

イオン源 SCIEX Triple Quad[™]、QTRAP[®]、および TripleTOF[®] システム

テスト、仕様および、データログ

本書はSCIEX機器をご購入され、実際に使用されるお客様にむけてのものです。本書の著作権は保護されています。本書および本書の一部分を複製することは、SCIEXが書面で合意した場合を除いて固く禁止されています。

本書に記載されているソフトウェアは、使用許諾契約書に基づいて提供されています。使用許諾契約 書で特に許可されている場合を除き、いかなる媒体でもソフトウェアを複製、変更、または配布する ことは法律で禁止されています。さらに、使用許諾契約書では、ソフトウェアを逆アセンブル、リ バースエンジニアリング、または逆コンパイルすることをいかなる目的でも禁止することがありま す。正当とする根拠は文書中に規定されているとおりです。

本書の一部は、他の製造業者および/またはその製品を参照することがあります。これらには、その名称を商標として登録しているおよび/またはそれぞれの所有者の商標として機能している部分を含む場合があります。そのような使用は、機器への組み込みのためSCIEXにより供給された製造業者の製品を指定することのみを目的としており、その権利および/またはライセンスの使用を含む、または第三者に対しこれらの製造業者名および/または製品名の商標利用を許可するものではありません。

SCIEXの保証は販売またはライセンス供与の時点で提供される明示的保証に限定されており、またSCIEX の唯一かつ独占的な表明、保証および義務とされています。SCIEXは、明示的・黙示的を問わず、制定 法若しくは別の法律、または取引の過程または商慣習から生じるかどうかに関わらず、特定の目的の ための市場性または適合性の保証を含むがこれらに限定されない、他のいかなる種類の保証も行いま せん。これらのすべては明示的に放棄されており、購買者による使用またはそれから生じる不測の事 態に起因する間接的・派生的損害を含め、一切の責任または偶発債務を負わないものとします。

研究専用。診断手順には使用しないでください。

AB SciexはSCIEXブランドの下で事業を行っています。

ここに示されているすべての商標は、AB Sciex Pte. Ltd. またはそれぞれの権利保有者の財産です。

AB SCIEX[™] はライセンスの下で使用されています。

© 2019年 AB Sciex

AB Sciex Pte. Ltd. Blk33, #04-06 Marsiling Industrial Estate Road 3 Woodlands Central Industrial Estate, Singapore 739256

内容

1 IonDrive [™] Turbo V イオン源テスト	6
テストの準備	7
TurbolonSpray [®] プローブのテスト	8
APCI プローブのテスト	10
2 Turbo V [™] イオン源テスト	
テストの準備	14
トリプル四重極システムおよび QTRAP [®]	
システムでのイオン源のテスト	16
TurbolonSpray [®] プローブのテスト	16
APCI プローブのテスト	18
TripleTOF [®] システムでのイオン源のテスト	20
テスト溶液の準備	20
TurbolonSpray プローブのテスト	20
APCI プローブのテスト	
3 DuoSpray [™] イオン源テスト	25
テストの準備	
TripleTOF [®] システム	
テスト溶液の準備	
TurbolonSpray [®] プローブのテスト	29
APCI プローブのテスト	
トリプル四重極システムおよび QTRAP [®]	
システムでのイオン源のテスト	
TurbolonSpray プローブ	
APCI プローブのテスト	
4 OptiFlow [™] Turbo V イオン源テスト	40
テストの準備	41
トリプル四重極システムおよび QTRAP [®]	
システムでのイオン源のテスト	42
SteadySpray プローブのテスト	
TripleTOF [®] システムでのイオン源のテスト	43
SteadySpray プローブのテスト	
5 NanoSpray [®] イオン源テスト	46
テストの準備	47
[グルコース ¹]フィブリノペプチドB希釈液の準備	49
TripleTOF [®] システムでのイオン源のテスト	50
TOF MS モードによるテストおよびキャリブレーション	52

プロダクトイオンモードによるテストおよびキャリブレーション (高感度) (5600/5600+ および 6600/6600+	
システムのみ)	59
プロダクトイオンモードによるテストおよびキャリブレーション	63
トリブル四重極システムおよび QTRAP	
ンステムでのイオン源のテスト	
VI モートによるナスト	
QS モード Cの アストンキャリブレーション (ΛΤΒΔΡ [®]	
または OTRAP [®] を有効にした Triple Ouad	
5500+ システムのみ)	
3200 シリーズシステムのイオン源テスト	82
レニン混合物 (濃度 500 fmol/µL) 2 mL の用意	82
Q1 および MS2 モードによるテスト	83
EPI モードでのテスト (3200 QTRAP [®]	
システムのみ)	85
仕上げ	86
6 PhotoSpray [®] イオン源テスト	87
テストの準備	88
イオン源テスト	89
7 トラブルシューティングのヒント	92
A データログ: IonDrive TM Turbo V	
サインオフ	
コメントおよび例外	98
B データログ: Turbo V TM イオン源	99
システム情報	
サインオフ	
コメントおよび例外	102
C データログ DuoSprov [™] ノナン酒	102
て、 システム 情報	103 103
サインオフ	104
フィングラン	
	106
イイン線 シュテム情報	
ノスノム旧報	100
フィンラン コメントおよび例外	
ニティークログ·NanoSpray [®] イオン酒	109
こ、 ション: Nanospray 「	109
サインオフ	
コメントおよび例外	
F データログ: PhotoSpray [®] イオン源	

システム情報 サインオフ コメントおよび例外	116 117 118
G TripleTOF [®] システムパラメータ	119
H 6500 および 6500+ シリーズシステムパラメータ	123
I 5500 および 5500 + シリーズシステムパラメータ	129
J API 5000 [™] システムパラメータ	134
К 4500 シリーズシステムパラメータ	138
L 4000 シリーズシステムパラメータ	143
M SCIEX Triple Quad [™] 3500 システムパラメータ	149
N 3200 シリーズシステムパラメータ	153
O [グルコース1 ¹]-フィブリノペプチド B の質量	
P レセルピン希釈液 60:1 (10 pg/μL) の用意	162

IonDrive[™] Turbo V イオン源テス ト

これらのテストは、6500 または 6500+ シリーズシステムに取り付けられた IonDrive[™] Turbo V イオン源に対して実施します。

次の条件のいずれかでテストを実行します。

- 新しいイオン源をインストールした場合。
- ・ イオン源の大規模メンテナンス後。

・ プロジェクトの開始前や標準動作手順の一部としてイオン源の性能の評価が必要なとき。

警告!イオン化放射線障害の危険性、生物学的危険、および有害化学物質の 危険性。イオン源で使用する有害物質や障害性物質の適正使用、汚染、排気 に関する知識や訓練を受けている場合に限り、イオン源を使用します。

警告! 尖った部分により怪我をする危険性、イオン化放射の危険性、生物学 的危険性、あるいは有害化学物質の危険性。イオン源のウィンドウがひび割 れたり破損したりした場合、イオン源の使用を中止して、SCIEXフィールド サービスエンジニア(FSE)にお問い合わせください。装置に入り込んだ有 害物質や障害性物質は、イオン源排気出力に混入します。装置からの排気は 室外に換気してください。認定を受けた検査室安全手順に従い、鋭利物を処 分します。

警告! 有害化学物質の危険性があります。白衣、手袋、保護メガネなどの身体保護 具を着用して、皮膚や目を危険物質にさらさないようにします。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物質の危険性。化学物質の流出が発生した場合、特定の指示に関して製品安全性データシートを確認します。イオン源付近にこぼれたものを掃除する前に、システムがStandbyモードであることを確認してください。適切な個人用防護具と吸着布を使用して、流出を食い止め、現地規制に従い処分してください。

必要な物	
•	移動相溶媒: アセトニトリル: 水 (70:30) 溶液
•	テスト溶液: 0.0167 pmol/µL (10 pg/µL 相当) レセルピン。SCIEX 標準化学物質キット (PN 4406127) 同梱の事前希釈 0.0167 pmol/µL レセルピン溶液。
•	TripleTOF [®] システムの場合、SCIEX TripleTOF [®] システム化学物質キット (PN 4456736) 同梱の 0.167 pmol/μL レセルピン溶液と標準希釈からテスト溶液を準備します。
•	HPLCポンプ(移動相用)
•	5 μL ループ付マニュアルインジェクタ (8125 レオダインまたは相当) または 5 μL 注入仕様 のオートサンプラー
•	外径 (o.d.) 1/16-インチ、内径 (i.d.) 0.005-インチのPEEK チューブ
•	プローブがインストールされたイオン源
•	250 μL ~ 1000 μL のシリンジ
•	パウダーフリーグローブ(ニトリルまたはネオプレンが推奨されます)
•	安全メガネ
•	白衣

注: すべてのテスト溶液は冷蔵保存しておかなければなりません。冷蔵庫から48時間以上 外放置された場合、処分して新しい溶液を使用します。

テストの準備

警告!感電の危険性。操作中、イオン源に印加された高電圧に触れないよう にします。サンプルチューブやイオン源付近の他の装置を調整する前に、シ ステムをStandbyモードにします。

- 新しいイオン源をインストールした場合、質量分析装置が既存のイオン源を使用したときの仕様で動作していることを確認します。
- ・ イオン源を質量分析装置にインストールします。
- ・イオン源が完全に最適化されているかを確認します。イオン源については、『オペレータ ガイド』を参照してください。
- 化学溶液または溶媒を取り扱う前に確認が必要な注意事項は、適用する安全性データシートをすべて参照してください。
- ・測定者が質量分析装置の操作と安全手順に関して十分なトレーニングを受けていることを 確認します。

- テストするプローブをインストールします。
- 5 µL ループを装備したマニュアルインジェクタ経由で、イオン源の接地継手部をポンプに、あるいはオートサンプラーに接続します。

図 1-1を参照してください。

図 1-1 LC ポンプ構成

項目	説明
1	流れの入口のポンプ
2	インジェクタまたはオートサンプラー
3	イオン源

TurbolonSpray[®]プローブのテスト

警告! 高温面の危険。メンテナンス手順を開始する前に、イオン源を少なく とも**90**分そのままにして熱を下げます。操作中、イオン源の表面が熱くなり ます。 注意: システムに損傷を与える恐れ。イオン源が適正温度に達するまで、他の溶媒流量を 導入しないでください。

イオン源のインストールまたは最適化に関する詳細は、イオン源『オペレータガイド』を参照してください。

- 1. 移動相流量 0.5 mL/分になるよう HPLC ポンプを構成します。
- Analyst[®]ソフトウェアの Tune and Calibrate モードで、Manual Tuneをダブルクリックします。
- 3. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

パラメータ	値	
MS パラメータ		
Scan Mode	MRM	
Q1	609.3	
Q3	195.1	
Scan Time (seconds)	0.200	
Duration (minutes)	10	
Source/Gas パラメータ		
Curtain Gas [™] flow (CUR)	30(または最適化されたとおり)	
Temperature (TEM)	700(または最適化されたとおり)	
Ion Source Gas 1 (GS1)	60 (または最適化されたとおり)	
Ion Source Gas 2 (GS2)	70(または最適化されたとおり)	
IonSpray Voltage (IS)	4500 (または最適化されたとおり)	
Compound パラメータ		
Declustering Potential (DP)	100(または最適化されたとおり)	
Collision Energy (CE)	45(または最適化されたとおり)	
Collision Exit Potential (CXP)	最適化されたとおり	

表 1-1 メソッドパラメータ

4. Start をクリックしてメソッドを実行します。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物 質の危険性。電極がプローブチップよりも先まで突出して、有害蒸気がイ オン源から排出されないようにします。電極は、プローブ内部に配置して はなりません。

注意: システムに損傷を与える恐れ。Curtain Gas[™]流量にできる限り高値を使用します。

- 5. Acquire をクリックしてデータ収集を開始します。
- 6. レセルピン溶液 5 μL を 3 回注入します。

ヒント! 5 µL ループを、30 µL~40 µLの溶液で満たすことを推奨しています。

- 7. 結果を印刷します。
- 8. イオンの3つの強度を平均化して、データログに結果を記録します。
- 9. 平均強度が許容範囲であるか確認します。データログ: lonDrive[™] Turbo V イオン源を参照し てください。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。 10. テスト完了度、LC ポンプを停止し、TEM を 0 に設定してプローブの熱を下げます。

APCI プローブのテスト

警告! 高温面の危険。メンテナンス手順を開始する前に、イオン源を少なく とも**90**分そのままにして熱を下げます。操作中、イオン源の表面が熱くなり ます。

注意: システムに損傷を与える恐れ。イオン源が適正温度に達するまで、他の溶媒流量を 導入しないでください。

イオン源のインストールまたは最適化に関する詳細は、イオン源『オペレータガイド』を参 照してください。

- 1. 移動相流量1 mL/分になるよう HPLC ポンプを構成します。
- Analyst[®]ソフトウェアの Tune and Calibrate モードで、Manual Tuneをダブルクリックします。
- 3. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

表 1-2 メソッドパラメータ

パラメータ	值	
MS パラメータ		
Scan Mode	MRM	
Q1	609.3	
Q3	195.1	
Scan Time (seconds)	0.200	
Duration (minutes)	10	
Source/Gas パラメータ		
Curtain Gas [™] flow (CUR)	30(または最適化されたとおり)	
CAD Gas	9(または最適化されたとおり)	
Nebulizer Current (NC)	3(または最適化されたとおり)	
Temperature (TEM)	425	
lon Source Gas 1 (GS1)	70(または最適化されたとおり)	
Compound パラメータ		
Declustering Potential (DP)	100(または最適化されたとおり)	
Collision Energy (CE)	45(または最適化されたとおり)	
Collision Exit Potential (CXP)	最適化されたとおり	

4. Start をクリックしてメソッドを実行します。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物 質の危険性。電極がプローブチップよりも先まで突出して、有害蒸気がイ オン源から排出されないようにします。電極は、プローブ内部に配置して はなりません。

注意 : システムに損傷を与える恐れ。Curtain Gas[™]流量にできる限り高値を使用しま す。

- 5. Acquire をクリックしてデータ収集を開始します。
- 6. レセルピン溶液 5 μL を 3 回注入します。

ヒント! 5 µL ループを、30 µL~40 µLの溶液で満たすことを推奨しています。

7. 結果を印刷します。

- 8. イオンの3つの強度を平均化して、データログに結果を記録します。
- 9. 平均強度が許容範囲であるか確認します。データログ: lonDrive[™] Turbo V イオン源を参照してください。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。 10. テスト完了度、LC ポンプを停止し、TEM を 0 に設定してプローブの熱を下げます。 次の条件のいずれかでテストを実行します。

- 新しいイオン源をインストールした場合。
- ・ イオン源の大規模メンテナンス後。
- ・ プロジェクトの開始前や標準動作手順の一部としてイオン源の性能の評価が必要なとき。

警告!イオン化放射線障害の危険性、生物学的危険、および有害化学物質の 危険性。イオン源で使用する有害物質や障害性物質の適正使用、汚染、排気 に関する知識や訓練を受けている場合に限り、イオン源を使用します。

警告! 尖った部分により怪我をする危険性、イオン化放射の危険性、生物学 的危険性、あるいは有害化学物質の危険性。イオン源のウィンドウがひび割 れたり破損したりした場合、イオン源の使用を中止して、SCIEXフィールド サービスエンジニア(FSE)にお問い合わせください。装置に入り込んだ有 害物質や障害性物質は、イオン源排気出力に混入します。装置からの排気は 室外に換気してください。認定を受けた検査室安全手順に従い、鋭利物を処 分します。

警告! 有害化学物質の危険性があります。白衣、手袋、保護メガネなどの身体保護 具を着用して、皮膚や目を危険物質にさらさないようにします。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物質 の危険性。化学物質の流出が発生した場合、特定の指示に関して製品安全性 データシートを確認します。イオン源付近にこぼれたものを掃除する前に、 システムがStandbyモードであることを確認してください。適切な個人用防 護具と吸着布を使用して、流出を食い止め、現地規制に従い処分してください。

必要な物	必要な物	
· 移動相	溶媒: アセトニトリル: 水 (70:30) 溶液	
・テスト	溶液:	
4500 (PN	0、5500、5500+、6500、および 6500+ システムの場合、SCIEX標準化学物質キット 4406127) 同梱の事前希釈 0.0167 pmol/μL レセルビン溶液を使用します。	
· 3200 希釈	0 および 3500 システムの場合、SCIEX 標準化学物質キット (PN 4406127) 同梱の事前 R 0.167 pmol/μL レセルピン溶液を使用します。	
・ Tripl の0.	leTOF [®] システムの場合、SCIEX TripleTOF [®] システム化学物質キット (PN 4456736) 同梱 .167 pmol/μL レセルピン溶液と標準希釈からテスト溶液を準備します。	
ボルテ	ックスミキサーが必要です。	
・ HPLCポ	シプ(移動相用)	
・5µLル・ のオー	ープ付マニュアルインジェクタ (8125 レオダインまたは相当) または 5 μL 注入仕様 ·トサンプラー	
・ 外径 (o	o.d.) 1/16-インチ、内径 (i.d.) 0.005-インチのPEEK チューブ	
・プロー	ブがインストールされたイオン源	
• 250 µL ·	~ 1000 μL のシリンジ	
・パウダ	ーフリーグローブ(ニトリルまたはネオプレンが推奨されます)	
・ 安全メ	ガネ	
・白衣		

注: すべてのテスト溶液は冷蔵保存しておかなければなりません。冷蔵庫から48時間以上 外放置された場合、処分して新しい溶液を使用します。

注意: 誤った結果をもたらす可能性。有効期限切れの溶液を使用しないでください。

テストの準備

- 新しいイオン源をインストールした場合、質量分析装置が既存のイオン源を使用したときの仕様で動作していることを確認します。
- ・ イオン源を質量分析装置にインストールします。

- ・イオン源が完全に最適化されているかを確認します。イオン源については、*『オペレータ ガイド』*を参照してください。
- ・化学溶液または溶媒を取り扱う前に確認が必要な注意事項は、適用する安全性データシー トをすべて参照してください。
- テストするプローブをインストールします。
- 5 µL ループを装備したマニュアルインジェクタ経由で、イオン源の接地継手部をポンプに、あるいはオートサンプラーに接続します。

図 2-1を参照してください。

図 2-1 LC ポンプ構成

項目	説明
1	ポンプのために流量注入口
2	インジェクタまたはオートサンプラー
3	イオン源

トリプル四重極システムおよび QTRAP[®] システム でのイオン源のテスト

TurbolonSpray[®]プローブのテスト

警告!高温面の危険。メンテナンス手順を開始する前に、イオン源を少なく とも 30 分そのままにして熱を下げます。操作中、イオン源の表面が熱くな ります。

注意: システムに損傷を与える恐れ。イオン源が適正温度に達するまで、他の溶媒流量を 導入しないでください。

イオン源のインストールまたは最適化に関する詳細は、イオン源『オペレータガイド』を参照してください。

- 1. 移動相流量 0.2 mL/分になるよう HPLC ポンプを構成します。
- 2. Analyst[®]ソフトウェアの **Tune and Calibrate** モードで、**Manual Tune**をダブルクリックします。
- 3. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

パラメータ	值	
MS パラメータ		
Scan Mode	MRM	
Q1	609.3 (または最適化されたとおり)	
Q3	195.1 (または最適化されたとおり)	
Scan Time (seconds)	0.200	
Duration (minutes)	10	
Source/Gas パラメータ		
Curtain Gas [™] flow (CUR)	20(または最適化されたとおり)	
Temperature (TEM)	700(または最適化されたとおり)	
Ion Source Gas 1 (GS1)	60(または最適化されたとおり)	
Ion Source Gas 2 (GS2)	70(または最適化されたとおり)	
lonSpray [™] Voltage (IS)	4500(または最適化されたとおり)	

表 2-1 メソッドパラメータ

表 2-1 メソッドパラメータ (続き)

パラメータ	值
Compound パラメータ	
Declustering Potential (DP)	100(または最適化されたとおり)
Collision Energy (CE)	45(または最適化されたとおり)
Collision Exit Potential (CXP)	最適化されたとおり

4. Start をクリックしてメソッドを実行します。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物 質の危険性。電極がプローブチップよりも先まで突出して、有害蒸気がイ オン源から排出されないようにします。電極は、プローブ内部に配置して はなりません。

注意 : システムに損傷を与える恐れ。Curtain Gas[™]流量にできる限り高値を使用しま す。

- 5. 最大シグナル強度と安定性を確保するよう次の項目を最適化している間に、レセルピン溶 液 5 µLを 数回注入します。
 - ・ プローブの垂直および水平ポジション
 - ・ エレクトロード先端拡張部
 - ・ CUR、TEM、GS1、GS2、および IS
- 6. Acquire をクリックしてデータ収集を開始します。
- 7. レセルピン溶液 5 µL を 3 回注入します。

ヒント! 5 µL ループを、30 µL~40 µLの溶液で満たすことを推奨しています。

- 8. 結果を印刷します。
- 9. イオンの3つの強度を平均化して、データログに結果を記録します。
- 10. 平均強度が許容範囲であるか確認します。 データログ: Turbo V[™] イオン源を参照してくだ さい。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。 11. テスト完了度、LC ポンプを停止し、TEM を 0 に設定してプローブの熱を下げます。

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

APCI プローブのテスト

警告!高温面の危険。メンテナンス手順を開始する前に、イオン源を少なく とも 30 分そのままにして熱を下げます。操作中、イオン源の表面が熱くな ります。

注意: システムに損傷を与える恐れ。イオン源が適正温度に達するまで、他の溶媒流量を 導入しないでください。

イオン源のインストールまたは最適化に関する詳細は、イオン源『オペレータガイド』を参照してください。

- 1. 移動相流量1 mL/分になるよう HPLC ポンプを構成します。
- Analyst[®]ソフトウェアの Tune and Calibrate モードで、Manual Tuneをダブルクリックします。
- 3. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

表 2-2 メソッドパラメータ

パラメータ	値	
Scan Mode	MRM	
Q1	609.3 (または最適化されたとおり)	
Q3	195.1 (または最適化されたとおり)	
Scan Time (seconds)	0.200	
Duration (minutes)	10	
Source/Gas パラメータ		
Curtain Gas [™] flow (CUR)	20(または最適化されたとおり)	
CAD Gas	9(または最適化されたとおり)	
Nebulizer Current (NC)	3(または最適化されたとおり)	
Temperature (TEM)	425	
lon Source Gas 1 (GS1)	70(または最適化されたとおり)	
Compound パラメータ		
Declustering Potential (DP)	100(または最適化されたとおり)	

表 2-2 メソッドパラメータ (続き)

パラメータ	值
Collision Energy (CE)	45(または最適化されたとおり)
Collision Exit Potential (CXP)	最適化されたとおり

4. Start をクリックしてメソッドを実行します。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物 質の危険性。電極がプローブチップよりも先まで突出して、有害蒸気がイ オン源から排出されないようにします。電極は、プローブ内部に配置して はなりません。

注意: システムに損傷を与える恐れ。Curtain Gas[™]流量にできる限り高値を使用しま す。

- 5. 最大シグナル強度と安定性を確保するよう次の項目を最適化している間に、レセルピン溶 液 5 µLを 数回注入します。
 - ・ プローブの垂直および水平ポジション
 - ・ エレクトロード先端拡張部
 - ・ CUR、GS1 および NC
- 6. Acquire をクリックしてデータ収集を開始します。
- 7. レセルピン溶液 5 μL を 3 回注入します。

ヒント! 5 µL ループを、30 µL~40 µLの溶液で満たすことを推奨しています。

- 8. 結果を印刷します。
- 9. イオンの3つの強度を平均化して、データログに結果を記録します。
- 10. 平均強度が許容範囲であるか確認します。 データログ: Turbo V[™] イオン源を参照してくだ さい。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。 11. テスト完了度、LC ポンプを停止し、TEM を 0 に設定してプローブの熱を下げます。

TripleTOF[®] システムでのイオン源のテスト

注: 仕様は、TripleTOF[®] 4600 システムに対応していません。TripleTOF[®] システムの推奨イオン源は、DuoSpray[™]イオン源です。

テスト溶液の準備

- 1. 0.167 pmol/µL レセルピン溶液 100 µL と標準希釈液 900 µL を混ぜます。
- 2. ボルテックスミキサーで 30 秒間混ぜます。

このステップで、0.0167 pmol/µL レセルピン溶液が作られます。

TurbolonSpray[®]プローブのテスト

警告! 高温面の危険。メンテナンス手順を開始する前に、イオン源を少なく とも 30 分そのままにして熱を下げます。操作中、イオン源の表面が熱くな ります。

注意: システムに損傷を与える恐れ。イオン源が適正温度に達するまで、他の溶媒流量を 導入しないでください。

イオン源のインストールまたは最適化に関する詳細は、イオン源『オペレータガイド』を参照してください。

- 1. 移動相流量 0.2 mL/分になるよう HPLC ポンプを構成します。
- 2. Analyst[®] TFソフトウェアの **Tune and Calibrate** モードで、**Manual Tune**をダブルクリック します。
- 3. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

パラメータ	值		
MS パラメータ			
Scan Mode	プロダクトイオン		
High Sensitivity (5600/5600+ および 6600/6600+ システムのみ)	オン		
Product Of	609.2807		
TOF Masses (Da)	150~650		

表 2-3 メソッドパラメータ

表 2-3 メソッドパラメータ (続き)

パラメータ		
Accumulation time (seconds)	0.200	
Duration (minutes) 10		
Source/Gas パラメータ		
Curtain Gas [™] flow (CUR)	20	
Temperature (TEM)	700	
Ion Source Gas 1 (GS1)	50	
Ion Source Gas 2 (GS2)	50	
IonSpray Voltage Floating (ISVF)	5000	
Compound パラメータ		
Declustering Potential (DP)	100	
Collision Energy (CE) 45		
Resolution パラメータ		
Q1 Resolution	単位	

4. Start をクリックしてメソッドを実行します。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物 質の危険性。電極がプローブチップよりも先まで突出して、有害蒸気がイ オン源から排出されないようにします。電極は、プローブ内部に配置して はなりません。

注意: システムに損傷を与える恐れ。Curtain Gas[™]流量にできる限り高値を使用しま す。

- 5. 最大シグナル強度と安定性を確保するよう次の項目を最適化している間に、0.0167 pmol/µL レセルピン溶液 5 µLを数回注入します。
 - ・ プローブの垂直および水平ポジション
 - ・ エレクトロード先端拡張部
 - ・ CUR、TEM、GS1、GS2 および ISVF
- 6. Acquire をクリックしてデータ収集を開始します。
- 7. レセルピン溶液 5 µLを 3 回注入します。

ヒント! 5 µL ループを、30 µL~40 µLの溶液で満たすことを推奨しています。

8. 結果を印刷します。

- 9. イオンの3つの強度を平均化して、データログに結果を記録します。
- 10. 平均強度が許容範囲であるか確認します。 データログ: Turbo V[™] イオン源を参照してくだ さい。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。 11. テスト完了度、LC ポンプを停止し、TEM を0に設定してプローブの熱を下げます。

APCI プローブのテスト

警告! 高温面の危険。メンテナンス手順を開始する前に、イオン源を少なく とも 30 分そのままにして熱を下げます。操作中、イオン源の表面が熱くな ります。

注意: システムに損傷を与える恐れ。イオン源が適正温度に達するまで、他の溶媒流量を 導入しないでください。

イオン源のインストールまたは最適化に関する詳細は、イオン源『オペレータガイド』を参照してください。

- 1. 移動相流量 1 mL/分になるよう HPLC ポンプを構成します。
- 2. Analyst[®] TFソフトウェアの Tune and Calibrate モードで、Manual Tuneをダブルクリック します。
- 3. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

表 2-4 メソッドパラメータ

パラメータ	值	
MS パラメータ		
Scan Mode	プロダクトイオン	
High Sensitivity (5600/5600+ および 6600/6600+ システムのみ)	オン	
Product Of	609.2807	
TOF Masses (Da)	150~650	
Accumulation time (seconds)	0.200	
Duration (minutes)	10	

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C 表 2-4 メソッドパラメータ (続き)

パラメータ	値	
Source/Gas パラメータ		
Curtain Gas [™] flow (CUR)	20(または最適化されたとおり)	
Temperature (TEM)	425	
Ion Source Gas 1 (GS1)	70(または最適化されたとおり)	
Nebulizer Current (NC)	3(または最適化されたとおり)	
Compound パラメータ		
Declustering Potential (DP)	100	
Collision Energy (CE)	45	
Resolution パラメータ		
Q1 Resolution	 単位	

4. Start をクリックしてメソッドを実行します。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物 質の危険性。電極がプローブチップよりも先まで突出して、有害蒸気がイ オン源から排出されないようにします。電極は、プローブ内部に配置して はなりません。

注意: システムに損傷を与える恐れ。Curtain Gas[™]流量にできる限り高値を使用しま す。

- 5. 最大シグナル強度と安定性を確保するよう次の項目を最適化している間に、レセルピン溶 液 5 µLを 数回注入します。
 - ・ プローブの垂直および水平ポジション
 - ・ エレクトロード先端拡張部
 - ・ CUR、GS1 および NC
- 6. Acquire をクリックしてデータ収集を開始します。
- 7. レセルピン溶液 5 μL を 3 回注入します。

ヒント! 5 µL ループを、30 µL~40 µLの溶液で満たすことを推奨しています。

8. 結果を印刷します。

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

- 9. イオンの3つの強度を平均化して、データログに結果を記録します。
- 10. 平均強度が許容範囲であるか確認します。 データログ: Turbo V[™] イオン源を参照してくだ さい。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。 11. テスト完了度、LC ポンプを停止し、TEM を0に設定してプローブの熱を下げます。 次の条件のいずれかでテストを実行します。

- ・ 新しいイオン源をインストールした場合。
- ・ イオン源の大規模メンテナンス後。
- ・ プロジェクトの開始前や標準動作手順の一部としてイオン源の性能の評価が必要なとき。

警告!イオン化放射線障害の危険性、生物学的危険、および有害化学物質の 危険性。イオン源で使用する有害物質や障害性物質の適正使用、汚染、排気 に関する知識や訓練を受けている場合に限り、イオン源を使用します。

警告! 尖った部分により怪我をする危険性、イオン化放射の危険性、生物学 的危険性、あるいは有害化学物質の危険性。イオン源のウィンドウがひび割 れたり破損したりした場合、イオン源の使用を中止して、SCIEXフィールド サービスエンジニア(FSE)にお問い合わせください。装置に入り込んだ有 害物質や障害性物質は、イオン源排気出力に混入します。装置からの排気は 室外に換気してください。認定を受けた検査室安全手順に従い、鋭利物を処 分します。

警告! 有害化学物質の危険性があります。白衣、手袋、保護メガネなどの身体保護 具を着用して、皮膚や目を危険物質にさらさないようにします。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物質 の危険性。化学物質の流出が発生した場合、特定の指示に関して製品安全性 データシートを確認します。イオン源付近にこぼれたものを掃除する前に、 システムがStandbyモードであることを確認してください。適切な個人用防 護具と吸着布を使用して、流出を食い止め、現地規制に従い処分してください。

必要な物		
•	移動相溶媒: アセトニトリル: 水 (70:30) 溶液	
	テスト溶液:	
	· 4500、5500、5500+、6500、および 6500+ システムの場合、SCIEX標準化学物質キット (PN 4406127) 同梱の事前希釈 0.0167 pmol/µL レセルビン溶液を使用します。	
	· 3200 および 3500 システムの場合、SCIEX 標準化学物質キット (PN 4406127) 同梱の事前 希釈 0.167 pmol/µL レセルピン溶液を使用します。	
	 TripleTOF[®] システムの場合、SCIEX TripleTOF[®] システム化学物質キット (PN 4456736) 同梱の0.167 pmol/µL レセルピン溶液と標準希釈からテスト溶液を準備します。 	
	ボルテックスミキサーが必要です。	
	HPLCポンプ(移動相用)	
•	5 μL ループ付マニュアルインジェクタ (8125 レオダインまたは相当) または 5 μL 注入仕様 のオートサンプラー	
	外径 (o.d.) 1/16-インチ、内径 (i.d.) 0.005-インチのPEEK チューブ	
	プローブがインストールされたイオン源	
	250 μL ~ 1000 μL のシリンジ	
	パウダーフリーグローブ(ニトリルまたはネオプレンが推奨されます)	
.	安全メガネ	
•	白衣	

注: すべてのテスト溶液は冷蔵保存しておかなければなりません。冷蔵庫から48時間以上 外放置された場合、処分して新しい溶液を使用します。

注意: 誤った結果をもたらす可能性。有効期限切れの溶液を使用しないでください。

テストの準備

 警告!感電の危険性。操作中、イオン源に印加された高電圧に触れないよう にします。サンプルチューブやイオン源付近の他の装置を調整する前に、シ ステムをStandbyモードにします。

- 新しいイオン源をインストールした場合、質量分析装置が既存のイオン源を使用したときの仕様で動作していることを確認します。
- ・ イオン源を質量分析装置にインストールします。

- ・イオン源が完全に最適化されているかを確認します。イオン源については、『オペレータ ガイド』を参照してください。
- ・化学溶液または溶媒を取り扱う前に確認が必要な注意事項は、適用する安全性データシー トをすべて参照してください。
- 5 µL ループを装備したマニュアルインジェクタ経由で、イオン源の接地継手部をポンプに、あるいはオートサンプラーに接続します。

図 3-1および図 3-2を参照してください。

図 3-1 LC ポンプ構成: TurbolonSpray[®]プローブ

図 3-2 ポンプ構成: APCI プローブ

項目	説明
1	LC ポンプ
2	インジェクタまたはオートサンプラー
3	イオン源

TripleTOF[®] システム

テスト溶液の準備

1. 0.167 pmol/µL レセルピン溶液 100 µL と標準希釈液 900 µL を混ぜます。

2. ボルテックスミキサーで 30 秒間混ぜます。

このステップで、0.0167 pmol/µL レセルピン溶液が作られます。

TurbolonSpray[®]プローブのテスト

警告!高温面の危険。メンテナンス手順を開始する前に、イオン源を少なく とも 30 分そのままにして熱を下げます。操作中、イオン源の表面が熱くな ります。

注意: システムに損傷を与える恐れ。イオン源が適正温度に達するまで、他の溶媒流量を 導入しないでください。

イオン源のインストールまたは最適化に関する詳細は、イオン源『オペレータガイド』を参照してください。

- 1. 移動相流量 0.2 mL/分になるよう HPLC ポンプを構成します。
- 2. Analyst[®] TFソフトウェアを**Tune and Calibrate**モードにして、**Manual Tune**をダブルクリックします。
- 3. 次の表に示すとおりにプローブポジションを調整します。

表 3-1 プローブポジション

プローブ	垂直ポジション	水平ポジション	エレクトロード先端 拡張部
APCI	5	-	0.5 mm
TurbolonSpray	5	5	0.5 mm

4. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

表 3-2 メソッドパラメータ

パラメータ	值	
MS パラメータ		
Scan Mode	プロダクトイオン	
High Sensitivity (5600/5600+ および 6600/6600+ システムのみ)	オン	
Product Of	609.2807	
TOF Masses (Da)	150~650	
Accumulation time (seconds)	0.200	
Duration (minutes)	10	

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C 表 3-2 メソッドパラメータ (続き)

パラメータ	值	
Source/Gas パラメータ		
Curtain Gas [™] flow (CUR)	20	
Temperature (TEM)	650	
lon Source Gas 1 (GS1)	50	
lon Source Gas 2 (GS2)	70	
IonSpray Voltage Floating (ISVF)	5500	
Compound パラメータ		
Declustering Potential (DP)	100	
Collision Energy (CE)	45	
Resolution パラメータ		
Q1 Resolution	単位	

5. Start をクリックしてメソッドを実行します。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物 質の危険性。電極がプローブチップよりも先まで突出して、有害蒸気がイ オン源から排出されないようにします。電極は、プローブ内部に配置して はなりません。

注意: システムに損傷を与える恐れ。Curtain Gas[™]流量にできる限り高値を使用しま す。

- 6. 最大シグナル強度と安定性を確保するよう次の項目を最適化している間に、0.0167 pmol/μL レセルピン溶液 5 μLを数回注入します。
 - ・ プローブの垂直および水平ポジション
 - ・ エレクトロード先端拡張部
 - ・ CUR、TEM、GS1、GS2 および ISVF
- 7. Acquire をクリックしてデータ収集を開始します。
- 8. レセルピン溶液 5 μL を 3 回注入します。

ヒント! 5 µL ループを、30 µL~40 µLの溶液で満たすことを推奨しています。

 測定後、それぞれの注入量に対して、m/z 195.0652 (または、キャリブレーション時の観測 質量)の中央に配置された 50 mDa ウィンドウの抽出イオンクロマトグラム (XIC) を生成し ます。それぞれの注入量の強度 (ピーク高さ)を記録します。

10. 結果を印刷します。

結果は次の図のようになります。

図 3-3 セントロイド質量 m/z 195 周辺の 50 mDa ウィンドウ用 XIC

- 11. イオンの3つの強度を平均化して、データログに結果を記録します。
- 12. 平均強度が許容範囲であるか確認します。 データログ: DuoSpray[™] イオン源を参照してく ださい。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。 13. テスト完了度、LC ポンプを停止し、TEM を0に設定してプローブの熱を下げます。

APCI プローブのテスト

警告!高温面の危険。メンテナンス手順を開始する前に、イオン源を少なく とも 30 分そのままにして熱を下げます。操作中、イオン源の表面が熱くな ります。

注意: システムに損傷を与える恐れ。イオン源が適正温度に達するまで、他の溶媒流量を 導入しないでください。

イオン源のインストールまたは最適化に関する詳細は、イオン源『オペレータガイド』を参 照してください。

1. 移動相流量 1 mL/分になるよう HPLC ポンプを構成します。

- 2. Analyst[®] TFソフトウェアを**Tune and Calibrate**モードにして、**Manual Tune**をダブルクリックします。
- 3. 次の表に示すとおりにプローブポジションを調整します。

表 3-3 プローブポジション

プローブ	垂直ポジション	水平ポジション	エレクトロード先端 拡張部
APCI	5	-	0.5 mm
TurbolonSpray	5	5	0.5 mm

4. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

表 3-4 メソッドパラメータ

パラメータ	值	
MS パラメータ		
Scan Mode	プロダクトイオン	
High Sensitivity (5600/5600+ および 6600/6600+ システムのみ)	オン	
Product Of	609.2807	
TOF Masses (Da) 150~650		
Accumulation time (seconds) 0.200		
Duration (minutes) 10		
Source/Gas パラメータ		
Curtain Gas [™] flow (CUR)	20	
Temperature (TEM)	650	
Ion Source Gas 2 (GS2) 70		
IonSpray Voltage Floating (ISVF)	5500	
Compound パラメータ		
Declustering Potential (DP)	100	
Collision Energy (CE) 45		
Resolution パラメータ		
Q1 Resolution	 単位	

5. Start をクリックしてメソッドを実行します。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物 質の危険性。電極がプローブチップよりも先まで突出して、有害蒸気がイ オン源から排出されないようにします。電極は、プローブ内部に配置して はなりません。

注意: システムに損傷を与える恐れ。Curtain Gas[™]流量にできる限り高値を使用します。

- 6. 最大シグナル強度と安定性を確保するよう次の項目を最適化している間に、0.0167 pmol/μL レセルピン溶液 5 μLを数回注入します。
 - プローブの垂直ポジション
 - ・ エレクトロード先端拡張部
 - ・ CUR、TEM、GS2 および ISVF
- 7. Acquire をクリックしてデータ収集を開始します。
- 8. レセルピン溶液 5 μL を 3 回注入します。

ヒント! 5 µL ループを、30 µL~40 µLの溶液で満たすことを推奨しています。

- 9. 測定後、それぞれの注入量に対して、m/z 195.0652 (または、キャリブレーション時の観測 質量)の中央に配置された 50 mDa ウィンドウの抽出イオンクロマトグラム (XIC) を生成し ます。それぞれの注入量の強度 (ピーク高さ) を記録します。
- 10. 結果を印刷します。

結果は次の図のようになります。

図 3-4 セントロイド質量 m/z 195 周辺の 50 mDa ウィンドウ用 XIC

11. 平均強度が許容範囲であるか確認します。 データログ: DuoSpray[™] イオン源を参照してく ださい。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。 12. テスト完了度、LC ポンプを停止し、TEM を 0 に設定してプローブの熱を下げます。

トリプル四重極システムおよび QTRAP[®] システム でのイオン源のテスト

TurbolonSpray[®]プローブ

警告! 高温面の危険。メンテナンス手順を開始する前に、イオン源を少なく とも 30 分そのままにして熱を下げます。操作中、イオン源の表面が熱くな ります。

注意: システムに損傷を与える恐れ。イオン源が適正温度に達するまで、他の溶媒流量を 導入しないでください。

イオン源のインストールまたは最適化に関する詳細は、イオン源『オペレータガイド』を参照してください。

- 1. 移動相流量 0.2 mL/分になるよう HPLC ポンプを構成します。
- 2. Analyst[®]ソフトウェアの **Tune and Calibrate** モードで、**Manual Tune**をダブルクリックし ます。

- 3. Source/Gas タブで、リストから TIS を選択します。
- 4. 次の表に示すとおりにプローブポジションを調整します。

表 3-5 プローブポジション

プローブ	垂直ポジション	水平ポジション	エレクトロード先端 拡張部
ΑΡΟΙ	5	_	0.5 mm
TurbolonSpray	5	5	0.5 mm

5. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

表 3-6 メソッドパラメータ

パラメータ	值		
MS パラメータ	プロダクトイオン		
Scan Mode	MRM		
Q1	609.3		
Q3	195.1		
Scan Time (ms)	200		
Duration (minutes)	10		
Source/Gas パラメータ			
Curtain Gas [™] flow (CUR)	20(または最適化されたとおり)		
IonSpray Voltage (IS)	4500(または最適化されたとおり)		
Temperature (TEM)	700(または最適化されたとおり)		
Ion Source Gas 1 (GS1)	60(または最適化されたとおり)		
lon Source Gas 2 (GS2)	70(または最適化されたとおり)		
Compound パラメータ			
Declustering Potential (DP)	100(または最適化されたとおり)		
Collision Energy (CE)	45(または最適化されたとおり)		
Collision Exit Potential (CXP)	最適化されたとおり		

6. Start をクリックしてメソッドを実行します。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物 質の危険性。電極がプローブチップよりも先まで突出して、有害蒸気がイ オン源から排出されないようにします。電極は、プローブ内部に配置して はなりません。

注意: システムに損傷を与える恐れ。Curtain Gas[™]流量にできる限り高値を使用します。

- 7. 最大シグナル強度と安定性を確保するよう次の項目を最適化している間に、レセルピン溶液 5 µLを数回注入します。
 - ・ プローブの垂直および水平ポジション
 - ・ エレクトロード先端拡張部
 - ・ CUR、TEM、GS1、GS2、および IS
- 8. Acquire をクリックしてデータ収集を開始します。
- 9. セントロイド質量 m/z 195 周辺の 50 mDa ウィンドウをモニターしている間に、10 pg/µL テ スト溶液 5 µL を回注入します。

ヒント! 5 µL ループを、30 µL~40 µLの溶液で満たすことを推奨しています。

10. 結果を印刷します。

結果は次の図のようになります。

図 3-5 レセルピン

11. イオンの3つの強度を平均化して、データログに結果を記録します。
12. 平均強度が許容範囲であるか確認します。 データログ: DuoSpray[™] イオン源を参照してく ださい。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。 13. テスト完了度、LC ポンプを停止し、TEM を0に設定してプローブの熱を下げます。

APCI プローブのテスト

警告!高温面の危険。メンテナンス手順を開始する前に、イオン源を少なく とも 30 分そのままにして熱を下げます。操作中、イオン源の表面が熱くな ります。

注意: システムに損傷を与える恐れ。イオン源が適正温度に達するまで、他の溶媒流量を 導入しないでください。

イオン源のインストールまたは最適化に関する詳細は、イオン源『オペレータガイド』を参 照してください。

- 1. 移動相流量 1 mL/分になるよう HPLC ポンプを構成します。
- 2. Analyst[®]ソフトウェアの **Tune and Calibrate** モードで、**Manual Tune**をダブルクリックし ます。
- 3. 次の表に示すとおりにプローブポジションを調整します。

表 3-7 プローブポジション

プローブ	垂直ポジション	水平ポジション	エレクトロード先端 拡張部
APCI	5	-	0.5 mm
TurbolonSpray	5	5	0.5 mm

4. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

表 3-8 メソッドパラメータ

パラメータ	值
MS パラメータ	
Scan Mode	MRM
Q1	609.3
Q3	195.1

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C 表 3-8 メソッドパラメータ (続き)

パラメータ	値			
Scan Time (ms)	200			
Duration (minutes)	10			
Source/Gas パラメータ				
Curtain Gas [™] flow (CUR)	20(または最適化されたとおり)			
Nebulizer Current (NC)	3(または最適化されたとおり)			
Temperature (TEM)	350(または最適化されたとおり)			
Ion Source Gas 2 (GS2)	70(または最適化されたとおり)			
Compound パラメータ				
Declustering Potential (DP)	100(または最適化されたとおり)			
Collision Energy (CE)	45(または最適化されたとおり)			
Collision Exit Potential (CXP)	最適化されたとおり			

5. Start をクリックしてメソッドを実行します。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物 質の危険性。電極がプローブチップよりも先まで突出して、有害蒸気がイ オン源から排出されないようにします。電極は、プローブ内部に配置して はなりません。

注意: システムに損傷を与える恐れ。Curtain Gas[™]流量にできる限り高値を使用しま す。

- 6. 最大シグナル強度と安定性を確保するよう次の項目を最適化している間に、レセルピン溶液 5 μLを数回注入します。
 - ・ プローブの垂直および水平ポジション
 - ・ エレクトロード先端拡張部
 - ・ CUR、GS1 および NC
- 7. Acquire をクリックしてデータ収集を開始します。
- レセルピン溶液 5 μL を 3 回注入します。

ヒント! 5 µL ループを、30 µL~40 µLの溶液で満たすことを推奨しています。

- 測定後、それぞれの注入量に対して、m/z 195.0652 (または、キャリブレーション時の観測 質量)の中央に配置された 50 mDa ウィンドウの抽出イオンクロマトグラム (XIC)を生成し ます。それぞれの注入量の強度 (ピーク高さ)を記録します。
- 10. 結果を印刷します。
- 11. 平均強度が許容範囲であるか確認します。 データログ: DuoSpray[™] イオン源を参照してく ださい。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。 12. テスト完了度、LC ポンプを停止し、TEM を0に設定してプローブの熱を下げます。 <mark>OptiFlow[™] Turbo</mark> V イオン源テス ト

次の条件のいずれかでテストを実行します。

- ・ 新しいイオン源をインストールした場合。
- ・ イオン源の大規模メンテナンス後。
- ・ プロジェクトの開始前や標準動作手順の一部としてイオン源の性能の評価が必要なとき。

警告!イオン化放射線障害の危険性、生物学的危険、および有害化学物質の 危険性。イオン源で使用する有害物質や障害性物質の適正使用、汚染、排気 に関する知識や訓練を受けている場合に限り、イオン源を使用します。

警告! 尖った部分により怪我をする危険性、イオン化放射の危険性、生物学 的危険性、あるいは有害化学物質の危険性。イオン源のウィンドウがひび割 れたり破損したりした場合、イオン源の使用を中止して、SCIEXフィールド サービスエンジニア(FSE)にお問い合わせください。装置に入り込んだ有 害物質や障害性物質は、イオン源排気出力に混入します。装置からの排気は 室外に換気してください。認定を受けた検査室安全手順に従い、鋭利物を処 分します。

警告! 有害化学物質の危険性があります。白衣、手袋、保護メガネなどの身体保護
具を着用して、皮膚や目を危険物質にさらさないようにします。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物質 の危険性。化学物質の流出が発生した場合、特定の指示に関して製品安全性 データシートを確認します。イオン源付近にこぼれたものを掃除する前に、 システムがStandbyモードであることを確認してください。適切な個人用防 護具と吸着布を使用して、流出を食い止め、現地規制に従い処分してください。

注: すべてのテスト溶液は冷蔵保存しておかなければなりません。冷蔵庫から48時間以上 外放置された場合、処分して新しい溶液を使用します。

注意: 誤った結果をもたらす可能性。有効期限切れの溶液を使用しないでください。

テストの準備

警告!感電の危険性。操作中、イオン源に印加された高電圧に触れないよう
にします。サンプルチューブやイオン源付近の他の装置を調整する前に、システムをStandbyモードにします。

- 新しいイオン源をインストールした場合、質量分析装置が既存のイオン源を使用したときの仕様で動作していることを確認します。
- ・ イオン源を質量分析装置にインストールします。
- ・イオン源が完全に最適化されているかを確認します。イオン源については、『オペレータ ガイド』を参照してください。
- 化学溶液または溶媒を取り扱う前に確認が必要な注意事項は、適用する安全性データシートをすべて参照してください。
- テストするプローブをインストールします。

トリプル四重極システムおよび QTRAP[®] システム でのイオン源のテスト

SteadySpray プローブのテスト

警告!高温面の危険。メンテナンス手順を開始する前に、イオン源を少なく とも60分そのままにして熱を下げます。操作中、イオン源の表面が熱くなり ます。

注意 : システムに損傷を与える恐れ。イオン源が適正温度に達するまで、他の溶媒流量を 導入しないでください。

注: OptiFlow[™] Turbo V イオン源は、5500、5500+、6500、および 6500+ シリーズシステムの みで使用できます。

注: このテストは、MICRO プローブおよび低マイクロ流電極専用です。

イオン源のインストールまたは最適化に関する詳細は、イオン源『オペレータガイド』を参 照してください。

- 1. レセルピン溶液を流量 5 µ L/分で注入します。
- Analyst[®]ソフトウェアの Tune and Calibrate モードで、Manual Tuneをダブルクリックします。
- 3. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

表 4-1 メソッドパラメータ

パラメータ	値			
MS パラメータ				
Scan Mode	MRM			
Q1	609.3 (または最適化されたとおり)			
Q3	195.1 (または最適化されたとおり)			
Scan Time (seconds)	0.200			
Duration (minutes)	10			
Source/Gas パラメータ				
Curtain Gas [™] flow (CUR)	20(または最適化されたとおり)			

表 4-1 メソッドパラメータ (続き)

パラメータ	値		
Temperature (TEM)	350 (最適化された状態、最高 350 °C)		
lon Source Gas 1 (GS1)	25(または最適化されたとおり)		
lon Source Gas 2 (GS2)	65(または最適化されたとおり)		
lonSpray™	4500 (最大 4500)		
Compound パラメータ			
Declustering Potential (DP)	100(または最適化されたとおり)		
Collision Energy (CE)	45(または最適化されたとおり)		
Syringe Pump Method パラメータ			
Flow rate (μ L/min)	5		
Syringe Size (μ L)	250 μL~1000 μL		

4. Start をクリックしてメソッドを実行します。

注意: システムに損傷を与える恐れ。Curtain Gas[™]流量にできる限り高値を使用します。

- 5. CUR、TEM、GS1、GS2、および IS を最適化して最大の信号強度と安定性を達成しながら、 レセルピン溶液を少なくとも5分間、流量5µL/分で注入します。
- 6. Acquire をクリックしてデータ収集を開始します。
- 7. 結果を印刷します。
- 8. データログに結果を記録します。
- 9. イオンの3つの強度を平均化して、データログに結果を記録します。
- 10. 平均強度が許容範囲であるか確認します。 データログ: OptiFlow[™] Turbo V イオン源を参照 してください。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。

TripleTOF[®] システムでのイオン源のテスト

注: OptiFlow[™] Turbo V イオン源は、TripleTOF[®] 6600+ システム、および OptiFlow[™] Turbo V イオン源を使用するようにアップグレードされた TripleTOF[®] 6600 システムのみで使用できます。

SteadySpray プローブのテスト

警告!高温面の危険。メンテナンス手順を開始する前に、イオン源を少なく とも60分そのままにして熱を下げます。操作中、イオン源の表面が熱くなり ます。

注意: システムに損傷を与える恐れ。イオン源が適正温度に達するまで、他の溶媒流量を 導入しないでください。

イオン源のインストールまたは最適化に関する詳細は、イオン源『オペレータガイド』を参照してください。

注: このテストは、MICRO プローブおよび低マイクロ流電極専用です。

- 1. レセルピン溶液を流量 5 µ L/分で注入します。
- 2. Analyst[®] TFソフトウェアを**Tune and Calibrate**モードにして、**Manual Tune**をダブルクリックします。
- 3. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

表 4-2 メソッドパラメータ

パラメータ	值			
Scan Mode	プロダクトイオン			
High Sensitivity	オン			
Product Of	609.2807			
TOF Masses (Da)	150~650			
Accumulation time (seconds)	0.200			
Duration (minutes)	10			
Source/Gas パラメータ				
Curtain Gas [™] flow (CUR)	20(または最適化されたとおり)			
Temperature (TEM)	350 (最適化された状態、最高 350 °C)			
Ion Source Gas 1 (GS1)	25(または最適化されたとおり)			
lon Source Gas 2 (GS2)	65(または最適化されたとおり)			
IonSpray Voltage Floating (ISVF)	4500 (最大 4500)			

表 4-2 メソッドパラメータ (続き)

パラメータ			
Compound パラメータ			
Declustering Potential (DP)	100(または最適化されたとおり)		
Collision Energy (CE)	45(または最適化されたとおり)		
Resolution パラメータ			
Q1 Resolution	単位		
Syringe Pump Method パラメータ			
Flow rate (μ L/min)	5		
Syringe Size (μ L)	250 μL~1000 μL		

4. Start をクリックしてメソッドを実行します。

注意: システムに損傷を与える恐れ。Curtain Gas[™]流量にできる限り高値を使用しま す。

- 5. CUR、TEM、GS1、GS2、およびISVFを最適化して最大の信号強度と安定性を達成しながら、 レセルピン溶液 0.167 pmol/ *μ* L を注入します。
- 6. Acquire をクリックして、少なくとも5分間、データの収集を始めます。
- 7. 結果を印刷します。
- 8. 平均強度が許容範囲であるか確認します。 データログ: Turbo V[™] イオン源を参照してくだ さい。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。

このセクションのテストは、NanoSpray III イオン源用ではありません。SCIEX 質量分析装置用 DPV-450 Digital PicoView[®] Nanospray イオン源のテストは、New Objective 社の*『インストールマ* ニュアル』を参照してください。

次の条件のいずれかでテストを実行します。

- 新しいイオン源をインストールした場合。
- ・ イオン源の大規模メンテナンス後。
- ・ プロジェクトの開始前や標準動作手順の一部としてイオン源の性能の評価が必要なとき。

警告!イオン化放射線障害の危険性、生物学的危険、および有害化学物質の 危険性。イオン源で使用する有害物質や障害性物質の適正使用、汚染、排気 に関する知識や訓練を受けている場合に限り、イオン源を使用します。

警告!感電の危険性。NanoSpray[®]イオン源の操作は、照明器、カメラ、停止、カバーが適切に取り付けられていない場合は絶対に行わないでください。 カーテンプレートには絶対に触れないでください。また、カーテンプレート にエミッターの先端が接触しないようにしてください。質量分析装置が使用 可能で、イオン源がインストールされている場合は、X-Y-Z位置決めユニッ トをインターフェースから離れた場所に移動させても、カーテンプレートは 高電圧になっています。

警告! 有害化学物質の危険性があります。白衣、手袋、保護メガネなどの身体保護 具を着用して、皮膚や目を危険物質にさらさないようにします。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物質 の危険性。化学物質の流出が発生した場合、特定の指示に関して製品安全性 データシートを確認します。イオン源付近にこぼれたものを掃除する前に、 システムがStandbyモードであることを確認してください。適切な個人用防 護具と吸着布を使用して、流出を食い止め、現地規制に従い処分してください。

テストの準備

警告!感電の危険性。操作中、イオン源に印加された高電圧に触れないよう にします。サンプルチューブやイオン源付近の他の装置を調整する前に、シ ステムをStandbyモードにします。

- 新しいイオン源をインストールした場合、質量分析装置が既存のイオン源を使用したときの仕様で動作していることを確認します。
- ・ イオン源を質量分析装置にインストールします。
- ・イオン源が完全に最適化されているかを確認します。イオン源については、*『オペレータ ガイド』*を参照してください。
- ・化学溶液または溶媒を取り扱う前に確認が必要な注意事項は、適用する安全性データシー トをすべて参照してください。

図 5-1 テストワークフロー

[グルコース¹]フィブリノペプチドB希釈液の準備

必要な材料

- ・ [グルコース1]-フィブリノペプチド B、LC/MS ペブチドキャリブレーションキット (PN 4465867) 同梱
- · LC/MSペプチドキャリブレーションキットに含まれる標準希釈物
- パウダーフリーグローブ(ニトリルまたはネオプレンが推奨されます)
- ・ 安全メガネ
- ・白衣

[グルコース¹]フィブリノペプチドBの質量リストについては、[グルコース1¹]-フィブリノペプ チド B の質量を参照してください。

注: 試験を開始する直前に、常に希釈物を準備してください。

注: [グルコース¹]フィブリノペプチドBは、バイアルのゴム隔膜に詰まることがあります。 バイアルを開く前に、そっとトントンと叩くか揺らして落としてください。そして、スロッ トを露出させるためにゴム隔膜の一部を取り外してください。希釈溶媒をスロットから流 し入れます。そして、ゴム隔膜を押して元の位置に戻し、分解するまでよく混ぜます。

注意: 誤った結果をもたらす可能性。有効期限切れの溶液を使用しないでください。

- 1. 900 µLの標準希釈物(ギ酸0.1%、アセトニトリル10%)を、[グルコース¹]フィブリノペプ チドBが入ったガラス製のアンバーバイアルに追加します。
- 2. バイアルにしっかりとふたをして振ります、少なくとも2分間攪拌し、ペプチドが完全に 分解することを確認します。

注:ペプチド濃度は、標準希釈物の中の全体のペプチド含有量およびペプチド純度により異なります。ベンダーから提供される分析証明書を参照してください。100%純度においては、前述のように0.1ミリグラムの[グルコース¹]フィブリノペプチドBが分解され、約66.67ピコモル/μL濃度のストック溶液が作られます。

- 3. ストック溶液を50 µL 量の清潔なチューブに取り出します。使用しない分析物は将来のために -20℃ で凍結します。
- 4. 50 µLのストック溶液を清潔なチューブに入れ、そして450 µLの標準希釈物を追加します。
- 5. チューブを30秒間攪拌します。

これは1:10の希釈であるため、6.7 pmol/µL 溶液のうち500 µL を提供します。

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

- 6. 6.7 pmol/µL 溶液のうち50 µL を他の清潔なチューブに入れます。
- 7.450 µL の標準希釈物を追加します。
- 8. チューブを30秒間攪拌します。

これは1:10の希釈であるため、667 fmol/µL 溶液のうち500 µL を提供します。

- 9. 667 fmol/µL 溶液のうち50 µL を他の清潔なチューブに入れます。
- 10.450 µL の標準希釈物を追加します。
- 11. チューブを30秒間攪拌します。

これは1:10の希釈であるため、最後の66.7 fmol/µL 溶液のうち500 µL を注入試験に使用するために提供します。

TripleTOF[®] システムでのイオン源のテスト

警告! 感電の危険性。NanoSpray[®]イオン源の操作は、照明器、カメラ、停止、カバーが適切に取り付けられていない場合は絶対に行わないでください。 カーテンプレートには絶対に触れないでください。また、カーテンプレート にエミッターの先端が接触しないようにしてください。質量分析装置が使用 可能で、イオン源がインストールされている場合は、X-Y-Z位置決めユニッ トをインターフェースから離れた場所に移動させても、カーテンプレートは 高電圧になっています。

警告! 高温面の危険。高圧レールやエミッターの先端に触れないでくださ い。

必要なタスクの概要は、図 5-1を参照してください。

TripleTOF[®]4600 システムの場合、以下のタスクを実行します。

- ・ [グルコース¹]フィブリノペプチドB希釈液の準備
- ・ TOF MS モードによるテストおよびキャリブレーション
- ・ プロダクトイオンモードによるテストおよびキャリブレーション

TripleTOF[®] 5600/5600+ および 6600/6600+ システムの場合、以下のタスクを実行します。

- ・ [グルコース¹]フィブリノペプチドB希釈液の準備
- ・ TOF MS モードによるテストおよびキャリブレーション
- ・ プロダクトイオンモードによるテストおよびキャリブレーション (高感度) (5600/5600+ および 6600/6600+ システムのみ)

・ プロダクトイオンモードによるテストおよびキャリブレーション。このテストは高分解能
 モードで実施します。

必要な物

- [グルコース1]-フィブリノペプチドB希釈液。[グルコース¹]フィブリノペプチドB希釈液の
 準備を参照してください。
- · 100 µL シリンジ (内径 1.46 mm) または NanoSpray[®] イオン源を用いたそれ相当注入量
- · (オプション) 1 µL シリンジ (内径 4.61 mm) または DuoSpray[™] イオン源を用いたそれ相当注 入量
- パウダーフリーグローブ(ニトリルまたはネオプレンが推奨されます)
- ・ 安全メガネ
- ・白衣

TOF MS モードによるテストおよびキャリブレーション

(オプション) DuoSpray[™] イオン源を使用した TOF MS テストの実施

この手順で、希釈溶液の完全性を確認します。

注: [Glu¹]-フィブリノペプチドB溶液をシリンジに充填する前に、洗浄溶液でシリンジを3回 洗浄します。次に、シリンジを適切なチューブに接続して、もう一度洗浄してから高圧レー ルの継手部に接続します。[グルコース¹]-フィブリノペプチドB溶液でチューブをフラッシュ します。

- 1. DuoSpray[™]イオン源を質量分析装置にインストールします。DuoSpray[™]イオン源オペレー タガイドを参照してください。
- 1 μL シリンジを使用して、[グルコース¹]-フィブリノペプチド B 溶液を流量 5 μL/分で注入します。
- 3. Analyst[®] TFソフトウェアを**Tune and Calibrate**モードにして、**Manual Tune**をダブルクリックします。
- 4. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

表 5-1 DuoSpray[™] イオン源での TOF MS テストパラメータ

パラメータ	值		
MS パラメータ			
Scan type	TOF MS		
Accumulation time (sec)			
Polarity	ポジティブ		

パラメータ	値			
TOF masses (Da)	400~1800			
Duration (min)	0.5			
Advanced MS パラメータ				
MCA	オフ			
Auto Adjust with mass	オン			
Q1 Transmission Window	デフォルト (自動調整有り)			
Pulsar Frequency	デフォルト (自動調整有り)			
Time bins to sum	4			
Settling time	デフォルト			
Pause between mass ranges	デフォルト			
Source/Gas パラメータ	·			
Ion Source Gas 1 (GS1)	20			
Curtain Gas [™] flow (CUR)	20			
Temperature (TEM) (°C)	0			
IonSpray Voltage Floating (ISVF)	5500			
Compound パラメータ				
Declustering Potential (DP)	100			
Syringe Pump Method パラメータ				
Flow rate (µL/min)	5			
Syringe Size				

表 5-1 DuoSpray[™] イオン源での TOF MS テストパラメータ (続き)

5. 新規メソッドを保存します。

ヒント! NanoSpray[®]イオン源テストに使用するメソッドを「NanoSpray Installation < date>」という名前の異なるフォルダで保存します。

- 6. Acquire をクリックして 30 秒間のデータを測定します。
- 7. 左下ペインのTIC of +TOF MS ウィンドウで、30 秒間ハイライトしてから、平均化された スペクトルをダブルクリックして表示します。
- 8. 一番下のペインに表示される平均化されたスペクトルを右クリックして、List Data をクリックします。次に、セントロイド強度と分解能を記録します。

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C 9. セントロイド強度と分解能が許容範囲であるかを確認します。 データログ: NanoSpray[®] イ オン源を参照してください。

ガイドライン: DuoSpray[™]イオン源で得たセントロイド強度と分解能は、NanoSpray[®]イオン 源に規定された仕様を満たさなければなりません。そうではない場合、新規希釈溶液を用 意してください。

NanoSpray[®] イオン源を使用した TOF MS テストの実施

注: [Glu¹]-フィブリノペプチドB溶液をシリンジに充填する前に、洗浄溶液でシリンジを3回 洗浄します。次に、シリンジを適切なチューブに接続して、もう一度洗浄してから高圧レー ルの継手部に接続します。[グルコース¹]-フィブリノペプチドB溶液でチューブをフラッシュ します。

- 1. NanoSpray[®]イオン源を質量分析装置にインストールします。*NanoSpray[®]イオン源オペレー* タガイドを参照してください。
- 2. NanoSpray III ヘッドを用意します。 *NanoSpray[®] イオン源オペレータガイド*を参照してく ださい。
- 3. 100 µL シリンジを使用して、[グルコース¹]-フィブリノペプチド B 溶液を流量 0.5 µL/分で注 入します。
- 4. Analyst[®] TFソフトウェアを**Tune and Calibrate**モードにして、**Manual Tune**をダブルクリックします。
- 5. オプションの手順、(オプション) DuoSpray[™] イオン源を使用した TOF MS テストの実施 を実施した場合、メソッドを開いて、以下の表に示すようにパラメータを設定します。この手順を実施しなかった場合、このパラメータで新規メソッドを作成します。

表 5-2 NanoSpray	『イァ	トン源を	用いた	TOF MS	メン	/ッド/	パラメータ
-----------------	-----	------	-----	--------	----	------	-------

パラメータ	值			
MS パラメータ				
Scan type	TOF MS			
Accumulation time (sec)	1.0			
Polarity	ポジティブ			
TOF masses (Da)	400~1800			
Duration (min)	0.5			
Advanced MS パラメータ				
МСА	オフ			
Auto Adjust with mass	オン			

パラメータ	值				
Q1 Transmission Window	デフォルト (自動調整有り)				
Pulsar Frequency	デフォルト (自動調整有り)				
Time bins to sum	4				
Settling time	デフォルト				
Pause between mass ranges	デフォルト				
Source/Gas パラメータ					
lon Source Gas 1 (GS1)	3				
Curtain Gas [™] flow (CUR)	25				
Interface Heater Temperature (IHT) (°C)	75				
IonSpray Voltage Floating (ISVF)	2100				
Compound パラメータ					
Declustering Potential (DP)	100				
Syringe Pump Method パラメータ					
Flow rate (µL/min)	0.5				
Syringe Size	100 Gastight (1.46 mm)				

表 5-2 NanoSpray[®]イオン源を用いた TOF MS メソッドパラメータ (続き)

6. Start をクリックしてメソッドを実行します。

注意:システムに損傷を与える恐れ。エミッタチップがカーテンプレートに触れないようにしてください。Z 軸微調整ノブを使用して、スプレーポジションを調整しエミッタチップを損傷から守ります。

注意:システム汚染の可能性。エミッタチップ終端部をカーテンプレートアパチャに挿入しないでください。エミッタチップが少なくとも 2 mm ~ 5 mm アパチャから離れた 外側にあるかを確認します。アパチャに近すぎる位置でスプレー噴射すると、質量分析 装置の汚染の原因となる恐れがあります。

- 7. カーテンプレートアパチャに対してスプレーヘッドのポジションを調整して、シグナル強度を最適化します。 今後の使用のために、XYZ 値を記録します。
- 8. 100 V 単位で ISVF を調整して、最適なシグナルとシグナル対ノイズ比を確保します。

注: lonSpray[™]電圧が高すぎると、コロナ放電が発生する可能性があります。これはプ ローブチップで青く光るため、目視確認できます。コロナ放電によって、シグナルの感 度と安定性が下がります。

 シグナルが下がり始めるまで GS1 を増やし、シグナルが最大値に達するまで GS1 を減ら します。

GS1 は通常、3 ~ 10 で最適化されます。 **GS1** がこの範囲外の場合、チップ突出量が正しくないか (1 ~ 2 mm)、チップを交換する必要があります。

注: GS1パラメータはゼロで最適化することがあります。

10. シグナルが下がり始めるまで CUR を増やし、シグナルが最大値に達するまで CUR を減ら します。

注: 汚染を防ぐために、感度を損なわずに可能な限り CUR最高値を使用します。CURを 20以下に設定しないでください。これによって、ノイズの多いシグナルを生成する可能 性のあるCurtain Gas[™]流量の浸透を防ぎ、アパチャを汚染から守り、全体のシグナル対ノ イズ比を向上させます。

- 11. スプレーヘッドを移動してシグナル強度を最適化した場合、必要に応じて照明器のポジ ションを調整します。
- 12. 新規メソッドを保存します。

ヒント! NanoSpray[®]イオン源テストに使用するメソッドを「NanoSpray Installation < date>」という名前の異なるフォルダで保存します。

- 13. メソッドを少なくとも 20 分間実行します。 スプレー噴射安定性をモニターします。 スプレー噴射が安定した状態の場合、TIC にゆらぎが最小限しか見られません。
- 14. スプレー噴射が最適化され安定している状態の場合、Acquireをクリックして、30秒間の スキャンデータを測定します。
- 15. 左下ペインのTIC of +TOF MS ウィンドウで、30 秒間ハイライトしてから、平均化された スペクトルをダブルクリックして表示します。
- 16. 一番下のペインに表示される平均化されたスペクトルを右クリックして、List Data をクリックします。 セントロイド強度と分解能を記録します。
- 17. セントロイド強度と分解能が許容範囲であるかを確認します。 図 5-2 および データログ: NanoSpray[®] イオン源を参照してください。

図 5-2 サンプルスペクトラ: グルコースフィブリノペプチド B の TOF MS スキャン、 TripleTOF 5600 システム

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。 18. 結果を1部印刷して、データログにセントロイド強度と分解能を記録します。

[グルコース¹]-フィブリノペプチド B の基準表を更新します。

- 1. Analyst[®] TF ソフトウェアを Tune and Calibrate モードにして、Tools > Settings > Tuning **Options.** をクリックします。
- 2. Calibration タブで Reference をクリックします。
- 3. Reference Table Editor の Name フィールドで Glu-fibrinopeptide B. を選択します。
- Reference lons for TOF MS Calibration の表 (左側) で、図 5-3 に表示される質量を追加します。[グルコース¹]フィブリノペプチド B の質量リストについては、[グルコース1¹]-フィブリノペプチド B の質量を参照してください。

図 5-3 基準表エディタ: TOF MS キャリブレーション基準表

fere	nce Ions	for TOF MS Calibrat	ion:						Refer	ence Ions	for MS/MS Calibrat	ion:
	Use	Compound Name	Precursor m/z	Use for MS/MS	CE for MS/MS	DP for MS/MS	Retention Time (min)	^		Use	Fragment Name	Fragment m/z (Da)
	ঘ	y4	480.25650	Г	45.000	100.000	0.00	-	1	ম	y1	175.1190
	ম	y6	684.34640	Г	45.000	100.000	0.00	1	2	N	y3	333.1881
	ম	Glu-fibrinopeptide	785.84210	<u> </u>	45.000	100.000	0.00	1	3	N	y4	480.2565
	ম	y7	813.38900	Г	45.000	100.000	0.00	1	4	N	y6	684.3464
	ম	y8	942.43160	Г	45.000	100.000	0.00	1	5	N	Parent	785.8421
	ঘ	y9	1056.47450	Г	45.000	100.000	0.00	1	6	ম	y8	942.4316
	ম	y10	1171.50140		45.000	100.000	0.00	1	7	ম	y10	1171.5014
	ঘ	y11	1285.54440	Г	45.000	100.000	0.00	1	8	ম	y11	1285.5444
	Г			Г				1	9			
				Г				1	10			
				Г					11			
	Г			Г					12			
								-	13			
								~	12 13			

- 5. OKをクリックします。
- 6. Tuning OptionsダイアログのOKをクリックします。

TOF MS モードでのキャリブレーション

- 1. Manual Tune モードで、パラメータがNanoSpray[®]イオン源を使用した TOF MS テストの実施で指定した値に設定されているかを確認します。表 5-2を参照してください。
- 2. Compound タブで Collision Energy (CE) を 35 V に設定します。
- スプレー噴射が安定している状態の場合、Acquire をクリックして、30 秒間のスキャン データを測定します。
- 4. TIC of +TOF MS ウィンドウ (左下) で、30 秒間の TIC シグナルをハイライトして平均化してから、ダブルクリックします。
- 5. 表示される新規ウィンドウ(Analyst[®]TFソフトウェアウィンドウ下部)内で右クリックして、 Re-Calibrate TOF をクリックします。
- 6. TOF Calibration ダイアログの Reference Table リストで Glu-fibrinopeptide B を選択し ます。
- 適正実験用質量が注入スペクトルで同定され、基準表の理論質量と一致しているかを確認します。
- 8. Average Error ボタンの右に表示される Calculate New Calibrations 値を確認します。
- 9. Calculate New Calibrations をクリックして、Average Error 値を 2 ppm 未満に減らします。

- 10. Calibration Values で Calibrate Spectrum をクリックします。
- 11. Save Current Calibration で Set as Instrument Default と Overwrite Current File を選択 します。
- 12. Entire Fileをクリックします。
- 13. Closeをクリックします。

プロダクトイオンモードによるテストおよびキャリブレーション (高感度) (5600/5600+ および 6600/6600+ システムのみ)

プロダクトイオンモード (高感度) テスト (5600/5600+ および 6600/6600+ システム のみ) の実施

- Analyst[®] TFソフトウェアをTune and Calibrateモードにして、Manual Tuneをダブルクリックします。
- 2. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

パラメータ	值			
MS パラメータ				
Scan type	プロダクトイオン			
Product of	785.8			
Accumulation time (sec)	1.0			
Polarity	ポジティブ			
TOF masses (Da)	100~1800			
High sensitivity	オン			
Duration (min)	0.5			
Advanced MS パラメータ				
МСА	オフ			
Auto Adjust with mass	オン			
Q1 Transmission windows	デフォルト (自動調整有り)			
Pulsar Frequency	デフォルト (自動調整有り)			
Time Bins to Sum	4			
Settling time	デフォルト			

表 5-3 プロダクトイオンメソッドパラメータ

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

パラメータ			
Pause between mass	デフォルト		
Source/Gas パラメータ			
Ion Source Gas 1 (GS1)	最適化されたとおり		
Curtain Gas [™] flow (CUR)	最適化されたとおり		
Interface Heater Temperature (IHT) (°C)	75		
IonSpray Voltage Floating (ISVF)	最適化されたとおり		
Compound パラメータ			
Collision Energy (CE) (V)	45(または最適化されたとおり)		
Resolution パラメータ			
Q1 resolution	単位		

表 5-3 プロダクトイオンメソッドパラメータ (続き)

注: CEは通常、40 V~48 Vで最適化します。CEがこの範囲内にない場合、CADガス値が 低すぎる値に設定されている可能性があります。M/z 785.9でのプレカーサーイオン強度 が元の強度の10%以下の場合は、CEとCADガスの相互作用が適切ではありません。詳細に ついては、SCIEXテクニカルサポートにお問い合わせください。

- 3. 新規メソッドを保存します。
- 4. スプレー噴射が安定している状態の場合、Acquire をクリックして、少なくとも 30 秒間 のスキャンデータを測定します。
- 5. 左下ペインのTIC of +TOF Product ウィンドウで、30 秒間ハイライトしてから、平均化さ れたスペクトルをダブルクリックして表示します。
- 6. 一番下のペインに表示される平均化されたスペクトルを右クリックして、List Data をク リックします。
- 7. Peak List タブをクリックします。
- 8. カラムヘッダの列を右クリックして、Column Options をクリックします。

Select Columns for Peak List	? 🛛
Spectrum List Columns	
🗹 m/z (Da)	🔲 Peak start (Da)
🔽 Intensity (cps)	🗖 Peak end (Da)
Centroid mass	🔽 Width (Da)
🗆 Charges	✓ Resolution
🗖 Peak area	🗆 % Intensity
🗆 Is Mono-Isotopic	🗆 % Centroid
🗆 Intensity sum	☐ Width at 5%
Centroid intensity	Raw Resolution
0K	Cancel

図 5-4 Peak List ダイアログボックスのカラムを選択します。

- 9. m/z (Da)、Intensity、Centroid mass、Centroid intensity、Width (Da)、Resolution の 各チェックボックスを選択します。
- 10. OKをクリックします。
- 11. セントロイド強度と分解能が許容範囲であるかを確認します。 図 5-5 および データログ: NanoSpray[®] イオン源を参照してください。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。 12. 結果を1部印刷して、データログにセントロイド強度と分解能を記録します。

プロダクトイオンモードでのキャリブレーション(高感度)

- Manual Tune モードで、パラメータがプロダクトイオンモード(高感度)テスト(5600/5600+ および 6600/6600+ システムのみ)の実施で指定した値に設定されているかを確認します。 表 5-3を参照してください。
- スプレー噴射が安定している状態の場合、Acquire をクリックして、少なくとも 30 秒間のスキャンデータを測定します。
- 3. TIC of +TOF Product ウィンドウ (左下) で、30 秒間の TIC シグナルをハイライトして平均 化してから、ダブルクリックします。
- 4. 表示される新規ウィンドウ (Analyst[®] TF ウィンドウ下部) 内で右クリックして、**Re-Calibrate** TOF をクリックします。
- 5. TOF Calibration ダイアログの Reference Table リストで Glu-fibrinopeptide B を選択し ます。
- 適正実験用質量が注入スペクトルで同定され、基準表の理論質量と一致しているかを確認します。
- 7. Average Error ボタンの右に表示される Calculate New Calibrations 値を選択します。

- 8. Calculate New Calibrations をクリックして、Average Error 値を 2 ppm 未満に減らします。
- 9. Calibration Values で Calibrate Spectrum をクリックします。
- 10. Save Current Calibration で Set as Instrument Default と Overwrite Current File を選択 します。
- 11. Entire Fileをクリックします。
- 12. Closeをクリックします。

プロダクトイオンモードによるテストおよびキャリブレーショ ン

SCIEXTripleTOF[®]

プロダクトイオンテストの実施

- 1. Analyst[®] TFソフトウェアの **Tune and Calibrate** モードで、**Manual Tune**をダブルクリックします。
- 2. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

パラメータ	値			
MS パラメータ				
Scan type	プロダクトイオン			
Product of	785.8			
Accumulation time (sec)	1.0			
Polarity	ポジティブ			
TOF masses (Da)	100~1800			
High resolution	オン			
(5600/5600+ および 6600/6600+ システムのみ)				
Duration (min)	0.5			
Advanced MS パラメータ				
МСА	オフ			
Auto Adjust with mass	オン			
Q1 Transmission windows	デフォルト (自動調整有り)			

表 5-4 プロダクトイオンメソッドパラメータ

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

パラメータ	值			
Pulsar Frequency	デフォルト (自動調整有り)			
Time Bins to Sum	4			
Settling time	デフォルト			
Pause between mass	デフォルト			
Source/Gas パラメータ				
Ion Source Gas 1 (GS1)	最適化されたとおり			
Curtain Gas [™] flow (CUR)	最適化されたとおり			
Interface Heater Temperature (IHT) (°C)	75			
IonSpray Voltage Floating (ISVF)	最適化されたとおり			
Compound パラメータ				
Collision Energy (CE) (V)	45(または最適化されたとおり)			
Resolution パラメータ				
Q1 resolution	単位			

表 5-4 プロダクトイオンメソッドパラメータ (続き)

注: CEは通常、40 V~48 Vで最適化します。CEがこの範囲内にない場合、CADガス値が低すぎる値に設定されている可能性があります。M/z 785.9でのプレカーサーイオン強度が元の強度の10%以下の場合は、CEとCADガスの相互作用が適切ではありません。詳細については、SCIEXテクニカルサポートにお問い合わせください。

- 3. 新規メソッドを保存します。
- 4. スプレー噴射が安定している状態の場合、Acquire をクリックして、少なくとも 30 秒間 のスキャンデータを測定します。
- 5. 左下ペインのTIC of +TOF Product ウィンドウで、30 秒間ハイライトしてから、平均化さ れたスペクトルをダブルクリックして表示します。
- 6. 一番下のペインに表示される平均化されたスペクトルを右クリックして、List Data をク リックします。
- 7. Peak List タブをクリックします。
- 8. セントロイド強度と分解能が許容範囲であるかを確認します。 図 5-6 および データログ: NanoSpray[®] イオン源を参照してください。

図 5-6 サンプルスペクトラ: プロダクトイオンテスト、TripleTOF 5600 システム

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。

9. 結果を1部印刷して、データログにセントロイド強度と分解能を記録します。

プロダクトイオンモードでのキャリブレーション

SCIEXTripleTOF

- 1. Manual Tune モードで、パラメータがプロダクトイオンテストの実施で指定した値に設 定されているかを確認します。表 5-4を参照してください。
- スプレー噴射が安定している状態の場合、Acquire をクリックして、少なくとも 30 秒間のスキャンデータを測定します。
- 3. TIC of +TOF Product ウィンドウ (左下) で、30 秒間の TIC シグナルをハイライトして平均 化してから、ダブルクリックします。
- 4. 表示される新規ウィンドウ (Analyst[®] TF ウィンドウ下部) 内で右クリックして、**Re-Calibrate** TOF をクリックします。
- 5. TOF Calibration ダイアログの Reference Table リストで Glu-fibrinopeptide B を選択し ます。
- 適正実験用質量が注入スペクトルで同定され、基準表の理論質量と一致しているかを確認します。
- 7. Calculate New Calibrations ボタンの右に表示される Average Error 値を確認します。

8. Calculate New Calibrations をクリックして、Average Error 値を 2 ppm 以下に減らします。

9. Calibration Values で Calibrate Spectrum をクリックします。

10. Save Current Calibration で Entire File をクリックします。

11. Close をクリックします。

仕上げ

注: SCIEXフィールドサービスエンジニア(FSE)は設置後、NanoSpray[®]受け入れ試験実施の 結果をservicedata@sciex.comへEメールで報告する義務があります。

1. 先端と注入ラインをくまなくフラッシュします。

2. 完成したデータログとテスト結果を一部コピーして、顧客に原本を提出します。

トリプル四重極システムおよび QTRAP[®] システム でのイオン源のテスト

警告! 高温面の危険。高圧レールやエミッターの先端に触れないでくださ い。

警告!感電の危険性。NanoSpray[®]イオン源の操作は、照明器、カメラ、停止、カバーが適切に取り付けられていない場合は絶対に行わないでください。 カーテンプレートには絶対に触れないでください。また、カーテンプレート にエミッターの先端が接触しないようにしてください。質量分析装置が使用 可能で、イオン源がインストールされている場合は、X-Y-Z位置決めユニッ トをインターフェースから離れた場所に移動させても、カーテンプレートは 高電圧になっています。

必要なタスクの概要は、図 5-1を参照してください。

Triple Quad[™]システムの場合、3200 シリーズシステムを除き、以下のタスクを実行します。

- ・ [グルコース¹]フィブリノペプチドB希釈液の準備
- ・ Q1 モードによるテスト
- · Q3モードでのテスト

QTRAP[®]システムの場合、3200 QTRAP[®]システムを除き、以下のタスクを実行します。

- ・ [グルコース¹]フィブリノペプチドB希釈液の準備
- · Q1 モードによるテスト

- · Q3 モードでのテスト
- EPIモードでのテストとキャリブレーション(QTRAP[®]またはQTRAP[®]を有効にしたTriple Quad 5500+システムのみ)

API 3200[™] システムと 3200 QTRAP[®] システムについては、3200 シリーズシステムのイオン源テ ストを参照してください。

必要な物

- . [グルコース¹]-フィブリノペプチド B、LC/MS ペブチドキャリブレーションキット (PN 4465867) 同梱
- · 標準希釈液
- · 100 µL シリンジ (内径 1.46 mm) または NanoSpray[®] イオン源を用いたそれ相当注入量
- · (オプション) 1 µL シリンジ (内径 4.61 mm) または Turbo V[™] イオン源を用いたそれ相当注入 量
- パウダーフリーグローブ(ニトリルまたはネオプレンが推奨されます)
- ・ 安全メガネ
- ・白衣

Q1 モードによるテスト

(オプション) Turbo V[™] イオン源による Q1 テストの実施

この手順で、希釈溶液の完全性を確認します。

注: [Glu¹]-フィブリノペプチドB溶液をシリンジに充填する前に、洗浄溶液でシリンジを3回 洗浄します。次に、シリンジを適切なチューブに接続して、もう一度洗浄してから高圧レー ルの継手部に接続します。[グルコース¹]-フィブリノペプチドB溶液でチューブをフラッシュ します。

- 1. Turbo V[™]イオン源を質量分析装置に取り付けます。*Turbo V[™]イオン源オペレータガイド*を参照してください。
- 1 µL シリンジを使用して、[グルコース¹]-フィブリノペプチドB溶液を流量5 µL/分で注入します。
- Analyst[®]ソフトウェアの、Tune and Calibrate モードで、Manual Tune をダブルクリック します。
- 4. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

表 5-5 Turbo V[™] イオン源による Q1 テストパラメータ

パラメータ	值			
MS パラメータ				
Scan type	Q1 スキャン			
Mass mode (6500 および 6500+ シリーズのシ ステム)	低質量			
Polarity	ポジティブ			
Display masses (Da)	中央: 785.9			
	幅: 20			
Scan Speed (Da/sec)	10			
МСА	オン			
Cycles	10			
Source/Gas パラメータ				
Curtain Gas [™] flow (CUR)	20			
IonSpray Voltage (IS)	5500			
lon Source Gas 1 (GS1)	20			
Interface Heater (IHT)	未使用			
Compound パラメータ				
Declustering Potential (DP)	100			
Syringe Pump Method パラメータ				
Flow rate (µL/min)	5			
Syringe Size	1 mL (内径 4.61 mm)			

5. メソッドを保存します。

ヒント! NanoSpray[®]イオン源テストに使用するメソッドを「NanoSpray Installation <date>」 という名前の異なるフォルダで保存します。

- 6. Acquire をクリックして 30 秒間のデータを測定します。
- 7. m/z 785.8421 時のピーク強度を記録します。
- 8. ステップ6と7をあと2回繰り返します。
- 9.3つのスキャン結果を平均化します。

10. セントロイド強度と分解能をNanoSpray[®]イオン源仕様と比較します。データログ: NanoSpray[®] イオン源

ガイドライン:TurboVイオン源で得たセントロイド強度と分解能は、NanoSpray[®]イオン源に 規定された仕様を満たさなければなりません。そうではない場合、新規希釈溶液を用意し てください。

NanoSpray[®] イオン源での Q1 テストの実施

注: [Glu¹]-フィブリノペプチドB溶液をシリンジに充填する前に、洗浄溶液でシリンジを3回 洗浄します。次に、シリンジを適切なチューブに接続して、もう一度洗浄してから高圧レー ルの継手部に接続します。[グルコース¹]-フィブリノペプチドB溶液でチューブをフラッシュ します。

- 1. NanoSpray[®]イオン源を質量分析装置にインストールします。*NanoSpray[®]イオン源オペレー* タガイドを参照してください。
- 2. NanoSpray[®]IIIヘッドを組み立てて取り付けるために必要なパーツを示します。NanoSpray[®] イオン源オペレータガイドを参照してください。
- 3. 100 µL シリンジを使用して、[グルコース¹]-フィブリノペプチド B 溶液を流量 0.5 µL/分で注 入します。
- 4. Analyst[®] ソフトウェアの、**Tune and Calibrate** モードで、**Manual Tune** をダブルクリック します。
- オプションの手順を実施した場合(オプション) Turbo V[™]イオン源によるQ1 テストの実施、 作成したメソッドを開けて、(オプション) Turbo V[™] イオン源によるQ1 テストの実施で指 定したパラメータを設定します。表 5-5を参照してください。この手順を実施しなかった 場合、このパラメータで新規メソッドを作成します。

パラメータ	值
MS パラメータ	
Scan type	Q1 スキャン
Mass mode (6500 および 6500+ シリーズのシ ステム)	低質量
Polarity	ポジティブ
Mass Range	400~1000
Scan Speed (Da/sec)	2000
(4500、5500/5500+、および 6500/6500+ シリー ズシステム)	

表 5-6 NanoSpray[®] イオン源を用いたメソッドパラメータ

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

表 5-6 NanoSpray[®] イオン源を用いたメソッドパラメータ (続き)

パラメータ	值
Scan Time (sec)	3
(4000 シリーズシステム)	
МСА	オフ
Cycles	注:分析された特定の装置に固定されている 場合のSサイクル数。上記のパラメータを参 照してください。
	500 (4000 シリーズシステム)
	50 (4500、5500/5500+、および 6500/6500+ シ リーズシステム)
Source/Gas パラメータ	
CAD Gas	低 (4000 シリーズシステム) 中 (または最適化されたとおり) (4500, 5500/ 5500 および6500/6500+ シリーズシステム)
lonSpray Voltage (IS)	2100
lon Source Gas 1 (GS1)	10
Interface Heater Temperature (IHT) (°C)	75
Compound パラメータ	
Declustering Potential (DP)	70 (4000 シリーズシステム)
	100 (4500、5500/5500 および 6500/6500+ シ リーズシステム)
Syringe Pump Method パラメータ	
Flow rate (µL/min)	0.5
Syringe Size (µL)	100 Gastight (1.46 mm)

6. Start をクリックしてメソッドを実行します。

注意:システムに損傷を与える恐れ。エミッタチップがカーテンプレートに触れないようにしてください。Z 軸微調整ノブを使用して、スプレーポジションを調整しエミッタチップを損傷から守ります。

注意:システム汚染の可能性。エミッタチップ終端部をカーテンプレートアパチャに挿入しないでください。エミッタチップが少なくとも2mm~5mmアパチャから離れた 外側にあるかを確認します。アパチャに近すぎる位置でスプレー噴射すると、質量分析 装置の汚染の原因となる恐れがあります。

- 7. カーテンプレートアパチャに対してスプレーヘッドのポジションを調整して、シグナル強度を最適化します。 今後の使用のために、XYZ 値を記録します。
- 8. 100 V 単位で IS を調整して、最適なシグナルとシグナル対ノイズ比を確保します。

注: lonSpray[™]電圧が高すぎると、コロナ放電が発生する可能性があります。これはプ ローブチップで青く光るため、目視確認できます。コロナ放電によって、シグナルの感 度と安定性が下がります。

シグナルが下がり始めるまでGS1を増やし、シグナルが最大値に達するまでGS1を減らします。

注: GS1パラメータはゼロで最適化することがあります。

10. シグナルが下がり始めるまで CUR を増やし、シグナルが最大値に達するまで CUR を減ら します。

注: 汚染を防ぐために、感度を損なわずに可能な限り CUR最高値を使用します。CURを 20以下に設定しないでください。これによって、ノイズの多いシグナルを生成する可能 性のあるCurtain Gas[™]流量の浸透を防ぎ、アパチャを汚染から守り、全体のシグナル対ノ イズ比を向上させます。

- 11. スプレーヘッドを移動してシグナル強度を最適化した場合、必要に応じて照明器のポジ ションを調整します。
- 12. 新規メソッドを保存します。

ヒント! NanoSpray[®]イオン源テストに使用するメソッドを「NanoSpray Installation < date>」という名前の異なるフォルダで保存します。

13. スプレー噴射を5分間モニターして安定性を確認します。スプレー噴射が安定した状態の 場合、TIC にゆらぎが最小限しか見られません。

図 5-7 100 (4500、5500、6500 および 6500QTRAP[®] システム

- 14. スプレー噴射が安定したら、スキャン速度を10に変更します。
- 15. Center/Width を選択し、Center カラムに785.9 を、Width カラムに 20 をそれぞれ入力 します。
- 16. MCA を起動します。
- 17. Acquire をクリックしてデータ収集を開始します。
- 18. m/z 785.9 時のピーク強度を記録します。
- 19. ステップ17と18をあと2回繰り返します。
- 20.3 つの強度を平均化します。
- 21. 平均強度が許容範囲であるか確認します。 データログ: NanoSpray[®] イオン源を参照してく ださい。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。 22. 結果を1部印刷して、データログに強度を記録します。
Q3 モードでのテスト

注: [Glu¹]-フィブリノペプチドB溶液をシリンジに充填する前に、洗浄溶液でシリンジを3回 洗浄します。次に、シリンジを適切なチューブに接続して、もう一度洗浄してから高圧レー ルの継手部に接続します。[グルコース¹]-フィブリノペプチドB溶液でチューブをフラッシュ します。

- 1. Analyst[®]ソフトウェアの **Tune and Calibrate** モードで、**Manual Tune**をダブルクリックし ます。
- 2. Q1 テストに使用したメソッドを開きます。
- 3. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

パラメータ	值			
MS パラメータ				
Scan type	Q3 スキャン			
Mass mode (6500/6500+ シリーズのシステム)	低質量			
Display masses (Da)	中央: 785.9 幅: 20			
Scan Speed (Da/sec)	10			
МСА	オフ			
Cycles	10			
Compound パラメータ				
Collision Cell Exit Potential (CXP) (V)	15(または最適化されたとおり)(4000 シリー ズのシステム)			
	30 (または最適化されたとおり) (4500、5500/ 5500+、および 6500/6500+ シリーズシステ ム)			

表 5-7 Q3 メソッドパラメータ

- 4. 新規メソッドを保存します。
- 5. Start をクリックしてメソッドを実行します。
- 6. スプレー噴射が安定したら、MCA を起動します。
- 7. Acquire をクリックしてデータ収集を開始します。
- 8. m/z 785.9 時のピーク強度を記録します。

9. ステップ7と8をあと2回繰り返します。

10. 結果を印刷します。

- 11. イオンの3つの強度を平均化して、データログに結果を記録します。
- 12. 平均強度が許容範囲であるか確認します。 データログ: NanoSpray[®] イオン源を参照してく ださい。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。

EPI モードでのテストとキャリブレーション (QTRAP[®] または QTRAP[®] を有効にした Triple Quad 5500+ システムのみ)

EPI モードテストの実施

- 1. 100 µL シリンジを使用して、[グルコース1]-フィブリノペプチド B 溶液を流量 0.5 µL/分で注入します。
- Analyst[®]ソフトウェアの Tune and Calibrate モードで、Manual Tuneをダブルクリックします。
- 3. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

表 5-8 EPI メソッドパラメータ

パラメータ	值
MS パラメータ	
Scan type	EPIスキャン
Mass mode (6500/6500+ シリーズのシステム)	低質量
Polarity	ポジティブ
Mass Range (Da)	100~1500 (4000 シリーズシステム)
	100~1000 (4500、5500/5500+、および 6500/ 6500+ シリーズシステム)
Scan speed (Da/sec)	4000 (4000 シリーズシステム)
	10000 (4500、5500/5500+、および 6500/6500+ シリーズシステム)
Precursors of	785.9
МСА	オン
Scans to sum	1
Cycles	10 (4000 シリーズシステム)
	50 (4500、5500/5500+、および 6500/6500+ シ リーズシステム)
Advanced MS パラメータ	· · · · · · · · · · · · · · · · · · ·
Fixed LIT Fill Time (ms)	50 (4000 シリーズシステム)
	10 (4500、5500/5500+、および 6500/6500+ シ リーズシステム)
Compound パラメータ	
Collision Energy (CE) (V)	45(または最適化されたとおり)
Declustering Potential (DP)	70(または最適化されたとおり)
Syringe Pump Method パラメータ	
Flow rate (µL/min)	0.5
Syringe Size (μ L)	100 Gastight (1.46 mm)

注: CEは通常、40 V~48 Vで最適化します。CEがこの範囲内にない場合、CADガス値が 低すぎる値に設定されている可能性があります。M/z 785.9でのプレカーサーイオン強度 が元の強度の10%以下の場合は、CEとCADガスの相互作用が適切ではありません。詳細に ついては、SCIEXテクニカルサポートにお問い合わせください。

- 4. Start をクリックしてメソッドを実行します。
- 5. CE を最適化して、*m/z* 480.3、813.4、942.4、および 1171.7 時のフラグメント強度を最大化します。
- 6. 新規メソッドを保存します。
- 7. スプレー噴射が安定している状態の場合、Acquire をクリックして、データを測定します。
- 8. m/z 480.3、813.4、942.4、および 1171.7 時のフラグメント強度を記録します。
- 9. ステップ7と8をあと2回繰り返します。
- 10. 結果を印刷します。
- 11. イオンの3つの強度を平均化して、データログに結果を記録します。
- 12. 平均強度が許容範囲であるかを確認します。 データログ: NanoSpray[®] イオン源を参照して ください。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。

キャリブレーション基準表の作成

データスペクトルをもとに質量分析装置をキャリブレーションする前に、使用するキャリブ ラントの基準表を定義する必要があります。[グルコース¹]-フィブリノペプチドBの基準表が 存在しない場合、次のステップに従い作成します。

- 1. Tools > Settings > Tuning Options.をクリックします。
- 2. **Reference**をクリックします。

図 5-9 基準表エディタ

2	175.120 333.190 480.260	1.000	1		1 1
3	480.260	1.000	1		
1	400.200			0791	1
	004 360	1.000		(12)	
	813 300	1.000		V	
-	942 430	1.000		V	
-	1285 544	1.000		121	1
3				177	1
				(177)	1
10				100	1
11				1	1
12				111	1
13				1	1
4				077	1,
				1000	1

- 3. 前の図に示すエントリーを用いて、[グルコース1]-フィブリノペプチド B の基準表を作成 します。Low Mass と High Mass フィールドに、質量フラグメントの最小値および最大 値を必ず入力してください。
- 4. Update Refをクリックします。
- 5. Closeをクリックします。
- 6. **New**をクリックします。

図 5-10 Tuning Options ダイアログボックス

Tuning Options
Calibration Resolution
Standard: GluFib.pco Vow
Positive
Reference: Glu Fb pos
Q1 Method: Q1 Pos PPG.dam
Q3 Method: Q3 Pos PPG.dam
LIT Nethod: GluFib pos EPI.dam
Negative Reference: Q1 Method: Q3 Method: LIT Nethod:
Lodate Std. Delete Std. Beference
Print and Save OK Cancel Help

- 7. Standard フィールドに GluFib pos と入力します。
- 8. Positiveチェックボックスを選択します。

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C 9. Q1 Method フィールドで、Q1のキャリブレーションに使用するメソッドを選択します。
 10. Q3 Method フィールドで、Q3のキャリブレーションに使用するメソッドを選択します。
 11. LIT Method フィールドで、EPIモードテストの実施で作成したメソッドを選択します。
 12. Update Std をクリックします。
 13. OKをクリックします。

EPI モードでのキャリブレーション

- 1. Manual Tune モードで、パラメータがEPI モードテストの実施で指定した値に設定されて いるかを確認します。表 5-8を参照してください。
- スプレー噴射が安定している状態の場合、Acquire をクリックして、少なくとも 30 秒間のスキャンデータを測定します。
- 3. EPI スペクトルペインをクリックします。
- 4. Calibrate ボタンをクリックします (♠)。

図 5-11 4000 シ	リーズシステムの LIT Mass Calibration	ダイアログボックス
---------------	-------------------------------	-----------

	Mass (Da)	Intensity (cps)	# Charges	Use	
1	175.120	1.000	1	V	
2	333.190	1.000	1		
3	480.260	1.000	1	1	
4	684.350	1.000	1	1	
5	813.390	1.000	1	V	
6	942.430	1.000	1	V	
7	1285.544	1.000	1		
8				100	
9				(177)	
10				1	
11				(m)	
12				(m)	
13				1	
14				(m)	1,
	-			1000	-

図 5-12 4500、5500、5500+、6500、および 6500+ シリーズシステムの LIT 質量校正ダ イアログボックス

	Mass (Da)	Intensity (cps)	# Charges	Use	1
1	175.120	1.000	1	1	ц Ц
2	333.190	1.000	1	1	
3	480.260	1.000	1	V	
4	684.350	1.000	1	V	
5	813.390	1.000	1	V	
6	942.430	1.000	1	1	
7	1285.544	1.000	1	<u></u>	
8				E	
9				C	
10					
11					
12				[7]	
13					
14				C	
				_	

- 5. Standard フィールドで、ステップ 7 キャリブレーション基準表の作成 (GluFib pos) で作成した標準を選択します。
- 6. Startをクリックします。

Mass Calibration Report ペインが表示されます。一番上のグラフに、最後のキャリブレーション以降のキャリブレーション用イオンの質量ソフトが表示されます。

7. データスペクトラに問題なしと判断し、質量シフトが指定した範囲内であれば、Replace Calibration () をクリックします。

図 5-14 TuneDir ダイアログボックス

TuneDir	<u>×</u>
⚠	Got the new mass calibration table. Do you want to save the data?
	<u>Yes</u> <u>N</u> o

8. Yesをクリックします。

新規キャリブレーション値がキャリブレーション概要レポートの一番下に表示されます。

注: フラグメントイオンのうち、質量や強度が劇的に変化するものが1つでもあれば、 この変化がイオンのキャリブレーション前に起きたことかどうかを判断します。No を TuneDir ダイアログでクリックして、キャリブレーション概要レポートを確認します。 Found Mass カラムで質量を探し出し、ローデータスペクトルのイオンの品質を観察し ます。正しくないイオンを選択した場合、Search Range ダイアログボックスのLIT Mass Calibration を広げたり狭めたりします。ソフトウェアは、キャリブレーション検索範囲の 最強ピークのセントロイドを使用します。

図 5-15 LIT 質量校正結果レポート

LIT Mass Calibration Results for Positive Ions at 4000 daltor	ns per second
Generated On: August 18, 2003 13:27:59	
Last Calibration: August 18, 2003 13:26:39	
Peak Search Parameters: Search Renge: 0.250 Threshold: 200.000 Peak Vidth At: 50.000	
Config. table ver.: 03 Firmware ver.: M401400 B4T0301 M311408 B3T0306 Instrument name: Linear Ion Trap Quadrupole LC/KS/MS M Instrument ID: OTrap Manufacturer: AS Solex Instruments Serial number: n1390304 Model Number: 027170c Operator name: settince Forkstation: ELOPR04	dase Spectrometer
Acq.Nethod: testTune.don	
Data Filename: D:\Analyst Data\Projects\API Instrum Standard name: GluFib TIS Reference table name: GluFib cal Spectral information:	ment\Tuning Cache\MT20030010132650.wiff
Expected Hass Found Hass Xaes Shift Peak Vidth PV Shift 175.119 175.020 0.099 0.350 0.355 480.252 480.122 -0.066 0.408 0.259 813.389 813.420 -0.031 0.496 0.204 1285.544 1285.584 -0.040 0.576 0.124	t Intensity Change(%) 43.65 2 37.08 21.16 24.76
The Slope Variations for Active Calibratics Table Average Slope (DAC/anu): 37.326 Mass DAC Slope Variation 480.257 17908 n/a 013.309 30344 1.600 1285.544 47966 1.000	Slope n/a 37.331 37.322

メソッドのスキャン速度を変更して残り2つのスキャン速度をキャリブレーションし、この手順を繰り返します。

仕上げ

注: SCIEXフィールドサービスエンジニア(FSE)は設置後、NanoSpray[®]受け入れ試験実施の 結果をservicedata@sciex.comへEメールで報告する義務があります。

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C 1. 先端と注入ラインをくまなくフラッシュします。

2. 完成したデータログとテスト結果を一部コピーして、顧客に原本を提出します。

3200 シリーズシステムのイオン源テスト

警告! 高温面の危険。高圧レールやエミッターの先端に触れないでくださ い。

警告! 感電の危険性。NanoSpray[®]イオン源の操作は、照明器、カメラ、停止、カバーが適切に取り付けられていない場合は絶対に行わないでください。 カーテンプレートには絶対に触れないでください。また、カーテンプレート にエミッターの先端が接触しないようにしてください。質量分析装置が使用 可能で、イオン源がインストールされている場合は、X-Y-Z位置決めユニッ トをインターフェースから離れた場所に移動させても、カーテンプレートは 高電圧になっています。

API 3200[™]

・ Q1 および MS2 モードによるテスト

3200 QTRAP[®] システムの場合、以下のタスクを実行します。

- ・ Q1 および MS2 モードによるテスト
- ・ EPI モードでのテスト (3200 QTRAP[®] システムのみ)

注: NanoSpray[®]イオン源は、どの 3200 シリーズ装置でもサポートされていません。詳細については、営業担当者にお問い合わせください。

必要な物

- · レニン 10 pmol/µL、MS 化学キット2 高濃度 PPGs キット (PN 5512399) に同梱
- ・ 希釈溶媒
- ・ 100 µL シリンジ (内径 1.46 mm) または相当注入量
- パウダーフリーグローブ(ニトリルまたはネオプレンが推奨されます)
- ・ 安全メガネ
- ・白衣

レニン混合物 (濃度 500 fmol/µL) 2 mL の用意

1. 希釈溶媒 (キットに同梱) 2 ml を測定してバイアルに入れます。

- 2. 溶媒 100 µL を除去し処分します。
- 3. 濃度 10 pmol/µL のレニン 100 µL をバイアルに追加します。
- 4. 混ぜます。

Q1 および MS2 モードによるテスト

- 1. NanoSpray イオン源を質量分析装置にインストールします。 『NanoSpray[®]イオン源オペレータガイド』を参照してください。
- 2. NanoSprayIII ヘッドを用意します。NanoSpray[®]イオン源オペレータガイド』を参照してく ださい。
- 3. レニン混合物を流量 0.5 µL/分で注入します。

注意:システム汚染の可能性。エミッタチップ終端部をカーテンプレートアパチャに挿入しないでください。エミッタチップが少なくとも 2 mm ~ 5 mm アパチャから離れた 外側にあるかを確認します。アパチャに近すぎる位置でスプレー噴射すると、質量分析 装置の汚染の原因となる恐れがあります。

- スプレー噴射が安定するまで GS1 を調整します。 ゼロ幅ノイズスパイクなしの状態でス プレー噴射が安定するまで、低い値 (2 または 3) から始めて、徐々に値を増やします。 ス プレー噴射が安定するまで数分かかることがあります。
- 5. Analyst[®]ソフトウェアの **Tune and Calibrate** モードで、**Manual Tune**をダブルクリックし ます。
- 6. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

パラメータ	值值		
MS Method パラメータ			
Scan type	Q1 MS (Q1)		
Mass range	100~1200		
Advanced MS パラメータ			
Step size (Da)	0.1		
Source/Gas パラメータ			
Curtain Gas [™] flow (CUR)	20		
IonSpray Voltage (IS)	2100		
Ion Source Gas 1 (GSI)	3		

表 5-9 Q1 メソッドパラメータ

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

表 5-9 Q1 メソッドパラメータ (続き)

パラメータ	值		
Interface Heater Temperature (IHT) (°C)	75		
Compound パラメータ			
Declustering Potential (DP)	70(または最適化されたとおり)		

7. メソッドを実行します。

注意:システムに損傷を与える恐れ。エミッタチップがカーテンプレートに触れないようにしてください。Z 軸微調整/ブを使用して、スプレーポジションを調整しエミッタチップを損傷から守ります。

注意:システム汚染の可能性。エミッタチップ終端部をカーテンプレートアパチャに挿入しないでください。エミッタチップが少なくとも 2 mm ~ 5 mm アパチャから離れた 外側にあるかを確認します。アパチャに近すぎる位置でスプレー噴射すると、質量分析 装置の汚染の原因となる恐れがあります。

- 8. カーテンプレートアパチャに対してスプレーヘッドのポジションを調整して、シグナル強度を最適化します。 今後の使用のために、XYZ 値を記録します。
- 9. 最適なシグナルとシグナル対ノイズ比を得るまで、100 V 単位で IS を調整します。

注: lonSpray[™]電圧が高すぎると、コロナ放電が発生する可能性があります。これはプ ローブチップで青く光るため、目視確認できます。コロナ放電によって、シグナルの感 度と安定性が下がります。

10. シグナルが下がり始めるまで GS2 を増やし、シグナルが最大値に達するまで GS1 を減らし ます。

注: GS1パラメータはゼロで最適化することがあります。

11. シグナルが下がり始めるまで CUR を増やし、シグナルが最大値に達するまで CUR を減ら します。

注: 汚染を防ぐために、感度を損なわずに可能な限り CUR最高値を使用します。CURを 20以下に設定しないでください。これによって、ノイズの多いシグナルを生成する可能 性のあるCurtain Gas[™]流量の浸透を防ぎ、アパチャを汚染から守り、全体のシグナル対ノ イズ比を向上させます。

12. 結果を一部印刷して、最適化された Q1 測定メソッドを保存します。

- 13. スキャンタイプ を Product Ion (MS2) に設定し、Product Of を 587 に設定にします。
 14. CAD を Medium (6) に設定します。
- 15. CEを調整して、フラグメントイオンの強度を m/z 136 および 784 で最適化します。
- 16. 結果を一部印刷して、最適化された プロダクトイオンメソッドを保存します。
- 17. MS2 モードの強度がデータログ: NanoSpray[®] イオン源の仕様を満たしているかを確認しま す。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。 18. データログに結果を記録します。

EPI モードでのテスト (3200 QTRAP[®] システムのみ)

1. レニン混合物を流量 0.5 µL/分で注入します。

注意:システム汚染の可能性。エミッタチップ終端部をカーテンプレートアパチャに挿入しないでください。エミッタチップが少なくとも 2 mm ~ 5 mm アパチャから離れた 外側にあるかを確認します。アパチャに近すぎる位置でスプレー噴射すると、質量分析 装置の汚染の原因となる恐れがあります。

- 2. Analyst[®]ソフトウェアの **Tune and Calibrate** モードで、**Manual Tune**をダブルクリックし ます。
- 3. ステップ12で保存した最適化された Q1 メソッドを開きます Q1 および MS2 モードによるテ スト。
- 4. 次の表に示すとおりにメソッドパラメータを設定します。

パラメータ	值		
MS パラメータ			
Scan type	EPI		
Mass range (Da)	100~1200		
Product Of (Da)	587.4		
Duration (sec)	120		
Advanced MS パラメータ			
Fixed LIT fill time (msec)	20		
Q0 trapping	オフ		

表 5-10 EPI メソッドパラメータ

表 5-10 EPI メソッドパラメータ (続き)

パラメータ	值	
Q3 entry barrier	8	
Source/Gas パラメータ		
Curtain Gas [™] flow (CUR)	最適化されたとおり	
Collision Gas (CAD)	古同	
IonSpray Voltage (IS)	最適化されたとおり	
Temperature (TEM) (°C)	150	
Ion Source Gas 1 (GS1)	最適化されたとおり	
lon Source Gas 2 (GS2)	0	
Interface Heater Temperature (IHT)	オン	
Compound パラメータ		
Declustering Potential (DP)	80	
Collision Energy (CE) (V)	45(または最適化されたとおり)	
Collision Energy Spread (CES)	0	
Resolution パラメータ		
Q1 resolution	低	

5. メソッドを実行します。

- 6. CEを調整して、ピーク強度を136、647、784、および1028 で最適化します。
- 7. 結果を一部印刷して、最適化された EPI メソッドを保存します。
- 8. 強度がデータログ: NanoSpray[®]イオン源の仕様を満たしているかを確認します。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。 9. 結果を印刷したものを確認して、データログに強度を記録します。

仕上げ

注: SCIEXフィールドサービスエンジニア(FSE)は設置後、NanoSpray[®]受け入れ試験実施の 結果をservicedata@sciex.comへEメールで報告する義務があります。

- 1. 先端と注入ラインをくまなくフラッシュします。
- 2. 完成したデータログとテスト結果を一部コピーして、顧客に原本を提出します。

PhotoSpray[®]イオン源テスト

次の条件のいずれかでテストを実行します。

- ・ 新しいイオン源をインストールした場合。
- ・ イオン源の大規模メンテナンス後。
- ・ プロジェクトの開始前や標準動作手順の一部としてイオン源の性能の評価が必要なとき。

警告!イオン化放射線障害の危険性、生物学的危険、および有害化学物質の 危険性。イオン源で使用する有害物質や障害性物質の適正使用、汚染、排気 に関する知識や訓練を受けている場合に限り、イオン源を使用します。

警告! 尖った部分により怪我をする危険性、イオン化放射の危険性、生物学 的危険性、あるいは有害化学物質の危険性。イオン源のウィンドウがひび割 れたり破損したりした場合、イオン源の使用を中止して、SCIEXフィールド サービスエンジニア(FSE)にお問い合わせください。装置に入り込んだ有 害物質や障害性物質は、イオン源排気出力に混入します。装置からの排気は 室外に換気してください。認定を受けた検査室安全手順に従い、鋭利物を処 分します。

警告! 有害化学物質の危険性があります。白衣、手袋、保護メガネなどの身体保護
具を着用して、皮膚や目を危険物質にさらさないようにします。

警告! イオン化放射線障害の危険性、生物学的危険、および有害化学物質 の危険性。化学物質の流出が発生した場合、特定の指示に関して製品安全性 データシートを確認します。イオン源付近にこぼれたものを掃除する前に、 システムがStandbyモードであることを確認してください。適切な個人用防 護具と吸着布を使用して、流出を食い止め、現地規制に従い処分してください。

6

PhotoSpray[®]イオン源テスト

必要な物

- ・ MSグレードメタノール
- · HPLCグレード脱イオン水
- · 移動相溶媒: アセトニトリル: 水 (70:30) 溶液
- ドーパント: 100~150 µL/分で注入されるトルエン (HPLC グレード)ドーパントは、個別の
 HPLC ポンプで注入しなければなりません。
- ・ SCIEX 標準化学物質キット (PN 4406127) 同梱の事前希釈 0.0167 pmol/µL レセルピン溶液。
- HPLCポンプ(移動相用)
- ・ ドーパント注入用 HPLC ポンプ。
- 5 μL ループ付マニュアルインジェクタ (8125 レオダインまたは相当) または 5 μL 注入仕様のオートサンプラー
- · 外径 (o.d.) 1/16-インチ、内径 (i.d.) 0.005-インチのPEEK チューブ
- 250 µL ~ 1000 µL のシリンジ
- パウダーフリーグローブ(ニトリルまたはネオプレンが推奨されます)
- ・ 安全メガネ
- ・白衣

注: すべてのテスト溶液は冷蔵保存しておかなければなりません。冷蔵庫から48時間以上 外放置された場合、処分して新しい溶液を使用します。

注意: 誤った結果をもたらす可能性。有効期限切れの溶液を使用しないでください。

テストの準備

警告!感電の危険性。操作中、イオン源に印加された高電圧に触れないよう にします。サンプルチューブやイオン源付近の他の装置を調整する前に、シ ステムをStandbyモードにします。

- 新しいイオン源をインストールした場合、質量分析装置が既存のイオン源を使用したときの仕様で動作していることを確認します。
- ・ イオン源を質量分析装置にインストールします。
- イオン源が完全に最適化されているかを確認します。イオン源については、『オペレータ ガイド』を参照してください。

化学溶液または溶媒を取り扱う前に確認が必要な注意事項は、適用する安全性データシートをすべて参照してください。

注: 使用するポンプに関係なく、ドーパント流路にはかなりの背圧がかかっています。

イオン源テスト

警告! 高温面の危険。メンテナンス手順を開始する前に、イオン源を少なく とも 30 分そのままにして熱を下げます。操作中、イオン源の表面が熱くな ります。

注意: システムに損傷を与える恐れ。イオン源が適正温度に達したことを確認するまで、 他の溶媒流量を導入しないでください。

注意:システムに損傷を与える恐れ。Curtain Gas[™]流量にできる限り高値を使用します。

注:最適なイオン移動電圧は、UVランプの高さに左右されます。設定した1つのUVランプ の高さに、最適なイオン移動電圧は1つしかありません。同様に、特定のイオン移動電圧に 最適なUVランプの高さは1つしかありません。ユーザーがUVランプの高さを変更する場合、 高さの新設定値ごとにイオン移動電圧を最適化して、UVランプの高さとイオン移動電圧の 最適な設定値を割り出します。

- 1. Analyst[®]ソフトウェアの **Tune and Calibrate** モードで、**Manual Tune**をダブルクリックします。
- 2. 前回最適化したメソッドを開くか、以下の表に示すメソッドパラメータを設定します。

表 6-1 メソッドパラメータ

パラメータ	值	
Probe パラメータ		
Sample concentration	10 pg/µL	
Mobile phase	70:30 ACN:H ₂ O	
Flow rate (µL/min)	500	
Flow rate (µL/min)	25 (ループの過充填)	
Sample loop (µL)	5	
Ionization mode	ポジティブ	

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C イオン源 **89 / 162**

表 6-1 メソッドパラメータ (続き)

パラメータ	值	
Probe vertical micrometer setting	2	
Probe horizontal micrometer setting	5	
UV Lamp vertical micrometer setting	5	
Dopant	流量 100 µL/分 ~ 150 µL/分	
MS パラメータ		
Scan mode	MRM	
Q1 mass (Da)	609.3 (または計算精密質量)	
Q3 mass (Da)		
Source/Gas パラメータ		
Curtain Gas [™] (CUR)	30(または最適化されたとおり)	
Collision Gas (CAD)	<u></u>	
lon Transfer Voltage (IS)	800(または最適化されたとおり)	
Temperature (TEM)	400(または最適化されたとおり)	
Ion Source Gas 1 (GS1)	60(または最適化されたとおり)	
lon Source Gas 2 (GS2)		
Compound パラメータ		
 Declustering Potential (DP) 100 (または最適化されたとおり)		
Collision Energy (CE)	45(または最適化されたとおり)	
Collision Exit Potential (CXP)		
Resolution パラメータ	1	
Resolution	単位/単位	
	と異なる場合があります。	

- 3. Acquire をクリックしてデータ収集を開始します。
- 4. アセトニトリル:水 (70:30) 溶液をサンプルインレットから流量 500 µL/分で導入します。
- 5. ドーパントをドーパントインレットから流量 75 µL/分で導入します。
- 6. テスト溶液でサンプルループを満たします。
- 7. 多重反応モニタリング (MRM) 609/195 遷移をモニタリングしている間に、レセルピンテス ト溶液 10 pg/µL を注入します。

- 8. 化合物固有パラメータを最適化します。
- 9. プローブと UV ランプのポジションを最適化します。
- 10. イオン源パラメータを最適化します。
- 11. 結果を印刷します。
- 12. 結果を印刷したものを確認します。
- 13.5回の注入の平均強度が許容範囲か確認します。 データログ: PhotoSpray[®] イオン源を参照 してください。

結果が許容範囲ではない場合、トラブルシューティングのヒントを参照してください。

兆候	考えられる原因	対策
シグナルなし	 噴霧されていません。 (NanoSpray[®]イオン源)イ オン源のヘッドポジ ションが正しくありま せん。 	 『イオン源オペレータガイド』を参照 して、スプレー噴射問題を解決してく ださい。 X-Y-Z 調整ノブを使用して、エミッタ チップポジションを調整します。
予想外に幅のある LC ピークまたは後部	(NanoSpray [®] イオン源) 継手 部にデッドボリュームがあ ります。	 ・ すべてのポストカラムチューブに 25 ミクロン以下または相当の内部直径が あることを確認します。 ・ すべての接続を点検して、適切に固定 されているか点検します。 ・ すべての切断部をフラッシュします。 ・ エミッタチップを交換します。
低ピーク強度	 イオン源ポジション、 チップ突出部、または イオン源パラメータ値 が正しくありません。 シリンジまたはサンプ ル通路に漏れがありま す。 Q1またはQ3がキャリブ レーションされていま せん。 サンプルが劣化、また はサンプル濃度が低い です。 LCシステムに問題があ ります。 	 イオン源を最適化します。 漏れがないかどうかを点検します。 装置最適化ウィザードを使用して、Q1 またはQ3をキャリブレーションしま す。 サンプル濃度を点検します。新規サ ンプルまたは凍結サンプルを使用しま す。 LCシステムの問題を解決します。
貧弱な分解能	装置が最適化されていません。	装置を最適化してください。

7

兆候	考えられる原因	対策
貧弱な感度	1. インターフェースコン ポーネント (フロントエ ンド)が汚れています。	 インターフェースコンポーネントをク リーニングして、イオン源を再インス トールします。
	 溶媒蒸気または不明の 化合物がアナライザ領 域に存在します。 サンプルが正しく用意 されなかったか、サン 	 2. Curtain Gas[™] 流量を最適化します。 3. サンプルが適切に用意されたことを確認します。 4. 継手が絞められているかを確認して、 漏れが継続する場合は継手を交換しま
	プルが劣化していま す。 4. サンプルインレットに 漏れがあります。 5. イオン源が故障してい ます。	す。継手を締め付けすぎないでくだ さい。 5. 代替イオン源をインストールして最適 化します。それでも問題が解消され ない場合は、FSE に連絡します。
低シグナル	 デクラスタリング電位 (DP)が最適化されて いません。 エレクトロードが汚れ ているか、塞がれてい ます。 	 デクラスタリングを最適化して、最適 なシグナルまたはシグナル対ノイズ比 を達成します。最適値は、他のイオ ン源を使用した場合と異なることがあ ります。 エレクトロードをクリーニングしま す。
低いシグナル対ノイズ 比	 イオン源ポジション、 チップ突出部、または イオン源パラメータ値 が正しくありません。 シリンジまたはサンプ ル通路に漏れがありま す。 希釈剤が汚染されてい る。 	 イオン源を最適化します。 漏れがないかどうかを点検します。 MS グレード試薬 (0.1% ギ酸、10% ア セトニトリル)で作成した新しい希釈 剤を使用します。

兆候	考えられる原因	対策
高いバックグラウンド ノイズ	 希釈剤が汚染されています。 シリンジまたはサンプル通路が汚れています。 	 MS グレード試薬 (0.1% ギ酸、10% ア セトニトリル)で作成した新しい希釈 剤を使用します。 シリンジまたはサンプル通路をクリー ニングまたは交換します。
	 インターフェースに残 留物があります。 温度(TEM)が高すぎま す。 ヒーターガス流量 (GS2)が多すぎます。 イオン源が汚染されて 	 カーテンプレートとオリフィスプレートをクリーニングします(質量分析装置は、『有資格保守要員ガイド』を参照)。必要に応じて、インターフェースを焼付します。それでも問題が解消されない場合は、Q0またはQlet®イオンガイドをクリーニングします。 温度を最適化します。
	います。	 5. ヒーターガス流量を最適化します。 6. イオン源コンポーネントをクリーニン グするか交換してから、イオン源とフ ロントエンドを以下のように調整しま す。
		 9。 a. APCI プローブまたはTISプローブを アパチャから最も離れた位置に移 動します (垂直または水平に)。 b. ポンプ流量 1 mL/分でメタノール: 水 (50:50) を注入します。 c. Analyst[®]/Analyst[®] TFソフトウェアで、 TEMを650に、GS1を60に、および GS2を60に設定します。 d. Curtain Gas 流量を 45 または 50 に設 定します。 e. 少なとも 2 時間ないしできれば一 晩中実行して、最良の結果を得る ようにします。 7. エミッタチップ位置を調整します。

兆候	考えられる原因	対策
テスト時に、イオン源 が仕様を満たさない	質量分析装置がインストー ルテストに合格していませ ん。	デフォルトイオン源で質量分析装置のイ ンストールテストを実施します。
目標温度に達していな いか、または温度が高 すぎるか不安定です	インターフェースヒーター が故障しています。	Mass Spectrometer Detailed Status ダ イアログボックスを開きます。Source Temperature フィールドに設定温度が入 力されていて、Interface Heater Status がReadyの状態である必要があります。 そうではない場合、インターフェース ヒーターを交換します有資格保守要員 (QMP)またはフィールドサービスエン ジニア(FSE)に連絡してください。

データログ: IonDrive[™] Turbo V イオン源

システム情報

表 A-1 質量分析装置の情報

質量分析装置のシリアル番号	

イオン源情報

コンポーネント	シリアル番号
イオン源	
TurbolonSpray [®] プローブ	
APCIプローブ	

Α

IonDrive Turbo V イオン源テスト結果

注: lonDrive[™] Turbo V イオン源は、装置の 6500 および 6500+ シリーズ、および と 6600/6600+ システムのみでサポートされています。

プローブ	強度 (cps)	強度 (cps)	結果 (cps)
	6500	6500+	
TurbolonSpray [®] プローブ	1.25 × 10 ⁶	1.9 × 10 ⁶	
APCIプローブ	5.0 × 10 ⁵	7.5 × 10 ⁵	

サインオフ

組織	
FSE名	日付(年-月-日)
FSE署名	

コメントおよび例外

データログ: Turbo V[™] イオン源

システム情報

表 B-1 質量分析装置の情報

質量分析装置のシリアル番号	

イオン源情報

コンポーネント	シリアル番号
イオン源	
TurbolonSpray [®] プローブ	
APCIプローブ	

データログ: Turbo V[™] イオン源

Turbo V イオン源テスト結果

注: 仕様は、TripleTOF[®] 4600 システムに対応していません。このシステムの推奨イオン源は、DuoSpray[™] イオン源です。

注: 6500および6500+シリーズシステムのテストは低質量モードで実行されます。

					結果			
3200	3500	4000	4500	5000 および 5500/5500+	5600/5600+ お よび 6600/ 6600+	6500	6500+	
TurbolonSpra	ay [®] プローブ			·	<u>.</u>			
1.0 × 10 ⁴	2.0 × 10 ⁴	1.0 × 10 ⁵	2.0 × 10 ⁵	5.0 × 10 ⁵	1.0 × 10 ⁴	1.0 × 10 ⁶	1.5 × 10 ⁶	
APCI プローフ	Ĩ							
5.0 × 10 ³	1.0 × 10 ⁴	5.0 × 10 ⁴	1.0×10^{5}	2.5 × 10 ⁵	5.0 × 10 ³	5.0 × 10 ⁵	7.5 × 10 ⁵	

サインオフ

組織	
FSE名	日付(年-月-日)
FSE署名	

コメントおよび例外

データログ: DuoSpray[™] イオン源

システム情報

表 C-1 質量分析装置の情報

質量分析装置のシリアル番号	

イオン源情報

コンポーネント	シリアル番号
イオン源	
TurbolonSpray [®] プローブ	
APCIプローブ	

DuoSpray イオン源テスト結果

注: 6500および6500+シリーズシステムのテストは低質量モードで実行されます。

強度 (cps)						結果		
3200	4000	4500	4600	5000 および 5500/5500+	5600/5600+ およ び 6600/6600+	6500	6500+	
TurbolonSpra	ay [®] プローブ							
5.0 × 10 ³	5.0×10^4	1.0 × 10 ⁵	2.0×10^{3}	2.5 × 10 ⁵	5.0×10^{3}	5.0 × 10 ⁵	7.5 × 10 ⁵	
APCI プローブ	ĵ							
2.5 × 10 ³	2.5×10^4	5.0×10^4	1.0×10^{3}	1.25 × 10 ⁵	2.5×10^{3}	2.5 × 10 ⁵	3.8 × 10 ⁵	

サインオフ

組織		
FSE名	日付(年-月-日)	
FSE署名		

コメントおよび例外

データログ: OptiFlow[™] Turbo V イオン源

システム情報

表 D-1 質量分析装置の情報

質量分析装置のシリアル番号	

イオン源情報

コンポーネント	シリアル番号
イオン源	
SteadySpray プローブ	
電極バッチ番号	

D

OptiFlow Turbo V イオン源テスト結果

注: 6500および6500+シリーズシステムのテストは低質量モードで実行されます。

	結果			
5500/5500+				
SteadySpray プローブ				
5.0 × 10 ⁵	1.0 × 10 ⁶	1.5 × 10 ⁶	1.0×10^4	

サインオフ

組織	
FSE名	日付(年-月-日)
FSE署名	

コメントおよび例外
データログ: NanoSpray[®] イオン源

システム情報

表 E-1 質量分析装置の情報

質量分析装置のシリアル番号	

イオン源情報

コンポーネント	シリアル番号
イオン源	
TurbolonSpray [®] プローブ	
APCIプローブ	

Ε

データログ: NanoSpray[®] イオン源

NanoSpray イオン源テスト結果 (TripleTOF システム)

注: SCIEXフィールドサービスエンジニア(FSE)は設置後、NanoSpray[®]受け入れ試験実施の結果をservicedata@sciex.comへEメールで報告する義務があります。

表 E-2 TOF MS テスト結果

質量 786	仕	結果		
	4600	5600/5600+ および 6600/6600+		
セントロイド強度 (ピーク高 さ、cps)	≥ 1500	≥ 4000		
分解能	≥ 25 000	≥ 30 000		

表 E-3 プロダクトイオン高感度テスト結果 (5600/5600+ および 6600/6600 +システムのみ)

質量	セントロイド強度 (cps)		分解能	
	仕様	結果	仕様	結果
187.0713	≥ 60		該当なし	該当なし
480.2565	≥ 212		≥ 15 000	
813.3890	≥ 375		≥ 15 000	

イオン源 110 / 162 テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

表 E-3 プロダクトイオン高感度テスト結果 (5600/5600+ および 6600/6600 +システムのみ) (続き)

質量	セントロイド強度 (cps)		分解能	
	仕様	結果	仕様	結果
1056.4745	≥ 225		≥ 15 000	

表 E-4 プロダクトイオンテスト結果

質量	セントロイド強度 (cps)			分解能		
	4600	5600/5600+ および 6600/6600+	結果	4600	5600/5600+ および 6600/6600+	結果
187.0713	≥ 8	≥ 20		該当なし	該当なし	該当なし
480.2565	≥ 25	≥ 65		≥ 24 000	≥ 25 000	
813.3890	≥ 35	≥ 125		≥ 25 000	≥ 25 000	
1056.4745	≥ 25	≥ 65		≥ 25 000	≥ 25 000	
 注: 5600/5600+ および 6600/6600+ システムの場合、このテストを高分解能モードで実施します。						
必要なプリン	ットアウト: 187.071	3、480.2565、813.3890、	および 1056.4745			

NanoSpray イオン源テスト結果 (4000、4500、5500、5500+、6500、および 6500+ シリーズシ ステム)

このセクションの仕様は、NanoSpray[®]IIIイオン源用ではありません。SCIEX 質量分析装置用 DPV-450 Digital PicoView[®] Nanosprayイオン源の仕様は、 New Objective 社の*『インストールマニュアル』*を参照してください。

注: SCIEXフィールドサービスエンジニア(FSE)は設置後、NanoSpray[®]受け入れ試験実施の結果をservicedata@sciex.comへEメールで報告する義務があります。

表 E-5 Q1 モードテスト結果

質量	强度 (cps)					
	4000	4500	5500/5500+	6500	6500+	結果
786	1.0 × 10 ⁵	2.5 × 10 ⁵	5.0 × 10 ⁵	1.0×10^{6}	1.5 × 10 ⁶	

表 E-6 Q3 モードテスト結果

質量						
	4000	4000 4500 5500/5500+ 6500 6500+ 結果				
786	1.0 × 10 ⁵	2.5 × 10 ⁵	5.0 × 10 ⁵	1.0×10^{6}	1.5 × 10 ⁶	

表 E-7 EPI モードテスト結果 (QTRAP[®] システムのみ)

質量						
	4000	4500	5500/5500+	6500	6500+	結果
	強度 (cps)					
480.3	1.0 × 10 ⁵	5.0 × 10 ⁵	1.0 × 10 ⁶	5.0 × 10 ⁶	7.5 × 10 ⁶	
813.4	1.0 × 10 ⁵	5.0 × 10 ⁵	1.0 × 10 ⁶	5.0 × 10 ⁶	7.5 × 10 ⁶	
942.4	5.0 × 10 ⁴	2.5 × 10 ⁵	5.0 × 10 ⁵	2.5 × 10 ⁶	3.8 × 10 ⁶	
1171.7	4.0×10^4	2.0 × 10 ⁵	該当なし	該当なし	該当なし	

NanoSpray イオン源テスト結果 (3200 シリーズシステム)

表 E-8 MS2 モードテスト結果

質量	強度 (cps)	結果 (cps)
136.1	≥1.6 × 105	
784.4	≥ 5000	

データログ: NanoSpray[®] イオン源

表 E-9 EPI モードテスト結果

質量	強度 (cps)	結果 (cps)
136.1	1.0 × 10 ⁵	
647.3	4.0×10^4	
784.4	8.0 × 10 ⁴	
1028.5	1.0×10^{4}	

サインオフ

組織	
FSE名	日付(年-月-日)
FSE署名	

コメントおよび例外

データログ: PhotoSpray[®]イオン源

システム情報

表 F-1 質量分析装置の情報

質量分析装置のシリアル番号	

イオン源情報

コンポーネント	シリアル番号
イオン源	
TurbolonSpray [®] プローブ	
APCIプローブ	

F

PhotoSpray イオン源テスト結果

注: 6500および6500+シリーズシステムのテストは低質量モードで実行されます。

	 強度 (cps)								
3200	4000	4500	5000 および 5500	6500	6500+	結果			
2.5×10^{3}	5.0×10^4	1.0 × 10 ⁵	2.5 × 10 ⁵	5.0 × 10 ⁵	7.5 × 10 ⁵				

サインオフ

組織						
FSE名	日付(年-月-日)					
FSE署名						

コメントおよび例外

TripleTOF[®] システムパラメータ

次の表に、TripleTOF[®]4600、5600、5600+、6600、および 6600+ システムの一般的なパラメータを示します。 各スキャン種類の最初の数字はあらかじめ設定された値です。数字の範囲は、各パラメータの許容範囲です。

表 G-1 TripleTOF[®] システムパラメータ

パラメータ ID	アクセス ID	正イオンモード			負イオンモード		
		Q1	TOF MS	MS/MS	Q1	TOF MS	MS/MS
GS1	GS1	20	20	20	20	20	20
		0~90	0~90	0~90	0~90	0~90	0~90
GS2	GS2	15	15	15	15	15	15
		0~90	0~90	0~90	0~90	0~90	0~90
CUR	CUR	25	25	25	25	25	25
		10~55	10~55	10~55	10~55	10~55	10~55

TripleTOF[®] システムパラメータ

表 G-1 TripleTOF[®] システムパラメータ (続き)

パラメータ ID	アクセス ID	正イオンモード			負イオンモード			
		Q1	TOF MS	MS/MS	Q1	TOF MS	MS/MS	
TEM ^{1,2,3,4,5,15}	TEM	0	0	0	0	0	0	
		0~750	0~750	0~750	0~750	0~750	0~750	
ISVF ^{1,4,15}	IS	5000	5000	5000	-4000	-4000	-4000	
(ISVF = IS - OR)		0~5500	0~5500	0~5500	-4500~0	-4500~0	-4500~0	
ISVF ⁷	IS	1000	1000	1000	-1000	-1000	-1000	
(ISVF = IS - OR)		0~4000	0~4000	0~4000	-4000~0	-4000~0	-4000~0	
NC⁵	NC	3	3	3	-3	-3	-3	
		0~5	0~5	0~5	-5~0	-5~0	-5~0	
IHT ⁷	IHT	150	150	150	150	150	150	
		0~225	0~225	0~225	0~225	0~225	0~225	

¹ DuoSpray[™]イオン源

² Turbo V[™]イオン源

³ IonDrive[™] Turbo V イオン源 (該当する場合)

⁴ TurbolonSpray[®] プローブ

⁵ APCIプローブ

⁶ OptiFlow[™] Turbo V

⁷ NanoSpray[®]イオン源

イオン源

120 / 162

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

表 G-1 TripleTOF[®] システムパラメータ (続き)

パラメータ ID	アクセス ID	正イオンモード				負イオンモード	
		Q1	TOF MS	MS/MS	Q1	TOF MS	MS/MS
または	DP	80	100	80	-80	-80	-80
(DP = OR - Q0)		0~300	0~300	0~300	-300~0	-300~0	-300~0
Q0	Q0	40	該当なし	該当なし	-40	該当なし	該当なし
		-300~300			-300~300		
Q0	CE	該当なし	10	30	該当なし	-10	-30
(CE = Q0 - RO2)			5~150	0~150		-150 ~ -5	-150~0
CES	CES	該当なし	該当なし	0	該当なし	該当なし	0
				0~50			0~50
RO1	IE1	2	2	2	-2	-2	-2
(IE1 = Q0 - RO1)		-300~300	-300~300	-300~300	-300~300	-300~300	-300~300
IQ2	IQ2	0	25	0	0	-25	0
		-300~300	-300~300	-300~300	-300~300	-300~300	-300~300
CAD	CAD	6	6	6	6	6	6
		0~12	0~12	0~12	0~12	0~12	0~12
RO2	RO2	30	30	30	-30	-30	-30
		-57~57	-57~57	-57~57	-57~57	-57~57	-57~57

表 G-1 TripleTOF[®] システムパラメータ (続き)

パラメータ ID アクセス ID			正イオンモード		負イオンモード			
		Q1	TOF MS	MS/MS	Q1	TOF MS	MS/MS	
IRD	IRD	30	30	30	30	30	30	
		6~1000	6~1000	6~1000	6~1000	6~1000	6~1000	
IRW	IRW	15	15	15	15	15	15	
		5~1000	5~1000	5~1000	5~1000	5~1000	5~1000	
LNR	LNR	-15000	-15000	-15000	15000	15000	15000	
		-20000~20000	-20000~20000	-20000~20000	-20000~20000	-20000~20000	-20000~20000	
CEM	CEM	2300	2200	2200	2200	2200	2200	
		0~3000	0~3000	0~3000	0~3000	0~3000	0~3000	
OFS	OFS	30	30	30	-60	-60	-60	
		-100~100	-100~100	-100~100	-100~100	-100~100	-100~100	
MGV	MGV	-975	-975	-975	975	975	975	
		-2000~2000	-2000~2000	-2000~2000	-2000~2000	-2000~2000	-2000~2000	
MPV	MPV	2600	2600	2600	-2600	-2600	-2600	
		-4000~4000	-4000~4000	-4000~4000	-4000~4000	-4000~4000	-4000~4000	

6500 および 6500+ シリーズシステムパラメータ

各スキャン種類の最初の数字はあらかじめ設定された値です。数字の範囲は、各パラメータの許容範囲です。

表 H-1 6500 および 6500+ シリーズシステムパラメータ

パラメータ ID	アクセス ID	正イオンモード				負イオンモード	
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		20~55	20~55	20~55	20~55	20~55	20~55
CAD 8,9	CAD ^{8,9}	0	6	中	0	6	中
		該当なし	該当なし	低、中、高	該当なし	該当なし	低、中、高
CAD ^{10,11}	CAD ^{10,11}	0	6	9	0	6	9
		該当なし	該当なし	0~12	該当なし	該当なし	0~12

⁸ QTRAP[®] 6500 または 6500+ システム、低質量 (LM) ⁹ QTRAP[®] 6500 または 6500+ システム、高質量 (HM)

¹⁰SCIEX Triple QuadTM 6500 または 6500+ システム、低質量 (LM)

¹¹SCIEX Triple Quad[™] 6500 または 6500+ システム、高質量 (HM)

表 H-1 6500 および 6500+ シリーズシステムパラメータ (続き)

パラメータ ID	アクセス ID		正イオンモード			負イオンモード	
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
IS ^{12,13,14,15}	IS ^{12,13,14}	5500	5500	5500	-4500	-4500	-4500
		0~5500	0~5500	0~5500	-4500~0	-4500~0	-4500~0
IS ¹⁶	IS ¹⁶	1500	1500	1500	-1500	-1500	-1500
		0~2500	0~2500	0~2500	-2500~0	-2500~0	-2500~0
IS ¹⁷	IS ¹⁷	1000	1000	1000	-1000	-1000	-1000
		0~4000	0~4000	0~4000	-4000~0	-4000~0	-4000~0
NC ^{13,16,19,18}	NC ^{13,16,19,18}	3	3	3	-3	-3	-3
		0~5	0~5	0~5	-5~0	-5~0	-5~0

¹²Turbo V[™]イオン源

¹³IonDrive[™] Turbo V イオン源

¹⁴TurbolonSpray[®] (TIS) プローブ

¹⁵OptiFlow[™] Turbo V

¹⁶PhotoSpray[®]イオン源

¹⁷NanoSpray[®]イオン源

¹⁸APCIプローブ

¹⁹DuoSpray[™]イオン源

イオン源 124 / 162

表 H-1 6500 および 6500+ シリーズシステムパラメータ (続き)

パラメータ ID	アクセス ID	I	Eイオンモード		負イオンモード		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
TEM ^{12,13,16,19,14,18,15}	TEM ^{12,13,16,19,14,18}	0	0	0	0	0	0
		0~750	0 ~ 750	0~750	0 ~ 750	0~750	0 ~ 750
または	DP	100	100	100	-100	-100	-100
(DP=OR)		0~300	0~300	0~300	-300~0	-300~0	-300~0
Q0	EP	10	10	10	-10	-10	-10
(EP = -Q0)		2~15	2~15	2~15	-15~-2	-15~-2	-15~-2
IQ1	IQ1	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + 0.5	Q0 + 0.5	Q0 + 0.5
(IQ1=Q0+オフセット)		-0.1 ~ -2	-0.1 ~ -2	-0.1 ~ -2	0.1~2	0.1~2	0.1~2
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8
(ST = Q0 + オフセット)		-12 ~ -5	-12 ~ -5	12 ~ -5	5~12	5~12	5~12
RO1 (IE1 = Q0 - RO1)	IE1	1 0~3	該当なし	1 0~3	-1 -3 ~ -0	該当なし	-1 -3 ~ -0
IQ2	IQ2	Q0+ (-10)	Q0+ (-10)	Q0+ (-10)	Q0 + 10	Q0 + 10	Q0 + 10
(IQ2=Q0+オフセット)		-30 ~ -8	-30 ~ -8	-30 ~ -8	8~30	8~30	8~30
RO2	RO2	-20	-20	該当なし	20	20	該当なし
		該当なし	該当なし		該当なし	該当なし	

表 H-1 6500 および 6500+ シリ	ーズシステムパラメータ	(続き)
-------------------------	-------------	------

パラメータ ID	アクセス ID	ם	正イオンモード			負イオンモード			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS		
RO2	CE	該当なし	該当なし	30	該当なし	該当なし	-30		
(CE = Q0 - RO2)				5~180			-180 ~		
							-5		
ST3	ST3	RO2 - 10	該当なし	該当なし	RO2 + 10	該当なし	該当なし		
(ST3 = RO2 + オフセッ ト)		-30 ~ -5			5~30				
ST3	СХР	該当なし	15	15	該当なし	-15	-15		
(CXP = RO2 - ST3)			0~55	0~55		-55~0	-55~0		
RO3	RO3	-50	該当なし	該当なし	50	該当なし	該当なし		
		該当なし			該当なし				
RO3	IE3	該当なし	1	1	該当なし	-1	-1		
(IE3 = RO2 - RO3)			0~5	0~5		-5~0	-5~0		
СЕМ	CEM	1700	1700	1700	1700	1700	1700		
		0~3300	0~3300	0~3300	0~3300	0~3300	0~3300		
GS1	GS1	20	20	20	20	20	20		
		0~90	0~90	0~90	0~90	0~90	0~90		

表 H-1 6500 および 6500+ シリーズシステムパラメータ (続き)

パラメータ ID	アクセス ID	ם	正イオンモード			負イオンモード			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS		
GS2	GS2	0	0	0	0	0	0		
		0~90	0~90	0~90	0~90	0~90	0~90		
IHT ¹⁷	IHT ¹⁷	150	150	150	150	150	150		
sdp ¹⁹	sdp ¹⁹	1	1	1	1	1	1		
		1または2	1または2	1または2	1または2	1または2	1または2		

表 H-2 LIT スキャンタイプ専用の 6500 および 6500+ シリーズシステムパラメータLIT スキャンシステム専用の

パラメータ ID	アクセス ID	正イオンモード	負イオンモード
CAD	CAD	高い	高い
		低、中、高	低、中、高
AF2 ²⁰	AF2	0.1	0.1
		0~1	0~1
AF3	AF3	質量速度依存	質量速度依存
		0~10	0~10

²⁰MS/MS/MSのみ

表 H-2 LIT スキャン	ノタイプ専用の 650) および 6500+ シリ-	-ズシステムパラメータ	^z LIT スキャンシステム専用の (続き)
----------------	-------------	-----------------	-------------	-----------------------------------

パラメータ ID	アクセス ID	正イオンモード	負イオンモード
EXB	ЕХВ	質量速度依存	質量速度依存
		-165~0	0~165
CES	CES	0	0
		0~50	0~50
ROS	CE	10	-10
(Q0 - ROS)		5~180	-5 ~ -180

5500 および 5500 + シリーズシステムパラメータ

各スキャン種類の最初の数字はあらかじめ設定された値です。数字の範囲は、各パラメータの許容範囲です。

表 I-1 5500 および 5500 + シリーズシステムパラメータ

パラメータ ID	アクセス ID	正イオンモード				負イオンモード	
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		10~55	10~55	10~55	10~55	10~55	10~55
CAD	CAD	0	6	中 (9)	0	5	中 (9
		該当なし	該当なし	0~12	該当なし	該当なし	0~12
IS ^{21,22}	IS ^{21,22}	5500	5500	5500	-4500	-4500	-4500
		0~5500	0~5500	0~5500	-4500~0	-4500~0	-4500~0

²¹Turbo V[™]イオン源

²²TurbolonSpray[®] プローブ ²³OptiFlow[™] Turbo V

表 I-1 5500 および 5500 + シリーズシステムパラメータ (続き)

パラメータ ID	アクセス ID	正	イオンモード		負イオンモード			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
NC ²⁴	NC ²⁴	3	3	3	-3	-3	-3	
		0~5	0~5	0~5	-5~0	-5~0	-5~0	
TEM ^{22,24,15}	TEM ^{22,24}	0	0	0	0	0	0	
		0~750	0 ~ 750	0~750	0~750	0~750	0 ~ 750	
または	DP	100	100	100	-100	-100	-100	
(DP = OR)		0~300	0~300	0~300	-300~0	-300~0	-300~0	
Q0	EP	10	10	10	-10	-10	-10	
(EP = -Q0)		2~15	2~15	2~15	-15~-2	-15~-2	-15~-2	
IQ1	IQ1	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + 0.5	Q0 + 0.5	Q0 + 0.5	
(IQ1 = Q0 + オフ セット)		-0.1 ~ -2	-0.1 ~ -2	-0.1 ~ -2	0.1~2	0.1~2	0.1~2	
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8	
(ST = Q0 + オフセッ ト)		-12 ~ -5	-12 ~ -5	12 ~ -5	12~5	12~5	12~5	
RO1 (IE1 = Q0 - RO1)	IE1	1 0~3	該当なし	1 0~3	-1 -3 ~ -0	該当なし	-1 -3 ~ -0	

²⁴APCIプローブ

表 I-1 5500 および 5500 + シリーズシステムパラメータ (続き)

パラメータ ID	アクセス ID	Ē	正イオンモード			負イオンモード			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS		
IQ2	IQ2	Q0+ (-10)	Q0+ (-10)	Q0+ (-10)	Q0 + 10	Q0 + 10	Q0 + 10		
(IQ2 = Q0 + オフ セット)		-30 ~ -8	-30 ~ -8	-30 ~ -8	8~30	8~30	8~30		
RO2	RO2	-20	-20	該当なし	20	20	該当なし		
		該当なし	該当なし		該当なし	該当なし			
RO2	CE	該当なし	該当なし	30	該当なし	該当なし	-30		
(CE = Q0 - RO2)				5~180			-180 ~		
							-5		
ST3	ST3	RO2 - 10	該当なし	該当なし	RO2 + 10	該当なし	該当なし		
(ST3 = RO2 + オフ セット)		-30 ~ -5			5~30				
ST3	СХР	該当なし	15	15	該当なし	-15	-15		
(CXP = RO2 - ST3)			0~55	0~55		-55~0	-55~0		
RO3	RO3	-50	該当なし	該当なし	50	該当なし	該当なし		
		該当なし			該当なし				
RO3	IE3	該当なし	1	1	該当なし	-1	-1		
(IE3 = RO2 - RO3)			0~5	0~5		-5~0	-5~0		

表 I-1 5500 および 5500 + シリーズシステムパラメータ (続き)

パラメータ ID	アクセス ID	正	正イオンモード			負イオンモード			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS		
DF 25	DF	-200	-200	-200	200	200	200		
		-300~0	-300~0	-300~0	0~300	0~300	0~300		
CEM ²⁵	CEM	1800	1800	1800	1800	1800	1800		
		0~3300	0~3300	0~3300	0~3300	0~3300	0~3300		
CEM ²⁶	CEM	1700	1700	1700	1700	1700	1700		
		0~3300	0~3300	0~3300	0~3300	0~3300	0~3300		
GS1	GS1	20	20	20	20	20	20		
		0~90	0~90	0~90	0~90	0~90	0~90		
GS2	GS2	0	0	0	0	0	0		
		0~90	0~90	0~90	0~90	0~90	0~90		
IHT	IHT	150	150	150	150	150	150		
		0~250	0~250	0~250	0~250	0~250	0~250		
sdp ²⁷	sdp	1	1	1	1	1	1		
		1または2	1または2	1または2	1または2	1または2	1または2		

²⁵5500 シリーズシステムのみ

²⁶5500+ シリーズシステムのみ

²⁷DuoSpray[™] イオン源 (1=TurbolonSpray プローブおよび 2=APCI プローブ)

イオン源

132 / 162

パラメータ ID	アクセス ID	正イオンモード	負イオンモード
CAD	CAD	高い	高い
		低-高	低-高
AF2 ²⁸	AF2	0.100	0.100
		0または1	0または1
AF3	AF3	質量速度依存	質量速度依存
		0~10	0~10
EXB	EXB	質量速度依存	質量速度依存
		-165~0	0~165
CES	CES	0	0
		0~50	0~50
ROS	CE	10	-10
(Q0 - ROS)		5~180	-5 ~ -180

表 I-2 LIT スキャンタイプ専用 QTRAP[®] 5500 および QTRAP[®] Enabled Triple Quad 5500+ システムパラメータ

²⁸MS/MS/MSのみ

テスト、仕様および、データログ	イオン源
RUO-IDV-05-7280-JA-C	133 / 162

API 5000[™] システムパラメータ

各スキャン種類の最初の数字はあらかじめ設定された値です。数字の範囲は、各パラメータの許容範囲です。

表 J-1 API 5000[™] システムパラメータ

パラメータ ID	アクセス ID	正イオンモード				負イオンモード	
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	10	10	10	10	10	10
		10~50	10~50	10~50	10~50	10~50	10~50
CAD	CAD	0	1	4	0	1	4
		該当なし	0~12	0~10	該当なし	0~12	0~12
IS ^{29,30}	IS ^{29,30}	5500	5500	5500	-4500	-4500	-4500
		0~5500	0~5500	0~5500	-4500~0	-4500~0	-4500~0
NC ³¹	NC ³¹	3	3	3	-3	-3	-3
		0~5	0~5	0~5	-5~0	-5~0	-5~0

²⁹Turbo V[™]イオン源

³⁰TurbolonSpray[®] プローブ

³¹APCIプローブ

イオン源 134 / 162 テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

表 J-1 API 5000[™] システムパラメータ (続き)

パラメータ ID	アクセス ID	ш	イオンモード			負イオンモード	
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
TEM ^{30,31}	TEM ^{30,31}	0	0	0	0	0	0
		0~750	0 ~ 750	0~750	0~750	0~750	0 ~ 750
または	DP	120	120	120	-100	-100	-100
(DP = OR)		0~400	0~400	0~400	-400~0	-400~0	-400~0
Q0	EP	10	10	10	-10	-10	-10
(EP = -Q0)		15~2	15~2	15~2	-15~-2	-15~-2	-15~-2
IQ1	IQ1	Q0 + (-1)	Q0 + (-1)	Q0 + (-1)	Q0 + 1	Q0 + 1	Q0 + 1
(IQ1 = Q0 + オフ セット)		-0.5 ~ -2	-0.5 ~ -2	-0.5 ~ -2	0.5~2	0.5~2	0.5~2
ST	ST	Q0 + (-7)	Q0 + (-7)	Q0 + (-7)	Q0 + 7	Q0 + 7	Q0 + 7
(ST = Q0 + オフセッ ト)		-12 ~ -5	-12 ~ -5	12 ~ -5	12~5	12~5	12~5
RO1 (IE1 = Q0 - RO1)	IE1	1 0.5~2	該当なし	1 0.5 ~ 2	-1 -2 ~ -0.5	該当なし	-1 -2 ~ -0.5
RO1	RO1	該当なし	Q0+ (-2)	該当なし	該当なし	Q0 + 2	該当なし
(IE1 = Q0 + オフ セット)			-0.5 ~ -2			0.5~2	

表 J-1 API 5000[™] システムパラメータ (続き)

パラメータ ID	アクセス ID	E	正イオンモード			負イオンモード		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
IQ2	IQ2	Q0+ (-20)	Q0+ (-20)	Q0+ (-20)	Q0 + 20	Q0 + 20	Q0 + 20	
(IQ2 = Q0 + オフ セット)		-100 ~ -8	該当なし	該当なし	100 ~ 8	該当なし	該当なし	
RO2	RO2	-100	-20	該当なし	100	20	該当なし	
		-200~200	-145 ~ -2		-200~200	2~145		
RO2	CE	該当なし	該当なし	30	該当なし	該当なし	-30	
(CE = Q0 - RO2)				5~130			-130 ~	
							-5	
ST3	ST3	-120	該当なし	該当なし	該当なし	該当なし	該当なし	
		-200~200						
ST3	СХР	該当なし	20	15	該当なし	-20	-15	
(CXP = RO2 - ST3)			0~55	0~55		-55~0	-55~0	
RO3	RO3	-150	該当なし	該当なし	100	該当なし	該当なし	
		-200~200			-200~200			
RO3	IE3	該当なし	2	2	該当なし	-1.5	-1.5	
(IE3 = RO2 - RO3)			-0.5 ~5	-0.5 ~5		-5~0	-5~0	

イオン源 136 / 162 テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

表 J-1 API 5000[™] システムパラメータ (続き)

パラメータ ID	アクセス ID	Ε	イオンモード		負イオンモード		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
DF	DF	-200	-200	-200	200	200	200
		-400~0	-400~0	-400~0	0~400	0~400	0~400
CEM	CEM	2000	2000	2000	2000	2000	2000
		500~3297	500~3297	500~3297	500~3297	500~3297	500~3297
GS1	GS1	20	20	20	15	15	20
		0~90	0~90	0~90	0~90	0~90	0~90
GS2	GS2	0	0	0	0	0	0
		0~90	0~90	0~90	0~90	0~90	0~90
ihe ³²	ihe	1	1	1	1	1	1
		0または1	0または1	0または1	0または1	0または1	0または1
IHT	IHT	40	40	40	40	40	40
		0~250	0~250	0~250	0~250	0~250	0~250
svp ³³	svp	1	1	1	1	1	1
		1または2	1または2	1または2	1または2	1または2	1または2

³²1=オン および 0=オフ

³³DuoSpray[™]イオン源 (1=TurbolonSpray[®] および 2=APCI プローブ)

各スキャン種類の最初の数字はあらかじめ設定された値です。数字の範囲は、各パラメータの許容範囲です。

表 K-1 4500 シリーズ装置パラメータ

パラメータ ID	アクセス ID	正イオンモード			負イオンモード		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		10~55	10~55	10~55	10~55	10~55	10~55
CAD	CAD	0	6	中 (9)	0	6	中 (9)
		該当なし	該当なし	0~12	該当なし	該当なし	0~12
IS ^{34,35}	IS ^{34,35}	5500	5500	5500	-4500	-4500	-4500
		0~5500	0~5500	0~5500	-4500~0	-4500~0	-4500~0
NC ³⁶	NC ³⁶	3	3	3	-3	-3	-3
		0~5	0~5	0~5	-5~0	-5~0	-5~0

³⁴Turbo V[™]イオン源

³⁵TurbolonSpray[®] プローブ

³⁶APCIプローブ

イオン源

テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

Κ

138 / 162

表 K-1 4500 シリーズ装置パラメータ (続き)

パラメータ ID	アクセス ID	正イオンモード			負イオンモード		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
TEM ^{35,36}	TEM ^{35,36}	0	0	0	0	0	0
		0~750	0~750	0~750	0~750	0~750	0 ~ 750
または	DP	100	100	100	-100	-100	-100
(DP = OR)		0~300	0~300	0~300	-300~0	-300~0	-300~0
Q0	EP	10	10	10	-10	-10	-10
(EP = -Q0)		2~15	2~15	2~15	-15~-2	-15~-2	-15~-2
IQ1	IQ1	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + 0.5	Q0 + 0.5	Q0 + 0.5
(IQ1 = Q0 + オフセット)		-0.1 ~ -2	-0.1 ~ -2	-0.1 ~ -2	0.1~2	0.1~2	0.1~2
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8
(ST = Q0 + オフセット)		-12 ~ -5	-12 ~ -5	12 ~ -5	12~5	12~5	12~5
RO1	IE1	1	該当なし	1	-1	該当なし	-1
(IE1 = Q0 - RO1)		0~3		0~3	-3~0		-3~0
IQ2	IQ2	Q0 +(-10)	Q0+ (-11)	Q0+ (-10)	Q0 + 10	Q0 + 10	Q0 + 10
(ST = Q0 + オフセット)		-30 ~ -8	-30 ~ -8	-30 ~ -8	8~30	8~30	8~30
RO2	RO2	-20	-20	該当なし	20	20	該当なし
		該当なし	該当なし		該当なし	該当なし	

表 K-1 4500 シリーズ装置パラメータ (続き)

パラメータ ID	アクセス ID		正イオンモード			負イオンモード	
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
RO2	CE	該当なし	該当なし	30	該当なし	該当なし	-30
(CE = QO - RO2)				5~180			-180~-5
ST3	ST3	RO2 - 10	該当なし	該当なし	RO2 + 10	該当なし	該当なし
(ST3 = RO2 + オフセット)		-30 ~ -5			5~30		
ST2	СХР	該当なし	15	15	該当なし	-15	-15
(CXP = RO2 - ST3)			0~55	0~55		-55~0	-55~0
RO3	RO3	-50	該当なし	該当なし	50	該当なし	該当なし
		固定			固定		
RO3	IE3	該当なし	1	1	該当なし	-1	-1
(IE3 = RO2 - RO3)			0~5	0~5		-5~0	-5~0
DF	DF	-200	-200	-200	200	200	200
		-300~0	-300~0	-300~0	0~300	0~300	0~300
CEM	CEM	2000	2000	2000	2000	2000	2000
		0~3300	0~3300	0~3300	0~3300	0~3300	0~3300
GS1	GS1	20	20	20	20	20	20
		0~90	0~90	0~90	0~90	0~90	0~90

イオン源 140 / 162 テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

表 K-1 4500 シリーズ装置パラメータ (続き)

パラメータ ID	アクセス ID	正イオンモード			負イオンモード		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
GS2	GS2	0	0	0	0	0	0
		0~90	0~90	0~90	0~90	0~90	0~90
IHT	IHT	150	150	150	150	150	150
		0~250	0~250	0~250	0~250	0~250	0 ~ 250
sdp ³⁷	sdp	1	1	1	1	1	1
		1または2	1または2	1または2	1または2	1または2	1または2

表 K-2 LIT スキャンタイプ専用 QTRAP[®] 4500 システムパラメータ

パラメータ ID	アクセス ID	正イオンモード	負イオンモード
CAD	CAD	高い	高い
		低-高	低-高
AF2 ³⁸	AF2	0.100	0.100
		0または 0.2	0または 0.2

³⁷DuoSpray[™] イオン源 (1=TurbolonSpray プローブおよび 2=APCI プローブ)

³⁸MS/MS/MSのみ

表 K-2 LIT スキャンタイプ専用 QTRAP[®] 4500 システムパラメータ (続き)

パラメータ ID	アクセス ID	正イオンモード	負イオンモード
AF3	AF3	質量速度依存	質量速度依存
		0~10	0~10
EXB	EXB	質量速度依存	質量速度依存
		-165~0	0~165
CES	CES	0	0
		0~50	0~50
ROS	CE	10	-10
(Q0 - ROS)		5~180	-180 ~ -5

各スキャン種類の最初の数字はあらかじめ設定された値です。数字の範囲は、各パラメータの許容範囲です。

表 L-1 4000 シリーズ装置パラメータ

パラメータ ID	アクセス ID	正イオンモード			負イオンモード		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
CUR	CUR	20	20	20	20	20	20
		10~50	10~50	10~50	10~50	10~50	10~50
CAD ³⁹	CAD	0	1	4	0	1	4
		該当なし	0~12	0~10	該当なし	0~12	0~12
CAD ⁴⁰	CAD	0	1	6	0	1	6
		該当なし	0~12	0~10	該当なし	0~12	0~12

³⁹API 4000[™] システム

⁴⁰4000 QTRAP[®] システム

表 L-1 4000 シリーズ装置パラメータ (続き)

パラメータ ID	アクセス ID	E	イオンモード			負イオンモード	
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
IS ^{41,42}	IS ^{41,42}	5500	5500	5500	-4500	-4500	-4500
		0~5500	0~5500	0~5500	-4500~0	-4500~0	-4500~0
NC ⁴³	NC ⁴³	3	3	3	-3	-3	-3
		0~5	0~5	0~5	-5~0	-5~0	-5~0
TEM ^{42,43}	TEM ^{42, 43}	0	0	0	0	0	0
		0~750	0~750	0~750	0~750	0~750	0 ~ 750
または	DP	20	20	20	-20	-20	-20
(DP=OR)		0~400	0~400	0~400	-400~0	-400~0	-400~0
Q0	EP	10	10	10	-10	-10	-10
(EP = -Q0)		2~15	2~15	2~15	-15~-2	-15~-2	-15~-2
IQ1	IQ1	Q0 + (-1)	Q0 + (-1)	Q0 + (-1)	Q0 + 1	Q0 + 1	Q0 + 1
(IQ1 = Q0 + オフ セット)		-0.5 ~ -2	-0.5 ~ -2	-0.5 ~ -2	0.5~2	0.5~2	0.5~2

⁴¹Turbo V[™]イオン源

⁴²TurbolonSpray[®] プローブ

⁴³APCIプローブ

イオン源 144 / 162 テスト、仕様および、データログ RUO-IDV-05-7280-JA-C
表 L-1 4000 シリーズ装置パラメータ (続き)

パラメータ ID	アクセス ID	正·	イオンモード			負イオンモード	
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
ST	ST	Q0 + (-5)	Q0 + (-5)	Q0 + (-5)	Q0 + 5	Q0 + 5	Q0 + 5
(ST = Q0 + オフセッ ト)		-7 ~ -4	-7 ~ -4	-7 ~ -4	4~7	4~7	4~7
RO1	IE1	1	該当なし	1	-1	該当なし	-1
(IE1 = Q0 - RO1)		0.5~2		0.5~2	-2 ~ -0.5		-2 ~ -0.5
RO1	RO1	該当なし	Q0 + (-1)	該当なし	該当なし	Q0 + 1	該当なし
(IE1 = Q0 + オフ セット)			-0.5 ~ -2			0.5~2	
IQ2	IQ2	Q0+ (-8)	Q0+ (-8)	Q0+ (-8)	Q0 + 8	Q0 + 8	Q0 + 8
(IQ2 = Q0 + オフ セット)		該当なし	該当なし	該当なし	該当なし	該当なし	該当なし
RO2	RO2	-60	-20	該当なし	60	20	該当なし
		-145 ~ 20	-145 ~ -20		60~100	20~145	
RO2	CE	該当なし	該当なし	30	該当なし	該当なし	-30
(CE = Q0 - RO2)				5~130			-130 ~
							-5

表 L-1 4000 シリーズ装置パラメータ (続き)

パラメータ ID	アクセス ID		正イオンモード			負イオンモード			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS		
ST3	ST3	-80	該当なし	該当なし	80	該当なし	該当なし		
		-80~200			80~200				
ST3	СХР	該当なし	15	15	該当なし	-15	-15		
(CXP = RO2 - ST3)			0~55	0~55		-55~0	-55~0		
RO3	RO3	-62	該当なし	該当なし	62	該当なし	該当なし		
		-60~200			60~200				
RO3	IE3	該当なし	2	2	該当なし	-1.5	-1.5		
(IE3 = RO2 - RO3)			-0.5 ~5	-0.5 ~5		-5~0	-5~0		
C2	C2	RO3 + 0	RO3 + 0	RO3 + 0	RO3 + 0	RO3 + 0	RO3 + 0		
		該当なし	該当なし	該当なし	該当なし	該当なし	該当なし		
DF	DF	0	0	0	0	0	0		
		-400~0	-400~0	-400~0	0~400	0~400	0~400		
CEM	CEM	1800	1800	1800	1800	1800	1800		
		500~3297	500~3297	500 ~ 3297	500~3297	500 ~ 3297	500 ~ 3297		
GS1	GS1	20	20	20	20	20	20		
		0~90	0~90	0~90	0~90	0~90	0~90		

イオン源 146 / 162 テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

表 L-1 4000 シリーズ装置パラメータ (続き)

パラメータ ID	アクセス ID	正·	正イオンモード			負イオンモード		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
GS2	GS2	0	0	0	0	0	0	
		0~90	0~90	0~90	0~90	0~90	0~90	
ihe ⁴⁴	ihe	1	1	1	1	1	1	
		0または1	0または1	0または1	0または1	0または1	0または1	
IHT	IHT	40	40	40	40	40	40	
		0~250	0~250	0~250	0~250	0~250	0~250	
svp ⁴⁵	svp	1	1	1	1	1	1	
		1または2	1または2	1または2	1または2	1または2	1または2	

⁴⁴1=オン および 0=オフ

⁴⁵DuoSpray[™]イオン源 (1=TurbolonSpray[®] プローブおよび 2=APCI プローブ)

パラメータ ID	アクセス ID	正イオンモード	負イオンモード
CAD	CAD	高い	高い
		低-高	低-高
AF2 ⁴⁶	AF2	100	100
		0~200	0~200
AF3	AF3	質量速度依存	質量速度依存
		0~5	0~5
EXB	ЕХВ	質量速度依存	質量速度依存
		-200~0	0~200
CES	CES	0	0
		-50~50	-50~50
ROS	CE	30	-30
(Q0 - ROS)		5~130	-130 ~ -5

表 L-2 LIT スキャンタイプ専用 4000 QTRAP[®] システムパラメータ

⁴⁶MS/MS/MSのみ

イオン源 **148 / 162**

SCIEX Triple Quad[™] 3500 システムパラメータ

各スキャン種類の最初の数字はあらかじめ設定された値です。数字の範囲は、各パラメータの許容範囲です。

表 M-1 SCIEX Triple Quad[™] 3500 システムパラメータ

パラメータ ID	アクセス ID		正イオンモード			負イオンモード		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
CUR	CUR	20	20	20	20	20	20	
		10~55	10~55	10~55	10~55	10~55	10~55	
CAD	CAD	0	6	中 (9)	0	6	中 (9)	
		該当なし	該当なし	0~12	該当なし	該当なし	0~12	
IS ^{47,48}	IS ^{47,47,48}	5500	5500	5500	-4500	-4500	-4500	
		0~5500	0~5500	0~5500	-4500~0	-4500~0	-4500~0	
NC ⁴⁹	NC ⁴⁹	3	3	3	-3	-3	-3	
		0~5	0~5	0~5	-5~0	-5~0	-5~0	

⁴⁷Turbo V[™]イオン源

⁴⁸TurbolonSpray[®] プローブ

⁴⁹APCIプローブ

Μ

表 M-1 SCIEX Triple Quad[™] 3500 システムパラメータ (続き)

パラメータ ID	アクセス ID		正イオンモード		負イオンモード			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
TEM ^{48,49}	TEM ^{48,49}	0	0	0	0	0	0	
		0 ~ 750	0~750	0 ~ 750	0~750	0~750	0 ~ 750	
または	DP	100	100	100	-100	-100	-100	
(DP = OR)		0~300	0~300	0~300	-300~0	-300~0	-300~0	
Q0	EP	10	10	10	-10	-10	-10	
(EP = -Q0)		2 ~ 15	2~15	2~15	-15~-2	-15~-2	-15~-2	
IQ1	IQ1	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + (-0.5)	Q0 + 0.5	Q0 + 0.5	Q0 + 0.5	
(IQ1 = Q0 + オフセット)		-0.1 ~ -2	-0.1 ~ -2	-0.1 ~ -2	0.1~2	0.1~2	0.1~2	
ST	ST	Q0 + (-8)	Q0 + (-8)	Q0 + (-8)	Q0 + 8	Q0 + 8	Q0 + 8	
(ST = Q0 + オフセット)		-12 ~ -5	-12 ~ -5	12 ~ -5	12~5	12~5	12~5	
RO1	IE1	1	該当なし	1	-1	該当なし	-1	
(IE1 = Q0 - RO1)		0~3		0~3	-3~0		-3~0	
IQ2	IQ2	Q0 +(-10)	Q0+ (-11)	Q0+ (-10)	Q0 + 10	Q0 + 10	Q0 + 10	
(ST = Q0 + オフセット)		-30 ~ -8	-30 ~ -8	-30 ~ -8	8~30	8~30	8~30	
RO2	RO2	-20	-20	該当なし	20	20	該当なし	
		該当なし	該当なし		該当なし	該当なし		

イオン源 150 / 162 テスト、仕様および、データログ RUO-IDV-05-7280-JA-C

表 M-1 SCIEX Triple Quad[™] 3500 システムパラメータ (続き)

パラメータ ID	アクセス ID		正イオンモード			負イオンモード	
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
RO2	CE	該当なし	該当なし	30	該当なし	該当なし	-30
(CE = QO - RO2)				5~180			-180~-5
ST3	ST3	RO2 - 10	該当なし	該当なし	RO2 + 10	該当なし	該当なし
(ST3 = RO2 + オフセット)		-30 ~ -5			5~30		
ST2	СХР	該当なし	15	15	該当なし	-15	-15
(CXP = RO2 - ST3)			0~55	0~55		-55~0	-55~0
RO3	RO3	-50	該当なし	該当なし	50	該当なし	該当なし
		固定			固定		
RO3	IE3	該当なし	1	1	該当なし	-1	-1
(IE3 = RO2 - RO3)			0~5	0~5		-5~0	-5~0
DF	DF	-200	-200	-200	200	200	200
		-300~0	-300~0	-300~0	0~300	0~300	0~300
CEM	CEM	2000	2000	2000	2000	2000	2000
		0~3300	0~3300	0~3300	0~3300	0~3300	0~3300
GS1	GS1	20	20	20	20	20	20
		0~90	0~90	0~90	0~90	0~90	0~90

パラメータ ID	アクセス ID	正イオンモード			負イオンモード		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
GS2	GS2	0	0	0	0	0	0
		0~90	0~90	0~90	0~90	0~90	0~90
IHT	IHT	150	150	150	150	150	150
		0~250	0 ~ 250	0~250	0~250	0~250	0~250

表 M-1 SCIEX Triple Quad[™] 3500 システムパラメータ (続き)

各スキャン種類の最初の数字はあらかじめ設定された値です。数字の範囲は、各パラメータの許容範囲です。

表 N-1 3200 シリーズシステムパラメータ

パラメータ ID	アクセス ID	ΤĒ	イオンモード		負イオンモード			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
CUR	CUR	20	20	20	20	20	20	
		10~50	10~50	10~50	10~50	10~50	10~50	
CAD ⁵⁰	0	2	3	0	2	3		
	固定	固定	0~12	固定	固定	0~12		
CAD ⁵¹	0	2	中	0	2	中		
	固定	固定	低、中、高	固定	固定	低、中、高		
IS ⁵²	IS ⁵²	5500	5500	5500	-4200	-4200	-4200	
		0~5500	0~5500	0~5500	-4500~0	-4500~0	-4500~0	

⁵⁰API 3200[™] システム

⁵¹3200 QTRAP[®] システム

⁵²Turbo V[™]イオン源

Ν

表 N-1 3200 シリーズシステムパラメータ (続き)

パラメータ ID	アクセス ID		正イオンモード			負イオンモード		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
IS ⁵³	IS ⁵³	1000	1000	1000	-1000	-1000	-1000	
		0~5500	0~5500	0~5500	-4500~0	-4500~0	-4500~0	
IS ⁵⁴	IS ⁽⁴⁾	1500	1500	1500	-1500	-1500	-1500	
		0~2500	0~2500	0~2500	-2500~0	-2500~0	-2500~0	
NC ⁵⁵	NC ⁵⁵	1	1	1	-1	-1	-1	
		0~5	0~5	0~5	-5~0	-5~0	-5~0	
NC ⁵⁶	NC ⁵⁶	1	3	3	-3	-3	-3	
		0~5	0~5	0~5	-5~0	-5~0	-5~0	
TEM ^{52,55,54}	TEM ^{53,55}	0	0	0	0	0	0	
		0~750	0~750	0 ~ 750	0~750	0~750	0 ~ 750	
または	DP	20	20	20	-20	-20	-20	
(DP=OR)		0~400	0~400	0~400	-400~0	-400~0	-400~0	

⁵³NanoSpray[®]イオン源

⁵⁴PhotoSpray[®]イオン源

⁵⁵DuoSpray[™] イオン源 (1=TurbolonSpray[®] プローブおよび 2=APCI プローブ)

⁵⁶APCIプローブ

⁵⁷TurbolonSpray[®] プローブ

154 / 162

表 N-1 3200 シリーズシステムパラメータ (続き)

パラメータ ID	アクセス ID	正·	イオンモード			負イオンモード	
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
Q0	EP	10	10	10	-10	-10	-10
(EP = -Q0)		1~12	1~12	1~12	-12 ~ -1	-12 ~ -1	-12 ~ -1
IQ1	IQ1	Q0 + (-1)	Q0 + (-1)	Q0 + (-1)	Q0 + 1	Q0 + 1	Q0 + 1
(IQ1 = Q0 + オフ セット)		-2 ~ -1	-2 ~ -1	-2 ~ -1	1~2	1~2	1~2
ST	ST	Q0 + (-5)	Q0 + (-5)	Q0 + (-5)	Q0 + 5	Q0 + 5	Q0 + 5
(ST = Q0 + オフセッ ト)		-8 ~ -2	-8 ~ -2	-8 ~ -2	2~8	2~8	2~8
RO1 (IE1 = Q0 - RO1)	IE1	1 0.5~2	該当なし	1 0.5 ~ 2	-1 -2 ~ -0.5	該当なし	-1 -2 ~ -0.5
RO1	RO1	該当なし	Q0+ (-2)	該当なし	該当なし	Q0 + 2	該当なし
(IE1 = Q0 + オフ セット)			-2 ~ -0.5			0.5~2	
IQ2	CEP	質量依存	該当なし	質量依存	質量依存	該当なし	質量依存
(CE = Q0 - IQ2)		0~188		0~188	-188~0		-188~0

表 N-1 3200 シリーズシステムパラメータ (続き)

パラメータ ID	アクセス ID	I	イオンモード		負イオンモード			
		Q1	Q3	MS/MS	Q1	Q3	MS/MS	
IQ2 (IQ2 = RO2 + オフ セット)	IQ2	該当なし	RO2 + 0 0~2	該当なし	該当なし	RO2 + 0 −2∼0	該当なし	
RO2 (CE = Q0 - RO2)	CE	該当なし	該当なし	30 5~130	該当なし	該当なし	-30 -130 ~ -5	
RO2	RO2	-100 -150 ~ 20	-20 -130 ~ -5	該当なし	100 20~150	20 5~130	該当なし	
IQ3 (CXP = RO2 - IQ3)	СХР	該当なし	質量依存 0~58	5 0~58	該当なし	質量依存 -58~0	-5 -58 ~ 0	
IQ3	IQ3	-125 -200 ~ -100	該当なし	該当なし	125 100~200	該当なし	該当なし	
RO3	IE3	該当なし	4	4	該当なし	-4	-4	
(IE3 = RO2 - RO3)			0.5~8	0.5~8		-8~0.5	-8~0.5	
RO3	RO3	-150 -200 ~ -100	該当なし	該当なし	150 150~200	該当なし	該当なし	

表 N-1 3200 シリーズシステムパラメータ (続き)

パラメータ ID アクセス ID		正イオンモード			負イオンモード		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
EX	EX	-200	-200	-200	200	200	200
		該当なし	該当なし	該当なし	該当なし	該当なし	該当なし
DF	DF	-100	-100	-100	100	100	100
		-400~0	-400~0	-400~0	0~400	0~400	0~400
CEM	CEM	1800	1800	1800	1800	1800	1800
		500~3297	500~3297	500~3297	500~3297	500~3297	500~3297
GS1	GS1	20	20	20	20	20	20
		0~90	0~90	0~90	0~90	0~90	0~90
GS2	GS2	0	0	0	0	0	0
		0~90	0~90	0~90	0~90	0~90	0~90
ihe⁵ ⁸	ihe	1	1	1	1	1	1
		0または1	0または1	0または1	0または1	0または1	0または1
C2	C2	0	0	0	0	0	0
		該当なし	該当なし	該当なし	該当なし	該当なし	該当なし

⁵⁸1=オン および 0=オフ

表 N-1 3200 シリーズシステムパラメータ (続き)

パラメータ ID	アクセス ID		正イオンモード		負イオンモード		
		Q1	Q3	MS/MS	Q1	Q3	MS/MS
XA3	XA3	0	0	0	0	0	0
		該当なし	該当なし	該当なし	該当なし	該当なし	該当なし
XA2	XA2	0	0	0	0	0	0
		該当なし	該当なし	該当なし	該当なし	該当なし	該当なし
IHT ⁵³	IHT	40	40	40	40	40	40
		0~250	0~250	0~250	0~250	0~250	0~250
svp ⁵⁹	svp	1	1	1	1	1	1
		1または2	1または2	1または2	1または2	1または2	1または2

表 N-2 LIT スキャンタイプ専用の 3200 QTRAP[®] システムパラメータ

パラメータ ID	アクセス ID	正イオンモード	負イオンモード
CAD	CAD	高い	高い
		低-中-高	低-高
FI2	CEP	質量速度依存	質量速度依存
		0~188	-188~0

⁵⁹DuoSpray[™] イオン源 (1=TurbolonSpray[®] プローブおよび 2=APCI プローブ)

イオン源 158 / 162

表 N-2 LIT スキャンタイプ専用の 3200 QTRAP[®] システムパラメータ (続き)

パラメータ ID	アクセス ID	正イオンモード	負イオンモード
ROS	CE	30	-30
(Q0 - RO2)		5~130	-5 ~ -130
AF2 ⁶⁰	AF2	100	100
		0~200	0~200
AF3	AF3	質量速度依存	質量速度依存
		0~5	0~5
EXB	EXB	質量速度依存	質量速度依存
		-200~0	0~200
DF	DF	-400	400
		該当なし	該当なし
C2B	C2B	質量速度依存	質量速度依存
		-500~500	-500~500
CES	CES	0	0
		-50~50	-50~50

⁶⁰MS/MS/MSのみ

テスト、仕様および、データログ	イオン源
RUO-IDV-05-7280-JA-C	159 / 162

表 O-1 [グルコース1]-フィブリノペプチド B (モノアイソトピック分子量、1569.6696 Da)

電荷	(M+nH)n⁺ モノアイソトピック m/z
+1	1570.6768
+2	785.8421*
+3	524.2305*
+4	393.4247
+5	-
+6	-

*より広く観察される電荷状態を示しています。

表 0-2 正イオンモードで計算された、[グルコース1]-フィブリノペプチド Bの理論上の開裂部の正確なモノアイソトピック質量が含まれています。

表 O-2 [グルコース1]-フィブリノペプチド B の理論的フラグメントイオン

bイオン		y イオン	
m/z	フラグメント	m/z	フラグメント
_	-	1570.6768	EGVNDNEEGFFSAR
130.0499	E	1441.6342	GVNDNEEGFFSAR
187.0713	EG	1384.6128	VNDNEEGFFSAR
286.1397	EGV	1285.5444	NDNEEGFFSAR
400.1827	EGVN	1171.5014	DNEEGFFSAR
515.2096	EGVND	1056.4745	NEEGFFSAR
629.2525	EGVNDN	942.4316	EEGFFSAR
758.2951	EGVNDNE	813.3890	EGFFSAR
887.3377	EGVNDNEE	684.3464	GFFSAR
944.3592	EGVNDNEEG	627.3249	FFSAR
1091.4276	EGVNDNEEGF	480.2565	FSAR

bイオン		y イオン	
1238.4960	EGVNDNEEGFF	333.1881	SAR
1325.5281	EGVNDNEEGFFS	246.1561	AR
1396.5652	EGVNDNEEGFFSA	175.1190	R
1552.6663	EGVNDNEEGFFSAR	-	-

表 O-2 [グルコース1]-フィブリノペプチド B の理論的フラグメントイオン (続き)

レセルピン希釈液 <mark>60:1 (10 pg/µL)</mark> の用意

この手順に従い、レセルピン1 pmol/µL (PN 4405236) からレセルピン希釈液を作ります。

- 1. 希釈溶媒 4.0 mL をバイアルに追加して、ストック溶液を作ります。
- バイアルのキャップを締め、中身をそっと混ぜるか、バイアルを超音波で分解して材料を 溶かします。

このステップによって、1 pmol/µL のレセルピン希釈液が作られます。

3. レセルピンストック溶液1mLを清潔なバイアルに入れて、希釈溶媒5mLを追加します。

4. 6:1 希釈液 1 mL と希釈溶媒 9 mL を混ぜます。

このステップによって、60:1 レセルピン希釈液が作られます。

Ρ