	RO2 + 10	N/A	N/A		
(ST3 = RO2 + offset)		Da -30 a -5			Da 5 a 30				
ST3	СХР	N/A	15	15	N/A	-15	-15		
(CXP = RO2 - ST3)			Da 0 a 55	Da 0 a 55		Da -55 a 0	Da -55 a 0		
RO3	RO3	-50	N/A	N/A	50	N/A	N/A		
		N/A			N/A				
RO3	IE3	N/A	1	1	N/A	-1	-1		
(IE3 = RO2 - RO3)			Da 0 a 5	Da 0 a 5		Da -5 a 0	Da -5 a 0		
СЕМ	CEM	1700	1700	1700	1700	1700	1700		
		Da 0 a 3300	Da 0 a 3300	Da 0 a 3300	Da 0 a 3300	Da 0 a 3300	Da 0 a 3300		
GS1	GS1	20	20	20	20	20	20		
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90		
GS2	GS2	0	0	0	0	0	0		
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90		

ID Parametro	ID Accesso	Mod	alità Ioni Positi	vi	Modalità Ioni Negativi			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
IHT ¹⁷	IHT ¹⁷	150	150	150	150	150	150	
sdp ¹⁹	sdp ¹⁹	1	1	1	1	1	1	
		1 o 2	1 o 2	1 o 2	1 o 2	1 o 2	1 o 2	

Tabella H-2 Parametri dei sistemi serie 6500 e 6500+ solo per tipi di scansione LIT

ID Parametro	ID Accesso	Modalità Ioni Positivi	Modalità ioni negativi
CAD	CAD	Alto	Alto
		Basso, Medio, Alto	Basso, Medio, Alto
AF2 ²⁰	AF2	0.1	0.1
		Da 0 a 1	Da 0 a 1
AF3	AF3	Dipendente da massa-velocità	Dipendente da massa-velocità
		Da 0 a 10	Da 0 a 10
EXB	EXB	Dipendente da massa-velocità	Dipendente da massa-velocità
		Da -165 a 0	Da 0 a 165

²⁰Solo MS/MS/MS

Parametri dei sistemi serie 6500 e 6500+

ID Parametro	ID Accesso	Modalità Ioni Positivi	Modalità ioni negativi
CES	CES	0	0
		Da 0 a 50	Da 0 a 50
ROS	CE	10	-10
(Q0 - ROS)		da 5 a 180	Da -5 a -180

Tabella H-2 Parametri dei sistemi serie 6500 e 6500+ solo per tipi di scansione LIT (continua)

Parametri dei sistemi serie 5500 e 5500+

Il primo numero sotto ogni tipo di scansione è il valore preimpostato. L'intervallo di numeri è la gamma accessibile per ciascun parametro.

Tabella I-1 Parametri dei sistemi serie 5500 e 5500+

ID Parametro	ID Accesso	Modalità Ioni Positivi			Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		Da 10 a 55	Da 10 a 55	Da 10 a 55	Da 10 a 55	Da 10 a 55	Da 10 a 55
CAD	CAD	0	6	Med (9)	0	5	Med (9)
		N/A	N/A	Da 0 a 12	N/A	N/A	Da 0 a 12
IS ^{21,22}	IS ^{21,22}	5.500 V	5.500 V	5.500 V	-4500	-4500	-4500
		Da 0 a 5500	Da 0 a 5500	Da 0 a 5500	Da -4500 a 0	Da -4500 a 0	Da -4500 a 0
NC ²⁴	NC ²⁴	3	3	3	-3	-3	-3
		Da 0 a 5	Da 0 a 5	Da 0 a 5	Da -5 a 0	Da -5 a 0	Da -5 a 0

²¹Sorgente di ionizzazione Turbo V[™]

²²Sonda TurbolonSpray[®]

²³OptiFlow[™] Turbo V

²⁴Sonda APCI

ID Parametro	ID Accesso	M	odalità Ioni Posit	tivi	N	Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
TEM ^{22,24,15}	TEM ^{22,24}	0	0	0	0	0	0	
		Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	
OR	DP	100	100	100	-100	-100	-100	
(DP = OR)		Da 0 a 300	Da 0 a 300	Da 0 a 300	Da -300 a 0	Da -300 a 0	Da -300 a 0	
Q0	EP	10	10	10	-10	-10	-10	
(EP = -Q0)		da 2 a 15	da 2 a 15	da 2 a 15	da -15 a -2	da -15 a -2	da -15 a -2	
IQ1	IQ1	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + 0.5	Q0 + 0.5	Q0 + 0.5	
(IQ1 = Q0 + offset)		Da -0.1 a -2	Da -0.1 a -2	Da -0.1 a -2	Da 0.1 a 2	Da 0.1 a 2	Da 0.1 a 2	
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8	
(ST = Q0 + offset)		Da -12 a -5	Da -12 a -5	Da -12 a -5	Da 12 a 5	Da 12 a 5	Da 12 a 5	
RO1 (IE1 = Q0 - RO1)	IE1	1 Da 0 a 3	N/A	1 Da 0 a 3	–1 Da -3 a 0	N/A	–1 Da -3 a 0	
IQ2	IQ2	Q0 + (-10)	Q0 + (-10)	Q0 + (-10)	Q0 + 10	Q0 + 10	Q0 + 10	
(IQ2 = Q0 + offset)		Da -30 a -8	Da -30 a -8	Da -30 a -8	Da 8 a 30	Da 8 a 30	Da 8 a 30	
RO2	RO2	-20	-20	N/A	20	20	N/A	
		N/A	N/A		N/A	N/A		

ID Parametro	ID Accesso	Modalità Ioni Positivi			N	Modalità Ioni Negativi			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS		
RO2	CE	N/A	N/A	30	N/A	N/A	-30		
(CE = Q0 - RO2)				da 5 a 180			Da -180 a		
							-5		
ST3	ST3	RO2 - 10	N/A	N/A	RO2 + 10	N/A	N/A		
(ST3 = RO2 + offset)		Da -30 a -5			Da 5 a 30				
ST3	СХР	N/A	15	15	N/A	-15	-15		
(CXP = RO2 - ST3)			Da 0 a 55	Da 0 a 55		Da -55 a 0	Da -55 a 0		
RO3	RO3	-50	N/A	N/A	50	N/A	N/A		
		N/A			N/A				
RO3	IE3	N/A	1	1	N/A	-1	-1		
(IE3 = RO2 - RO3)			Da 0 a 5	Da 0 a 5		Da -5 a 0	Da -5 a 0		
DF 25	DF	-200	-200	-200	200	200	200		
		Da -300 a 0	Da -300 a 0	Da -300 a 0	Da 0 a 300	Da 0 a 300	Da 0 a 300		
CEM ²⁵	CEM	1800	1800	1800	1800	1800	1800		
		Da 0 a 3300	Da 0 a 3300	Da 0 a 3300	Da 0 a 3300	Da 0 a 3300	Da 0 a 3300		

²⁵solo sistemi serie 5500

ID Parametro	ID Accesso	Moda	Modalità Ioni Positivi			Modalità Ioni Negativi			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS		
CEM ²⁶	CEM	1700	1700	1700	1700	1700	1700		
		Da 0 a 3300	Da 0 a 3300	Da 0 a 3300	Da 0 a 3300	Da 0 a 3300	Da 0 a 3300		
GS1	GS1	20	20	20	20	20	20		
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90		
GS2	GS2	0	0	0	0	0	0		
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90		
IHT	IHT	150	150	150	150	150	150		
		Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250		
sdp ²⁷	sdp	1	1	1	1	1	1		
		1 o 2	1 o 2	1 o 2	1 o 2	1 o 2	1 o 2		

²⁶solo sistemi serie 5500+

²⁷Sorgente di ionizzazione DuoSpray[™] (1=sonda TurbolonSpray e 2=sonda APCI)

Sorgente di ionizzazione 124 / 153

Tabella I-2 Parametri dei sistemi QTRAP[®] 5500 e QTRAP[®] Enabled Triple Quad 5500+ solo per tipi di scansione LIT

ID Parametro	ID Accesso	Modalità Ioni Positivi	Modalità ioni negativi
CAD	CAD	Alto	Alto
		Basso-Alto	Basso-Alto
AF2 ²⁸	AF2	0,100	0,100
		0 o 1	0 o 1
AF3	AF3	Dipendente da massa-velocità	Dipendente da massa-velocità
		Da 0 a 10	Da 0 a 10
EXB	EXB	Dipendente da massa-velocità	Dipendente da massa-velocità
		Da -165 a 0	Da 0 a 165
CES	CES	0	0
		Da 0 a 50	Da 0 a 50
ROS	CE	10	-10
(Q0 - ROS)		da 5 a 180	Da -5 a -180

²⁸Solo MS/MS/MS

Parametri del sistema API 5000[™]

Il primo numero sotto ogni tipo di scansione è il valore preimpostato. L'intervallo di numeri è la gamma accessibile per ciascun parametro.

Tabella J-1 Parametri del sistema API 5000[™]

ID Parametro	ID Accesso	Moda	lità Ioni Positiv	i	Modalità Ioni Negativi			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
CUR	CUR	10	10	10	10	10	10	
		Da 10 a 50	Da 10 a 50	Da 10 a 50	Da 10 a 50	Da 10 a 50	Da 10 a 50	
CAD	CAD	0	1	4	0	1	4	
		N/A	Da 0 a 12	Da 0 a 10	N/A	Da 0 a 12	Da 0 a 12	
IS ^{29,30}	IS ^{29,30}	5.500 V	5.500 V	5.500 V	-4500	-4500	-4500	
		Da 0 a 5500	Da 0 a 5500	Da 0 a 5500	Da -4500 a 0	Da -4500 a 0	Da -4500 a 0	
NC ³¹	NC ³¹	3	3	3	-3	-3	-3	
		Da 0 a 5	Da 0 a 5	Da 0 a 5	Da -5 a 0	Da -5 a 0	Da -5 a 0	

²⁹Sorgente di ionizzazione Turbo V[™]

³⁰Sonda TurbolonSpray[®]

³¹Sonda APCI

Sorgente di ionizzazione 126 / 153

ID Parametro	ID Accesso	Moda	lità Ioni Positiv	i	Modalità Ioni Negativi			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
TEM ^{30,31}	TEM ^{30,31}	0	0	0	0	0	0	
		Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	
OR	DP	120	120	120	-100	-100	-100	
(DP=OR)		Da 0 a 400	Da 0 a 400	Da 0 a 400	Da -400 a 0	Da -400 a 0	Da -400 a 0	
Q0	EP	10	10	10	-10	-10	-10	
(EP = -Q0)		Da 15 a 2	Da 15 a 2	Da 15 a 2	da -15 a -2	da -15 a -2	da -15 a -2	
IQ1	IQ1	Q0 + (-1)	Q0 + (-1)	Q0 + (-1)	Q0 + 1	Q0 + 1	Q0 + 1	
(IQ1 = Q0 + offset)		Da -0,5 a -2	Da -0,5 a -2	Da -0,5 a -2	Da 0,5 a 2	Da 0,5 a 2	Da 0,5 a 2	
ST	ST	Q0 + (-7)	Q0 + (-7)	Q0 + (-7)	Q0 + 7	Q0 + 7	Q0 + 7	
(ST = Q0 + offset)		Da -12 a -5	Da -12 a -5	Da -12 a -5	Da 12 a 5	Da 12 a 5	Da 12 a 5	
RO1 (IE1 = Q0 - RO1)	IE1	1 Da 0,5 a 2	N/A	1 Da 0,5 a 2	–1 Da -2 a -0,5	N/A	–1 Da -2 a -0,5	
RO1	RO1	N/A	Q0 + (-2)	N/A	N/A	Q0 + 2	N/A	
(IE1 = Q0 + offset)			Da -0,5 a -2			Da 0,5 a 2		
IQ2	IQ2	Q0 + (-20)	Q0 + (-20)	Q0 + (-20)	Q0 + 20	Q0 + 20	Q0 + 20	
(IQ2 = Q0 + ottset)		Da -100 a -8	N/A	N/A	Da 100 a 8	N/A	N/A	

Tabella J-1 Parametri del sistema API 5000[™] (continua)

ID Parametro	ID Accesso	М	odalità Ioni Positi	vi	M	Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
RO2	RO2	-100	-20	N/A	100	20	N/A	
		Da -200 a 200	Da -145 a -2		Da -200 a 200	Da 2 a 145		
RO2	CE	N/A	N/A	30	N/A	N/A	-30	
(CE = Q0 - RO2)				Da 5 a 130			Da -130 a	
							-5	
ST3	ST3	-120	N/A	N/A	N/A	N/A	N/A	
		Da -200 a 200						
ST3	СХР	N/A	20	15	N/A	-20	-15	
(CXP = RO2 - ST3)			Da 0 a 55	Da 0 a 55		Da -55 a 0	Da -55 a 0	
RO3	RO3	-150	N/A	N/A	100	N/A	N/A	
		Da -200 a 200			Da -200 a 200			
RO3	IE3	N/A	2	2	N/A	-1,5	-1,5	
(IE3 = RO2 - RO3)			Da -0,5 a 5	Da -0,5 a 5		Da -5 a 0	Da -5 a 0	
DF	DF	-200	-200	-200	200	200	200	
		Da -400 a 0	Da -400 a 0	Da -400 a 0	Da 0 a 400	Da 0 a 400	Da 0 a 400	
CEM	CEM	2000	2000	2000	2000	2000	2000	
		Da 500 a 3297	Da 500 a 3297	Da 500 a 3297	Da 500 a 3297	Da 500 a 3297	Da 500 a 3297	

Tabella J-1 Parametri del sistema API 5000[™] (continua)

Sorgente di ionizzazione 128 / 153

ID Parametro	ID Accesso	Moda	lità Ioni Positiv	i	Modalità Ioni Negativi			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
GS1	GS1	20	20	20	15	15	20	
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	
GS2	GS2	0	0	0	0	0	0	
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	
ihe ³²	ihe	1	1	1	1	1	1	
		0 o 1	0 o 1	0 o 1	0 o 1	0 o 1	0 o 1	
IHT	IHT	40	40	40	40	40	40	
		Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250	
svp ³³	svp	1	1	1	1	1	1	
		1 o 2	1 o 2	1 o 2	1 o 2	1 o 2	1 o 2	

Tabella J-1 Parametri del sistema API 5000[™] (continua)

321=ON e 0=OFF

³³Sorgente di ionizzazione DuoSpray[™] (1=TurbolonSpray[®] e 2=sonda APCI)

Parametri dei sistemi serie 4500

Il primo numero sotto ogni tipo di scansione è il valore preimpostato. L'intervallo di numeri è la gamma accessibile per ciascun parametro.

Tabella K-1 Parametri degli strumenti serie 4500

ID Parametro	ID Accesso	Modalità Ioni Positivi			Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		Da 10 a 55	Da 10 a 55	Da 10 a 55	Da 10 a 55	Da 10 a 55	Da 10 a 55
CAD	CAD	0	6	Medium (9)	0	6	Medium (9)
		N/A	N/A	Da 0 a 12	N/A	N/A	Da 0 a 12
IS ^{34,35}	IS ^{34,35}	5.500 V	5.500 V	5.500 V	-4500	-4500	-4500
		Da 0 a 5500	Da 0 a 5500	Da 0 a 5500	Da -4500 a 0	Da -4500 a 0	Da -4500 a 0
NC ³⁶	NC ³⁶	3	3	3	-3	-3	-3
		Da 0 a 5	Da 0 a 5	Da 0 a 5	Da -5 a 0	Da -5 a 0	Da -5 a 0

³⁴Sorgente di ionizzazione Turbo V[™]

³⁵Sonda TurbolonSpray[®]

³⁶Sonda APCI

Sorgente di ionizzazione 130 / 153 Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C

Κ

ID Parametro	ID Accesso	Γ	Modalità Ioni Positivi			Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
TEM ^{35,36}	TEM ^{35,36}	0	0	0	0	0	0	
		Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	
OR	DP	100	100	100	-100	-100	-100	
(DP = OR)		Da 0 a 300	Da 0 a 300	Da 0 a 300	Da -300 a 0	Da -300 a 0	Da -300 a 0	
Q0	EP	10	10	10	-10	-10	-10	
(EP = -Q0)		da 2 a 15	da 2 a 15	da 2 a 15	da -15 a -2	da -15 a -2	da -15 a -2	
IQ1	IQ1	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + 0.5	Q0 + 0.5	Q0 + 0.5	
(IQ1 = Q0 + offset)		Da -0.1 a -2	Da -0.1 a -2	Da -0.1 a -2	Da 0.1 a 2	Da 0.1 a 2	Da 0.1 a 2	
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8	
(ST = Q0 + offset)		Da -12 a -5	Da -12 a -5	Da -12 a -5	Da 12 a 5	Da 12 a 5	Da 12 a 5	
RO1	IE1	1	N/A	1	-1	N/A	-1	
(IE1 = Q0 - RO1)		Da 0 a 3		Da 0 a 3	Da -3 a 0		Da -3 a 0	
IQ2	IQ2	Q0 + (-10)	Q0 + (-11)	Q0 + (-10)	Q0 + 10	Q0 + 10	Q0 + 10	
(ST = Q0 + offset)		Da -30 a -8	Da -30 a -8	Da -30 a -8	Da 8 a 30	Da 8 a 30	Da 8 a 30	
RO2	RO2	-20	-20	N/A	20	20	N/A	
		N/A	N/A		N/A	N/A		

Tabella K-1 Parametri degli strumenti serie 4500 (continua)

ID Parametro	ID Accesso	Modalità Ioni Positivi			Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
RO2	CE	N/A	N/A	30	N/A	N/A	-30
(CE = QO - RO2)				da 5 a 180			Da -180 a –5
ST3	ST3	RO2 - 10	N/A	N/A	RO2 + 10	N/A	N/A
(ST3 = RO2 + offset)		Da -30 a -5			Da 5 a 30		
ST2	СХР	N/A	15	15	N/A	–15	-15
(CXP = RO2 - ST3)			Da 0 a 55	Da 0 a 55		Da -55 a 0	Da -55 a 0
RO3	RO3	-50	N/A	N/A	50	N/A	N/A
		Fisso			Fisso		
RO3	IE3	N/A	1	1	N/A	_1	-1
(IE3 = RO2 - RO3)			Da 0 a 5	Da 0 a 5		Da -5 a 0	Da -5 a 0
DF	DF	-200	-200	-200	200	200	200
		Da -300 a 0	Da -300 a 0	Da -300 a 0	Da 0 a 300	Da 0 a 300	Da 0 a 300
CEM	CEM	2000	2000	2000	2000	2000	2000
		Da 0 a 3300	Da 0 a 3300	Da 0 a 3300	Da 0 a 3300	Da 0 a 3300	Da 0 a 3300
GS1	GS1	20	20	20	20	20	20
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90

Tabella K-1 Parametri degli strumenti serie 4500 (continua)

Sorgente di ionizzazione 132 / 153

Tabella K-1 Parametri degli strumenti serie 4500 (continua)

ID Parametro	ID Accesso	Modalità Ioni Positivi			Modalità Ioni Negativi			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
GS2	GS2	0	0	0	0	0	0	
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	
IHT	ІНТ	150	150	150	150	150	150	
		Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250	
sdp ³⁷	sdp	1	1	1	1	1	1	
		1 o 2	1 o 2	1 o 2	1 o 2	1 o 2	1 o 2	

Tabella K-2 Parametri dei sistemi QTRAP[®] 4500 solo per tipi di scansioni LIT

ID Parametro	ID Accesso	Modalità Ioni Positivi	Modalità ioni negativi
CAD	CAD	Alto	Alto
		Basso-Alto	Basso-Alto
AF2 ³⁸	AF2	0,100	0,100
		0 o 0,2	0 o 0,2
AF3	AF3	Dipendente da massa-velocità	Dipendente da massa-velocità
		Da 0 a 10	Da 0 a 10

³⁷Sorgente di ionizzazione DuoSpray[™] (1=sonda TurbolonSpray e 2=sonda APCI)

³⁸Solo MS/MS/MS

ID Parametro	ID Accesso	Modalità Ioni Positivi	Modalità ioni negativi
EXB	EXB	Dipendente da massa-velocità	Dipendente da massa-velocità
		Da -165 a 0	Da 0 a 165
CES	CES	0	0
		Da 0 a 50	Da 0 a 50
ROS	CE	10	-10
(Q0 - ROS)		da 5 a 180	Da -180 a -5

Tabella K-2 Parametri dei sistemi QTRAP[®] 4500 solo per tipi di scansioni LIT (continua)

Parametri dei sistemi serie 4000

Il primo numero sotto ogni tipo di scansione è il valore preimpostato. L'intervallo di numeri è la gamma accessibile per ciascun parametro.

Tabella L-1 Parametri degli strumenti serie 4000

ID Parametro	ID Accesso	Modalità Ioni Positivi			Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		Da 10 a 50	Da 10 a 50	Da 10 a 50	Da 10 a 50	Da 10 a 50	Da 10 a 50
CAD ³⁹	CAD	0	1	4	0	1	4
		N/A	Da 0 a 12	Da 0 a 10	N/A	Da 0 a 12	Da 0 a 12
CAD ⁴⁰	CAD	0	1	6	0	1	6
		N/A	Da 0 a 12	Da 0 a 10	N/A	Da 0 a 12	Da 0 a 12
IS ^{41,42}	IS ^{41,42}	5.500 V	5.500 V	5.500 V	-4500	-4500	-4500
		Da 0 a 5500	Da 0 a 5500	Da 0 a 5500	Da -4500 a 0	Da -4500 a 0	Da -4500 a 0

³⁹Sistemi API 4000[™]

⁴⁰Sistemi 4000 QTRAP[®]

 $^{41}\text{Sorgente}$ di ionizzazione Turbo V^{TM}

⁴²Sonda TurbolonSpray[®]

ID Parametro	ID Accesso	Modalità Ioni Positivi			Modalità Ioni Negativi			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
NC ⁴³	NC ⁴³	3	3	3	-3	-3	-3	
		Da 0 a 5	Da 0 a 5	Da 0 a 5	Da -5 a 0	Da -5 a 0	Da -5 a 0	
TEM ^{42,43}	TEM ^{42, 43}	0	0	0	0	0	0	
		Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	
OR	DP	20	20	20	-20	-20	-20	
(DP = OR)		Da 0 a 400	Da 0 a 400	Da 0 a 400	Da -400 a 0	Da -400 a 0	Da -400 a 0	
Q0	EP	10	10	10	-10	-10	-10	
(EP = -Q0)		da 2 a 15	da 2 a 15	da 2 a 15	da -15 a -2	da -15 a -2	da -15 a -2	
IQ1	IQ1	Q0 + (-1)	Q0 + (-1)	Q0 + (-1)	Q0 + 1	Q0 + 1	Q0 + 1	
(IQ1 = Q0 + offset)		Da -0,5 a -2	Da -0,5 a -2	Da -0,5 a -2	Da 0,5 a 2	Da 0,5 a 2	Da 0,5 a 2	
ST	ST	Q0 + (-5)	Q0 + (-5)	Q0 + (-5)	Q0 + 5	Q0 + 5	Q0 + 5	
(ST = Q0 + offset)		Da -7 a -4	Da -7 a -4	Da -7 a -4	Da 4 a 7	Da 4 a 7	Da 4 a 7	
RO1	IE1	1	N/A	1	-1	N/A	-1	
(IE1 = Q0 - RO1)		Da 0,5 a 2		Da 0,5 a 2	Da -2 a -0,5		Da -2 a -0,5	
RO1	RO1	N/A	Q0 + (-1)	N/A	N/A	Q0 + 1	N/A	
(IE1 = Q0 + offset)			Da -0,5 a -2			Da 0,5 a 2		

Tabella L-1 Parametri degli strumenti serie 4000 (continua)

⁴³Sonda APCI

ID Parametro	ID Accesso	N	lodalità Ioni Positi	vi	N	Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
IQ2	IQ2	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8	
(IQ2 = Q0 + offset)		N/A	N/A	N/A	N/A	N/A	N/A	
RO2	RO2	-60	-20	N/A	60	20	N/A	
		Da -145 a 20	Da -145 a -20		Da 60 a 100	Da 20 a 145		
RO2	CE	N/A	N/A	30	N/A	N/A	-30	
(CE = Q0 - RO2)				Da 5 a 130			Da -130 a	
							-5	
ST3	ST3	-80	N/A	N/A	80	N/A	N/A	
		Da -80 a 200			Da 80 a 200			
ST3	СХР	N/A	15	15	N/A	-15	-15	
(CXP = RO2 - ST3)			Da 0 a 55	Da 0 a 55		Da -55 a 0	Da -55 a 0	
RO3	RO3	-62	N/A	N/A	62	N/A	N/A	
		Da -60 a 200			Da 60 a 200			
RO3	IE3	N/A	2	2	N/A	-1,5	-1,5	
(IE3 = RO2 - RO3)			Da -0,5 a 5	Da -0,5 a 5		Da -5 a 0	Da -5 a 0	
C2	C2	RO3 + 0	RO3 + 0	RO3 + 0	RO3 + 0	RO3 + 0	RO3 + 0	
		N/A	N/A	N/A	N/A	N/A	N/A	

Tabella L-1 Parametri degli strumenti serie 4000 (continua)

Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C Sorgente di ionizzazione 137 / 153

ID Parametro	ID Accesso	М	Modalità Ioni Positivi			Modalità Ioni Negativi			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS		
DF	DF	0	0	0	0	0	0		
		Da -400 a 0	Da -400 a 0	Da -400 a 0	Da 0 a 400	Da 0 a 400	Da 0 a 400		
CEM	CEM	1800	1800	1800	1800	1800	1800		
	Da 500 a 3297	Da 500 a 3297	Da 500 a 3297	Da 500 a 3297	Da 500 a 3297	Da 500 a 3297			
GS1	GS1	20	20	20	20	20	20		
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90		
GS2	GS2	0	0	0	0	0	0		
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90		
ihe ⁴⁴	ihe	1	1	1	1	1	1		
		0 o 1	0 o 1	0 o 1	0 o 1	0 o 1	0 o 1		
IHT	IHT	40	40	40	40	40	40		
		Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250		
svp ⁴⁵	svp	1	1	1	1	1	1		
		1 o 2	1 o 2	1 o 2	1 o 2	1 o 2	1 o 2		

Tabella L-1 Parametri degli strumenti serie 4000 (continua)

441=ON e 0=OFF

⁴⁵Sorgente di ionizzazione DuoSpray[™] (1=sonda TurbolonSpray[®] e 2=sonda APCI)

Sorgente di ionizzazione 138 / 153

Tabella L-2 Parametri dei sistemi 4000 $\operatorname{QTRAP}^{\circ}$ solo per tipi di scansione LIT

ID Parametro	ID Accesso	Modalità Ioni Positivi	Modalità ioni negativi
CAD	CAD	Alto	Alto
		Basso-Alto	Basso-Alto
AF2 ⁴⁶	AF2	100	100
		Da 0 a 200	Da 0 a 200
AF3	AF3	Dipendente da massa-velocità	Dipendente da massa-velocità
		Da 0 a 5	Da 0 a 5
EXB	EXB	Dipendente da massa-velocità	Dipendente da massa-velocità
		Da -200 a 0	Da 0 a 200
CES	CES	0	0
		da –50 a 50	da –50 a 50
ROS	CE	30	-30
(Q0 - ROS)		Da 5 a 130	Da -130 a -5

⁴⁶Solo MS/MS/MS

Parametri dei sistemi SCIEX Triple Quad[™] 3500

Il primo numero sotto ogni tipo di scansione è il valore preimpostato. L'intervallo di numeri è la gamma accessibile per ciascun parametro.

Tabella M-1 Parametri dei sistemi SCIEX Triple Quad[™] 3500

ID Parametro	ID Accesso	Modalità Ioni Positivi			Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		Da 10 a 55	Da 10 a 55	Da 10 a 55	Da 10 a 55	Da 10 a 55	Da 10 a 55
CAD	CAD	0	6	Medium (9)	0	6	Medium (9)
		N/A	N/A	Da 0 a 12	N/A	N/A	Da 0 a 12
IS ^{47,48}	IS ^{47,47,48}	5.500 V	5.500 V	5.500 V	-4500	-4500	-4500
		Da 0 a 5500	Da 0 a 5500	Da 0 a 5500	Da -4500 a 0	Da -4500 a 0	Da -4500 a 0
NC ⁴⁹	NC ⁴⁹	3	3	3	-3	-3	-3
		Da 0 a 5	Da 0 a 5	Da 0 a 5	Da -5 a 0	Da -5 a 0	Da -5 a 0

⁴⁷Sorgente di ionizzazione Turbo V[™]

⁴⁸Sonda TurbolonSpray[®]

⁴⁹Sonda APCI

Sorgente di ionizzazione 140 / 153 Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C

M

ID Parametro	ID Accesso	Ν	Modalità Ioni Positivi			Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
TEM ^{48,49}	TEM ^{48,49}	0	0	0	0	0	0	
		Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	
OR	DP	100	100	100	-100	-100	-100	
(DP = OR)		Da 0 a 300	Da 0 a 300	Da 0 a 300	Da -300 a 0	Da -300 a 0	Da -300 a 0	
Q0	EP	10	10	10	-10	-10	-10	
(EP=-Q0)		da 2 a 15	da 2 a 15	da 2 a 15	da -15 a -2	da -15 a -2	da -15 a -2	
IQ1	IQ1	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + 0.5	Q0 + 0.5	Q0 + 0.5	
(IQ1 = Q0 + offset)		Da -0.1 a -2	Da -0.1 a -2	Da -0.1 a -2	Da 0.1 a 2	Da 0.1 a 2	Da 0.1 a 2	
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8	
(ST = Q0 + offset)		Da -12 a -5	Da -12 a -5	Da -12 a -5	Da 12 a 5	Da 12 a 5	Da 12 a 5	
RO1	IE1	1	N/A	1	_1	N/A	-1	
(IE1 = Q0 - RO1)		Da 0 a 3		Da 0 a 3	Da -3 a 0		Da -3 a 0	
IQ2	IQ2	Q0 + (-10)	Q0 + (-11)	Q0 + (-10)	Q0 + 10	Q0 + 10	Q0 + 10	
(ST = Q0 + offset)		Da -30 a -8	Da -30 a -8	Da -30 a -8	Da 8 a 30	Da 8 a 30	Da 8 a 30	
RO2	RO2	-20	-20	N/A	20	20	N/A	
		N/A	N/A		N/A	N/A		

Tabella M-1 Parametri dei sistemi SCIEX Triple Quad[™] 3500 (continua)

ID Parametro	ID Accesso	Modalità Ioni Positivi			Modalità Ioni Negativi			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
RO2	CE	N/A	N/A	30	N/A	N/A	-30	
(CE = QO - RO2)				da 5 a 180			Da -180 a –5	
ST3	ST3	RO2 - 10	N/A	N/A	RO2 + 10	N/A	N/A	
(ST3 = RO2 + offset)		Da -30 a -5			Da 5 a 30			
ST2	СХР	N/A	15	15	N/A	–15	-15	
(CXP = RO2 - ST3)			Da 0 a 55	Da 0 a 55		Da -55 a 0	Da -55 a 0	
RO3	RO3	-50	N/A	N/A	50	N/A	N/A	
		Fisso			Fisso			
RO3	IE3	N/A	1	1	N/A	-1	-1	
(IE3 = RO2 - RO3)			Da 0 a 5	Da 0 a 5		Da -5 a 0	Da -5 a 0	
DF	DF	-200	-200	-200	200	200	200	
		Da -300 a 0	Da -300 a 0	Da -300 a 0	Da 0 a 300	Da 0 a 300	Da 0 a 300	
CEM	CEM	2000	2000	2000	2000	2000	2000	
		Da 0 a 3300	Da 0 a 3300	Da 0 a 3300	Da 0 a 3300	Da 0 a 3300	da 0 a 3300	
GS1	GS1	20	20	20	20	20	20	
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	

Tabella M-1 Parametri dei sistemi SCIEX Triple Quad[™] 3500 (continua)

Sorgente di ionizzazione 142 / 153

ID Parametro	ID Accesso	Modalità Ioni Positivi			Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
GS2	GS2	0	0	0	0	0	0
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90
IHT	IHT	150	150	150	150	150	150
		Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250

Tabella M-1 Parametri dei sistemi SCIEX Triple Quad[™] 3500 (continua)

Parametri dei sistemi serie 3200

Il primo numero sotto ogni tipo di scansione è il valore preimpostato. L'intervallo di numeri è la gamma accessibile per ciascun parametro.

Tabella N-1 Parametri dei sistemi serie 3200

ID Parametro	ID Accesso	Modalità Ioni Positivi			Modalità Ioni Negativi			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
CUR	CUR	20	20	20	20	20	20	
		Da 10 a 50	Da 10 a 50	Da 10 a 50	Da 10 a 50	Da 10 a 50	Da 10 a 50	
CAD ⁵⁰	0	2	3	0	2	3		
	Fisso	Fisso	Da 0 a 12	Fisso	Fisso	Da 0 a 12		
CAD ⁵¹	0	2	Medium	0	2	Medium		
	Fisso	Fisso	Basso, Medio, Alto	Fisso	Fisso	Basso, Medio, Alto		
IS ⁵²	IS ⁵²	5.500 V	5.500 V	5.500 V	-4200	-4200	-4200	
		Da 0 a 5500	Da 0 a 5500	Da 0 a 5500	Da -4500 a 0	Da -4500 a 0	Da -4500 a 0	

⁵⁰Sistemi API 3200[™]

⁵¹Sistemi 3200 QTRAP[®]

 $^{52}Sorgente di ionizzazione Turbo V^{\rm TM}$

Sorgente di ionizzazione 144 / 153
ID Parametro ID Accesso		n l	Modalità Ioni Positivi			Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
IS ⁵³	IS ⁵³	1.000	1.000	1.000	-1000	-1000	-1000	
		Da 0 a 5500	Da 0 a 5500	Da 0 a 5500	Da -4500 a 0	Da -4500 a 0	Da -4500 a 0	
IS ⁵⁴	IS ⁽⁴⁾	1500	1500	1500	-1500	-1500	-1500	
		Da 0 a 2500	Da 0 a 2500	Da 0 a 2500	Da -2500 a 0	Da -2500 a 0	Da -2500 a 0	
NC ⁵⁵	NC ⁵⁵	1	1	1	-1	-1	-1	
		Da 0 a 5	Da 0 a 5	Da 0 a 5	Da -5 a 0	Da -5 a 0	Da -5 a 0	
NC ⁵⁶	NC ⁵⁶	1	3	3	-3	-3	-3	
		Da 0 a 5	Da 0 a 5	Da 0 a 5	Da -5 a 0	Da -5 a 0	Da -5 a 0	
TEM ^{52,55,54}	TEM ^{53,55}	0	0	0	0	0	0	
		Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	Da 0 a 750	
OR	DP	20	20	20	-20	-20	-20	
(DP = OR)		Da 0 a 400	Da 0 a 400	Da 0 a 400	Da -400 a 0	Da -400 a 0	Da -400 a 0	

⁵³Sorgente di ionizzazione NanoSpray®

⁵⁴Sorgente di ionizzazione PhotoSpray®

⁵⁵Sorgente di ionizzazione DuoSpray[™] (1=sonda TurbolonSpray[®] e 2=sonda APCI)

56Sonda APCI

⁵⁷Sonda TurbolonSpray[®]

Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C Sorgente di ionizzazione 145 / 153

ID Parametro	ID Accesso	Modalità Ioni Positivi			Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
Q0	EP	10	10	10	-10	-10	-10
(EP = -Q0)		Da 1 a 12	Da 1 a 12	Da 1 a 12	Da -12 a -1	Da -12 a -1	Da -12 a -1
IQ1	IQ1	Q0 + (-1)	Q0 + (-1)	Q0 + (-1)	Q0 + 1	Q0 + 1	Q0 + 1
(IQ1 = Q0 + offset)		Da -2 a -1	Da -2 a -1	Da -2 a -1	Da 1 a 2	Da 1 a 2	Da 1 a 2
ST	ST	Q0 + (-5)	Q0 + (-5)	Q0 + (-5)	Q0 + 5	Q0 + 5	Q0 + 5
(ST = Q0 + offset)		Da -8 a -2	Da -8 a -2	Da -8 a -2	Da 2 a 8	Da 2 a 8	Da 2 a 8
RO1 (IE1 = Q0 - RO1)	IE1	1 Da 0,5 a 2	N/A	1 Da 0,5 a 2	–1 Da -2 a -0,5	N/A	–1 Da -2 a -0,5
RO1	RO1	N/A	Q0 + (-2)	N/A	N/A	Q0 + 2	N/A
(IE1 = Q0 + offset)			Da -2 a -0,5			Da 0,5 a 2	
IQ2 (CEP = Q0 - IQ2)	CEP	Dipendente dalla massa Da 0 a 188	N/A	Dipendente dalla massa	Dipendente dalla massa	N/A	Dipendente dalla massa
				Da 0 a 188	Da -188 a 0		Da -188 a 0
IQ2	IQ2	N/A	RO2 + 0	N/A	N/A	RO2 + 0	N/A
(IQZ = KOZ + offset)			Da 0 a 2			Da -2 a 0	

ID Parametro ID Accesso		M	Modalità Ioni Positivi			Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
RO2	CE	N/A	N/A	30	N/A	N/A	-30	
(CE = Q0 - RO2)				Da 5 a 130			Da -130 a	
							-5	
RO2	RO2	-100	-20	N/A	100	20	N/A	
		Da -150 a 20	Da -130 a -5		Da 20 a 150	Da 5 a 130		
IQ3	СХР	N/A	Dipendente dalla	5	N/A	Dipendente dalla	-5	
(CXP = RO2 - IQ3)			massa	Da 0 a 58		massa	Da -58 a 0	
			Da 0 a 58			Da -58 a 0		
IQ3	IQ3	-125	N/A	N/A	125	N/A	N/A	
		Da -200 a -100			Da 100 a 200			
RO3	IE3	N/A	4	4	N/A	-4	-4	
(IE3 = RO2 - RO3)			Da 0,5 a 8	Da 0,5 a 8		Da -8 a 0,5	Da -8 a 0,5	
RO3	RO3	-150	N/A	N/A	150	N/A	N/A	
		Da -200 a -100			Da 150 a 200			
EX	EX	-200	-200	-200	200	200	200	
		N/A	N/A	N/A	N/A	N/A	N/A	

ID Parametro ID Accesso		Moda	Modalità Ioni Positivi			Modalità Ioni Negativi		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
DF	DF	-100	-100	-100	100	100	100	
		Da -400 a 0	Da -400 a 0	Da -400 a 0	Da 0 a 400	Da 0 a 400	Da 0 a 400	
CEM	СЕМ	1800	1800	1800	1800	1800	1800	
		Da 500 a 3297	a 500 a 3297 Da 500 a 3297 Da 500 a 3297	Da 500 a 3297	Da 500 a 3297	Da 500 a 3297		
GS1	GS1	20	20	20	20	20	20	
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	
GS2	GS2	0	0	0	0	0	0	
		Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	Da 0 a 90	
ihe ⁵⁸	ihe	1	1	1	1	1	1	
		0 o 1	0 o 1	0 o 1	0 o 1	0 o 1	0 o 1	
C2	C2	0	0	0	0	0	0	
		N/A	N/A	N/A	N/A	N/A	N/A	
XA3	ХАЗ	0	0	0	0	0	0	
		N/A	N/A	N/A	N/A	N/A	N/A	
XA2	XA2	0	0	0	0	0	0	
		N/A	N/A	N/A	N/A	N/A	N/A	

581=ON e 0=OFF

Sorgente di ionizzazione 148 / 153 Test, Specifiche e Registro dati RUO-IDV-05-7280-IT-C

ID Parametro	ID Accesso	Modalità Ioni Positivi			Мо	dalità Ioni Nega	ativi
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
IHT 53	IHT	40	40	40	40	40	40
		Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250	Da 0 a 250
svp ⁵⁹	svp	1	1	1	1	1	1
		1 o 2	1 o 2	1 o 2	1 o 2	1 o 2	1 o 2

Tabella N-2 Parametri dei sistemi 3200 QTRAP[®] solo per tipi di scansioni LIT

ID Parametro	ID Accesso	Modalità Ioni Positivi	Modalità ioni negativi	
CAD	CAD	Alto	Alto	
		Basso–Medio–Alto	Basso-Alto	
FI2	CEP	Dipendente da massa-velocità	Dipendente da massa-velocità	
		Da 0 a 188	Da -188 a 0	
ROS	CE	30	-30	
(Q0 - RO2)		Da 5 a 130	Da -5 a -130	
AF2 ⁶⁰	AF2	100	100	
		Da 0 a 200	Da 0 a 200	

⁵⁹Sorgente di ionizzazione DuoSpray[™] (1=sonda TurbolonSpray[®] e 2=sonda APCI)

60Solo MS/MS/MS

ID Parametro	ID Accesso	Modalità Ioni Positivi	Modalità ioni negativi
AF3	AF3	Dipendente da massa-velocità	Dipendente da massa-velocità
		Da 0 a 5	Da 0 a 5
EXB	EXB	Dipendente da massa-velocità	Dipendente da massa-velocità
		Da -200 a 0	Da 0 a 200
DF	DF	-400	400
		N/A	N/A
C2B	C2B	Dipendente da massa-velocità	Dipendente da massa-velocità
		Da -500 a 500	Da -500 a 500
CES	CES	0	0
		da –50 a 50	da –50 a 50

Tabella N-2 Parametri dei sistemi 3200 QTRAP[®] solo per tipi di scansioni LIT (continua)

Masse per [Glu¹]-Fibrinopeptide B

Carica	(M+nH)n ⁺ Monoisotopico m/z
+1	1570,6768
+2	785,8421*
+3	524,2305*
+4	393,4247
+5	—
+6	—

Tabella O-1 [Glu1]-Fibrinopeptide B (Peso Molecolare Monoisotopico, 1569,6696 Da)

* Indica gli stati di carica maggiormente osservati.

La Tabella O-2 contiene le masse monoisotopiche esatte per le divisioni teoriche del [Glu1]-Fibrinopeptide B, calcolate per la modalità ione positivo.

ioni b		ioni y		
m/z	Frammento	m/z	Frammento	
_	—	1570,6768	EGVNDNEEGFFSAR	
130,0499	E	1441,6342	GVNDNEEGFFSAR	
187,0713	EG	1384,6128	VNDNEEGFFSAR	
286,1397	EGV	1285,5444	NDNEEGFFSAR	
400,1827	EGVN	1171,5014	DNEEGFFSAR	
515,2096	EGVND	1056,4745	NEEGFFSAR	
629,2525	EGVNDN	942,4316	EEGFFSAR	
758,2951	EGVNDNE	813,3890	EGFFSAR	
887,3377	EGVNDNEE	684,3464	GFFSAR	
944,3592	EGVNDNEEG	627,3249	FFSAR	
1091,4276	EGVNDNEEGF	480,2565	FSAR	
1238,4960	EGVNDNEEGFF	333,1881	SAR	

Tabella O-2 Ioni dei frammenti teorici del [Glu1]-Fibrinopeptide B

io	ni b	ioi	ni y
1325,5281	EGVNDNEEGFFS	246,1561	AR
1396,5652	EGVNDNEEGFFSA	175,1190	R
1552,6663	EGVNDNEEGFFSAR	_	—

Tabella O-2 Ioni dei frammenti teorici del [Glu1]-Fibrinopeptide B (continua)

Preparazione di una diluizione di reserpina da 60:1 (10 pg/µL)

Attenersi a questa procedura per creare la diluizione di reserpina dalla soluzione di reserpina 1 pmol/µL (cod. art. 4405236).

- 1. Creare la soluzione madre aggiungendo 4,0 mL di solvente di diluizione nella fiala.
- 2. Chiudere la fiala e miscelare delicatamente il contenuto o esporre la fiala agli ultrasuoni per dissolvere il materiale.

Con questa operazione si produce una soluzione di reserpina di 1 pmol/µL.

- 3. Mettere 1 mL di soluzione madre di reserpina in una fiala pulita e aggiungere 5 mL di solvente di diluizione.
- 4. Combinare 1 mL della diluizione 6:1 e 9 mL di solvente di diluizione.

Con questa operazione si produce una soluzione di reserpina 60:1.