

Chemovar Typing of *Cannabis* Strains with MarkerView[®] and SCIEX X500R QTOF System

KC Hyland Food and Environmental Technical Marketing, SCIEX

RUO-MKT-11-8252-A

Different Strains for Different Pains

Cannabis strains are consumed for specific desired effects

- Consumers of Cannabis have long asserted the differences between cultivars, or strains, for user experience
- Historical classifications no longer explain the differences between or properties of the hundreds of commercially available Cannabis strains

Headaches

Answers for Science. Knowledge for Life.™

Cannabinoid Profile: Psychotropic, Therapeutic, etc.

- THC, CBD
- 119 individual cannabinoids have been identified in Cannabis

"Н

H₂Ć

ОН

THC

CBC

Terpene Profile: Flavor and Aroma

- 200 terpenes have been identified in *Cannabis*
- Unique strains present varying terpene profiles
- Contribute to distinct flavor and aroma
- Both growers and consumers have interest in profiling terpene character

"The Entourage Effect"

Answers for Science. Knowledge for Life.™

COMPANY CONFIDENTIAL & PROPRIETARY © 2017 AB Sciex

OH

 H_3C

H₃C

HO

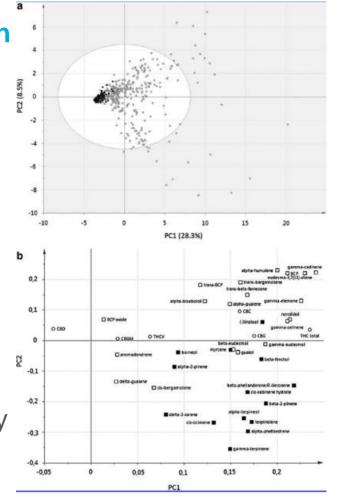
THCV

Pinene

Linalool (floral)

WHAT YOU SMELL = HOW YOU'LL FEEL IDENTIFYING COMMON CANNABIS TERPENES

P					
TERPENE:	ALPHA-PINENE BETA-PINENE	MYRCENE	LIMONENE	ACARYOPHY-	LINALOOL
	PINE	MUSKY, EARTHY, CITRUS HINTS	CITRUS	SPICY, WOODY, PEPPERY, CLOVE	FLORAL, CANDY, CITRUS
6	Pine, Dill, Parsley, Basil, Rosemary	Mango, Thyme, Lemongrass, Hops	Juniper, Rosemary, Fruit Rinds, Peppermint,	Black Pepper, Clove, Cotton	Lavender
	Alertness, Euphoria, Creativity, Memory Retention	"Couchlock", Sedation, Relaxation, Body High	Elevated Mood, Stress Relief	No noted effects	Anxiety Releif, Sedation
	Asthma, Antiseptic	Antioxidant, Pain, Muscle Tension, Sleeplessness, Anti-Carcinogenic	Gallstones, Gastroprotective, Heartburn, Anti-fungal, Depression	Gastroprotective, Anti-inflammitory, Arthritis, Ulcers	Anti-anxiety, Anti-convulsant, Anti-depressant, Anti-acne
*	Jack Herer, Trainwreck, Bubba Kush, Chem Dawg, Super Silver Haze	Pure Kush, El Nino, Himalayan Gold, Skunk #1, White Widow	OG Kush, Super Lemon Haze, Jack the Ripper, Lemon Skunk	Big Bang, Damn Sour, Great White Shark, Ice Dream	G-13, Lavender, Amnesia Haze, LA Confidential

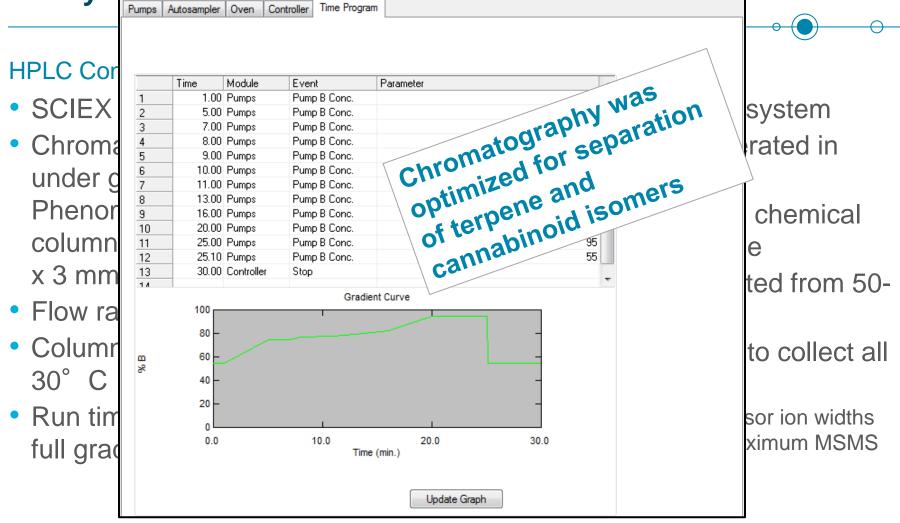

Made by MarijuanaPackaging.com. Information courtesy of Leafly.com

Cultivars vs Chemovars

Cannabis strains are cultivated for specific profiles and characteristics

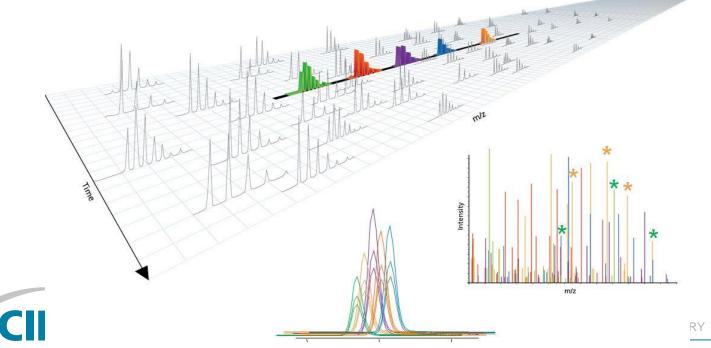
- The concept of chemovars- a chemistrybased, phenotypical fingerprint rather than a horticultural cultivar- has been proposed and gained popularity in the scientific community.
- Scientific studies are yet to identify the biochemical markers that can sufficiently explain differences between cannabis varieties.
- Hazekamp *et al.* applied a targeted detection of 44 major terpenes and cannabinoids followed by Multivariate Data Analysis to identify the cannabis constituents that may act as markers for distinction between Indica and Sativa.

Overview


- High resolution mass spec workflow described for the exploration of chemovar profiling for several Cannabis strains
- A nontargeted approach which does not try to target a "short-list" of cannabinoids or terpenes
- X500R QTOF System, SWATH[®] Data Independent Acquisition, SCIEX OS and MarkerView[™] software platforms, SCIEX All-in-One plus NIST MSMS library

Answers for Science. Knowledge for Life.™

Analytical Conditions



Answers for Science. Knowledge for Life.™

SWATH® Acquisition

- SWATH = Data Independent Acquisition (DIA)
 - For each cycle, the instrument focuses on a mass window of Q1 precursors
 - Acquires MS/MS data from *all* precursors detected within that window
 - This mass window is then stepped across the *entire* mass range, systematically collecting MS/MS data from every mass and from all detected precursors
 - Unlike IDA (Information Dependent Acquisition), there is no dependence on precursor intensity for MS/MS collection

© 2017 AB Sciex

Variable Window SWATH

Metho	od duration	21	🗘 min	Total sca	an time:	1.76372	7 sec				
Estima	ated cycles:	714									
Source	e and Gas P	arameters -									
Ion so	urce gas 1	60	🗘 psi	Curtain o	gas	35	\$	Temperature		500	\$ °C
Ion so	urce gas 2	60	psi	CAD gas		11	\$				
• Experi	ment SWAT	н 👻 —									
Polarit	ty	Positive	~	Spray vo	ltage	5500	\$ V				
TOF M	s										
TOF st	tart mass	40	🗘 Da	Decluste	ring potential	80	\$ V	Collision ener	ду	10	\$ V
TOF st	top mass	1000	🗘 Da	DP sprea	ad	0	\$ V	CE spread		0	\$ v
Accum	nulation time	0.06	\$s								
TOF MS	SMS										
TOF st	tart mass	40	🗘 Da	TOF stop	o mass	1000	🗘 Da	Dynamic collis	sion energy		
Accum	nulation time	0.03	\$ s	Charge s	state	1	\$	Enhance dyna	mic range	✓	
Mass	Table 4	Autofill SWATH windo	WS								
	Precursor io	n start mass (Da)	Precursor ion st	op mass (Da)	Declustering po	otential (V)	DP spread (V	Collision energy (V)	CE spread	(V)	
1	39.5000		122.1000		80		0	35	15		
2	121.1000		141.9000		80		0	35	15		

~ ~

- Narrower Q1 isolation windows → increased specificity, but more windows needed to cover the *m/z* range
 - Need to balance m/z coverage, with impact to cycle time
- Optimizing windows of varying width based on *m/z* for enhancement of specificity by narrowing windows where most ion masses occur
 - Allows for increased mass range to be covered while keeping number of windows (and cycle time) down

140.9000

155.3000

169.7000

183.2000

199.4000

215.6000

232.2000

248.9000

266.9000

285.3000

302.9000

319.1000

336.6000

352.8000

369.5000

156.3000

170,7000

184.2000

200.4000

216.6000

233.2000

249.9000

267.9000

286.3000

303.9000

320.1000

337.6000

353.8000

370.5000

386.2000

Answers for Science. Knowledge for Life.™

SCIEX All-in-One High Resolution MS/MS and NIST'17 MS/MS Mass Spectral Libraries

Enhanced compound coverage across compound classes

The flexibility of the multiple SCIEX software platforms provide scientists a fast way to analyze large batches of MS/MS data for accurate and efficient MS/MS library searching, data mining, and compound database management. In combination with the National Institute of Technology (NIST) MS/MS Spectral Library we have assembled a comprehensive high resolution, accurate | mass MS/MS spectral library bundle containing 19,143 compound entries.

Features of the SCIEX All-in-One <u>High</u> <u>Resolution</u> MS/MS Spectral Library

- Includes a SCIEX proprietary 3900 analyte library created using certified reference materials, including compounds commonly tested for in forensics, food, environmental and metabolomics samples.
- The NIST '17 MS/MS Library bundle adds a comprehensive range of different compounds (13,808 small molecules and 1,435 biologically relevant peptides) for enhanced coverage.
- Contains spectra for both positive and negative ionization for compounds that ionize in both polarities.

Advantages of the SCIEX All-in-One MS/MS Spectral Library

- Use the integrated MS and MS/MS information to build methods without the need to infuse standards and optimize conditions for a given compound.
- Easily create processing methods for a TOF-MS-IDA-MS/MS workflow or SWATH[®] Acquisition for use on <u>TripleTOF</u>[®] and X-Series QTOF Systems.
 - Quickly setup XIC tables for quantitation and identification with SCIEX OS Software or MasterView[™] software. Build customized libraries by simply selecting only the compounds of interest using the LibrarView[™] Software.

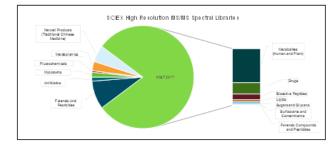


Figure 1. Gain Comprehensive Compound Coverage using the SCIEX AII-In-One <u>High.</u> <u>Resolution</u> MS/MS Spectral Library bundle containing over 19000 compounds. The inclusion of the NIST '17 MS/MS library increases compound coverage all the way from human and plant Metabolites, to additional Forensic Compounds and Pesticides contained in the proprietary SCIEX MS/MS Spectral Libraries This comprehensive library, bundled with the NIST '17 MS/MS Library, provides spectra for over **19000 compounds** including pesticides, pharmaceuticals and personal care products (PPCPs), and natural products found in foods and traditional medicines.

Answers for Science. Knowledge for Life.™

Data Processing Workflow: Nontargeted Approach

Statistical Tools to Identify: Which Features Are Distinctive For Strain Classification?

MarkerView[™] software to identify important features using PCA

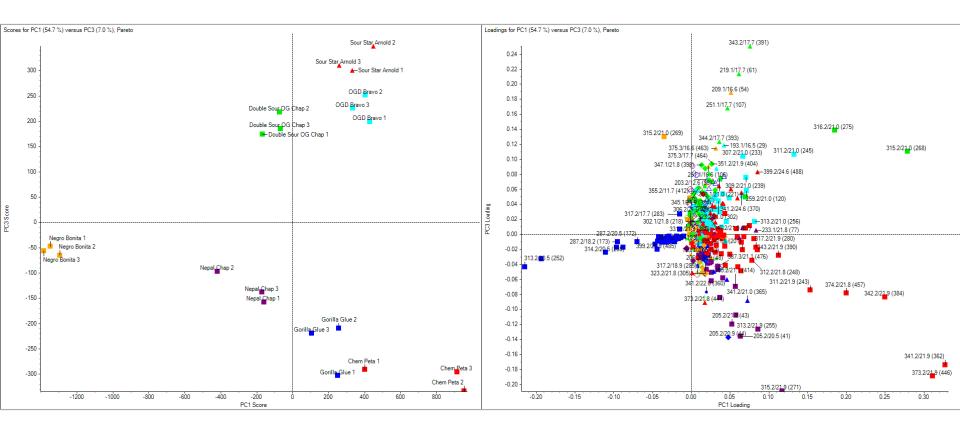
Build Peaks of Interest list from the distinguishing features identified

Import Peaks of Interest list into Analytics

Search MSMS libraries for first-pass identification of the Peaks of Interest

Identify Those Features!

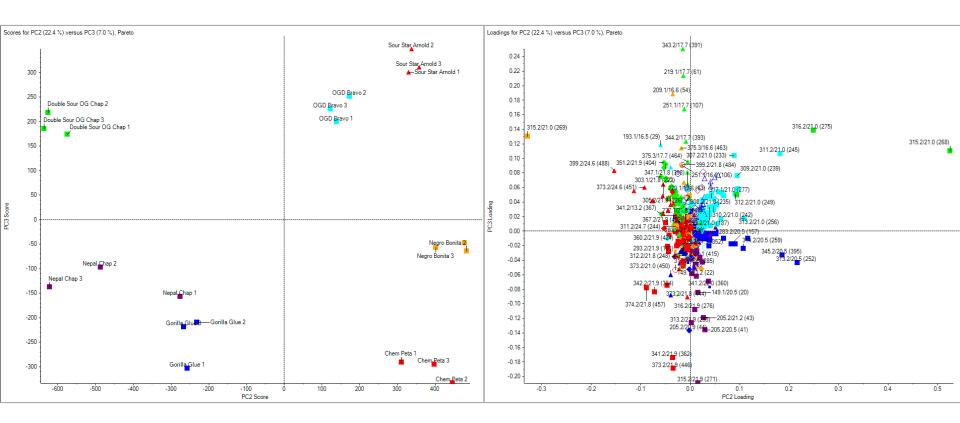
Choose a probable formula from the formula finder based on HR-AM TOF MS data (mass error, elemental composition, hit count)


Start ChemSpider session to open the ChemSpider list of hits with that formula ChemSpider database lists predicted fragments from each structure in the "hit list" Choose a candidate structure based on the fit of the collected MSMS spectrum to the predicted fragmentation (mass error, number of matched fragment peaks, does the fragment make sense)

Answers for Science. Knowledge for Life.™

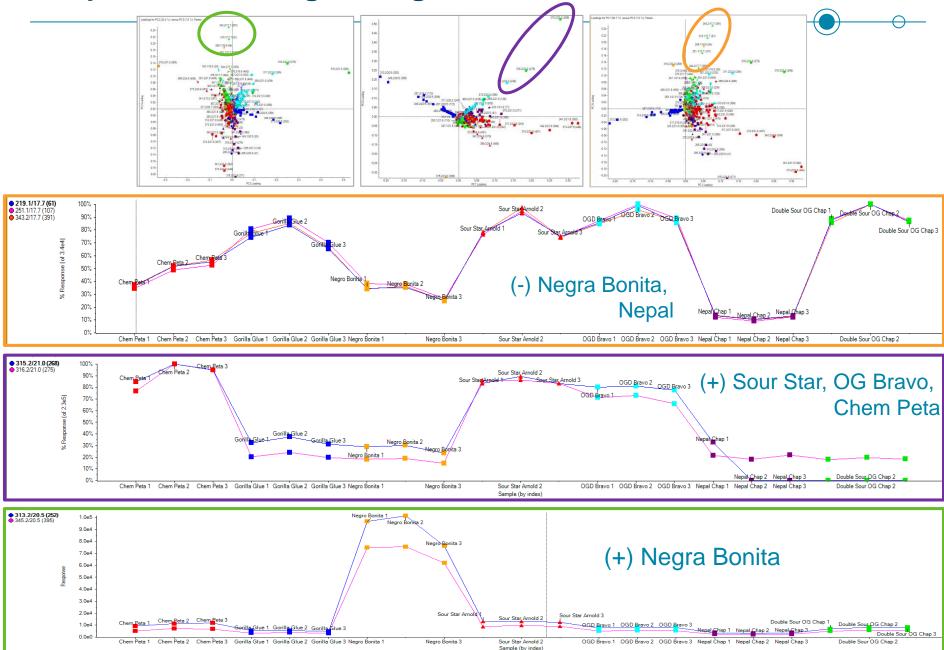
Step 1: Load up Data into MarkerView

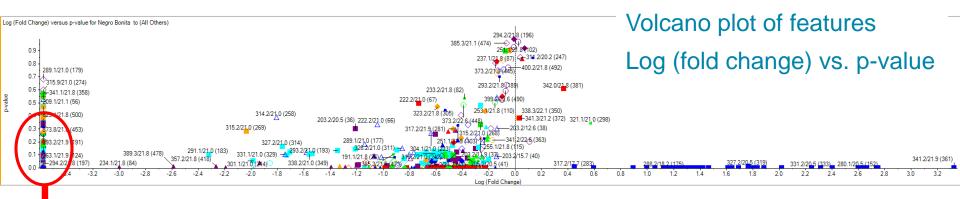
PC1 v PC3, Unsupervised PCA



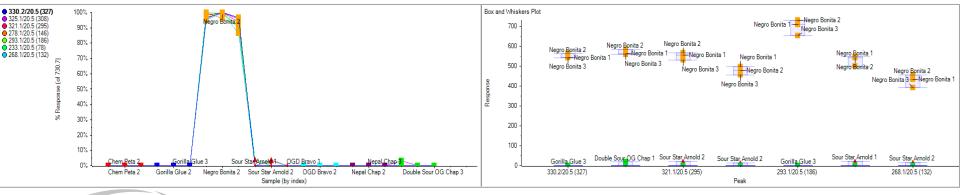
Answers for Science. Knowledge for Life.™

Step 1: Load up Data into MarkerView


PC2 v PC3, Unsupervised PCA, Data Normalized (MLR method)


Answers for Science. Knowledge for Life.™

Step 2: Find Distinguishing Features → Peaks of Interest



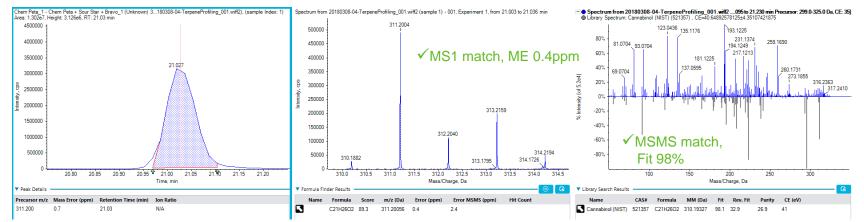
Step 2: Find Distinguishing Features → Peaks of Interest

Perform t-Test

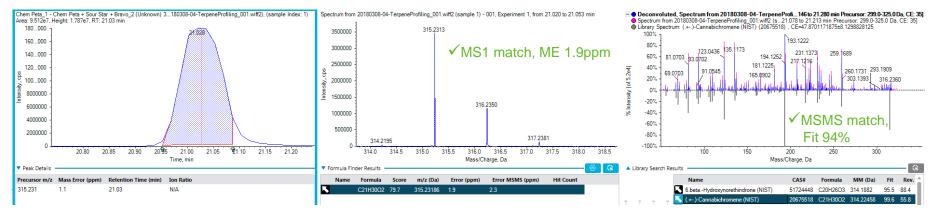
Lowest p-value and greatest fold change Features which are most distinguishing between the two groups compared in the t-Test

Answers for Science. Knowledge for Life.™ Example: Negra Bonito vs. All Others

Peaks of Interest

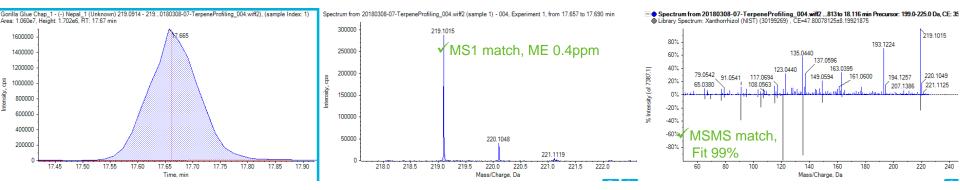

Peak of Interest	m/z	RT
1 (-) Negro Bonita_1	341.2107	21.86
2(-) Negro Bonita_2	341.2109	21
3(-) Negro Bonita_3	373.2363	21.86
4(-) Nepal_1	219.1014	17.67
5 (-) Nepal_2	251.1277	17.66
6 (-) Nepal_3	343.2266	17.67
7(+) Chem Peta + Sour Star + Bravo_1	311.2002	21
8(+) Chem Peta + Sour Star + Bravo_2	315.2309	20.99
9(+) Chem Peta + Sour Star + Bravo_3	316.235	21
10 (+) Negro Bonita_1	313.1794	20.52
11 (+) Negro Bonita_2	345.2057	20.52
12(+) Sour Star + Double Sour_1	375.2528	16.56

Step 3: Suspect Screening Some Peaks of Interest Identified by MSMS Library Matches


Peak of Interest #7: (+) in Chem Peta, Sour Star, OG Bravo (m/z 311.2003)

- NIST Library Match for Cannabinol (CBN)
- · A non-psychoactive cannabinoid usually found only in trace levels

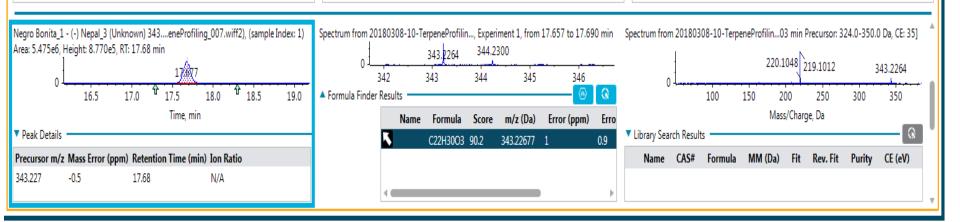
Peak of Interest #8: (+) in Chem Peta, Sour Star, OG Bravo (m/z 315.2313)


- NIST Library Match for Cannabichromene (CBC)
- May have anti-inflammatory, anti-viral, antifungal properties
- Contribute to the analgesic effects

Step 3: Suspect Screening Some Peaks of Interest Identified by MSMS Library Matches

Peak of Interest #4: (-) in Nepal (*m*/*z* 219.1015)

- NIST Library Match for Xanthorrizol
- · A sesquiterpenoid which exhibits natural antibacterial, antifungal activity



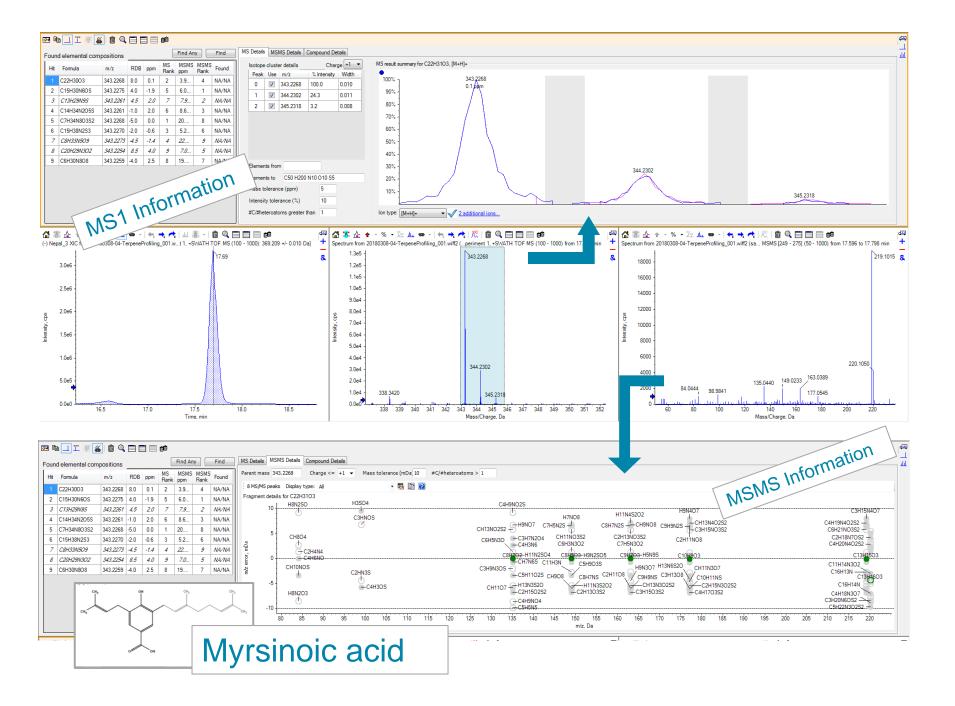
Answers for Science. Knowledge for Life.[™]

...but some needed some more digging to ID

Peak of Interest #6: (-) in Nepal (*m*/*z* 343.2266)

Index	Sample Name	Component Name	Precursor Mass	Area Ratio of	Mass Error	Library Confidence	Found At Mass	Mass Error (pp	Library Hit	Library Score	Formula Finder Results	Formula Finder Sc
6	MeOH Blank	(-) Nepal_3	343.227	N/A			N/A	N/A		N/A		N/A
439	Chem Peta_1	(-) Nepal_3	343.227	N/A	 	•	343.2268	0.5	No Match	0.0	C22H30O3	99.125
872	Gorilla Glue Chap_1	(-) Nepal_3	343.227	N/A	 	•	343.2265	-0.3	No Match	0.0	C22H30O3	87.331
▶ 130	5 Negro Bonita_1	(-) Nepal_3	343.227	N/A	\sim	•	343.2264	-0.5	No Match	0.0	C22H30O3	90.203
173	3 Sour Star Arnold_1	(-) Nepal_3	343.227	N/A	×	•	343.2266	0.0	No Match	0.0	C22H30O3	95.001
217	L OGD Bravo_1	(-) Nepal_3	343.227	N/A	 Image: A set of the set of the	•	343.2265	-0.3	No Match	0.0	C22H30O3	88.962
260	1 Nepal Chap_1	(-) Nepal_3	343.227	N/A	 Image: A second s	•	343.2267	0.4	No Match	0.0	C22H30O3	97.504
303	7 Double Sour OG Chap_1	(-) Nepal_3	343.227	N/A	 Image: A second s	•	343.2266	-0.1	No Match	0.0	C22H30O3	93.956

Peak of Interest #6: C₂₂H₃₀O₃


No MSMS library match

Answers for Science. Knowledge for Life.™

Empirical Formula: C₂₂H₃₀O₃ ChemSpider Search with Predicted MSMS Comparison

Start (kaSASS.12AB.12bS):10-Methony-44.6k.12b-tetramethyl-123.444.56.6k.12A.12b-detramethyl-123.444.56.6k.12A 12b-detramethyl-123.444.56.6k.12A 12b-detramethyl-123.444.56.12A 12b-detramethyl-123.444.56.14A 12b-detramethyl-123.4	40 of 526 CSID											
$ \frac{1}{2} 1$	40 of 526 CSID	results for: C22H3003	ChamSpide	. Sp	pectrum from 2	20180308-10-TerpeneProfiling	007.wiff2 (sampl	e 1) - 007, Experiment 11,	fromple 1) - 007, Experiment	11, from 17.817 to 18	103 min Precursor: 3	324.0-350.0 Da, C
	CSID		And chemophate	<u>ا</u> ۳	100%	4	ŀ					
				1	95% -							
31 Hermitian 44.014 32 Hermitian 44.014 34 Hermitian 44.014 <t< td=""><td></td><td></td><td></td><td></td><td>90%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					90%							
2) monotone 34233 40 monotone 34333 40 m												
21 Space State Stat		-			85% -							
Here Lip/api Lip/api Lip/api Li					80%							
10 with the start start is a start in the start					75%							
11 43.64 43.64 16.64 16.64 16.64 1												
bit Model Model Markan bit Model Markan Model Markan </td <td></td> <td></td> <td></td> <td></td> <td>70% -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					70% -							
How shall be added by the standard on s-ly log and specific by the standard on s-ly log add specific by the standard specif					65%							
gradie diversity of μ = 1 minute (loc) (l					60%							
Bit Bit Decomposition 1, 10, 10, 10, 10, 10, 10, 10, 10, 10,				59	>							
Bit Bit Decomposition 1, 10, 10, 10, 10, 10, 10, 10, 10, 10,				2929	55% -							
Object AS A BASE LIST AS A BASE AS A State As				j je	50%							
The second sec				l (is								
Display Laterate 3/12 as analysis basis by step (24 chooses - 2 or all step (24 chooses - 2 or				l l								
State introduct and A introduct				*	40%							
045 11/2 Updayd21-tehanedycogli0b23-benerglycogli0b23-benerglycogline23-benerglycogline23-benerglycogline23-benerglycogline32-					35% -							
The degree deg				1	20%							
14 ds 45 115 <td< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					1							
0101 Dip / (IpSS 10113314137b; 0112) Dometying > 340 / 218 011 Dip / (IpSS 10113314137b; 0112) Dometying > 340 / 218 012 Dip / (IpS 101134141315); 01 / dometrying > 340 / 218 013 Dip / (IpS 101134141315); 01 / dometrying > 340 / 218 013 Dip / (IpS 101134141315); 01 / dometrying > 340 / 218 013 Dip / (IpS 101134141315); 01 / dometrying > 340 / 218 013 Dip / (IpS 101134141315); 01 / dometrying > 340 / 218 013 Dip / (IpS 101134141315); 01 / dometrying > 340 / 218 013 Dip / (IpS 1011341413141315); 01 / dometrying > 340 / 218 013 Dip / (IpS 101134141341315); 01 / dometrying > 340 / 218 013 Dip / (IpS 101135); 01 / dometrying > 340 / 218 014 Dip / (IpS 101135); 10 / dometrying > 340 / 218 014 Dip / (IpS 101135); 10 / dometrying > 340 / 218 015 Dip / (IpS 101135); 10 / dometrying > 340 / 218 015 Dip / (IpS 101135); 10 / dometrying > 340 / 218 015 Dip / (IpS 101135); 10 / dometrying > 340 / 218 015 Dip / (IpS 101135); 10 / dometrying > 340 / 218 015 Dip / (IpS 101135); 10 / dometrying > 340 / 218 015 Dip / (IpS 101135); 10 / dometrying > 340 / 218 015 Dip / (IpS 101135); 10 / dometrying > 340 / 218 015 Dip / (IpS 101135); 10 / dometrying > 340 / 218 015 <td></td> <td></td> <td></td> <td></td> <td>25% -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					25% -							
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					20% -							
Note: 320arditations: 23.44 set: 35 of trade intensity 121 Directed-Addret/set: -3.24 set: 36 32.42128 123 Directed-Addret/set: -3.24 set: 36 32.42128 124 23.242128 32.42128 125 Addret/set: -3.24 set: 36 32.42128 126 Directed-Addret/set: -3.242128 126.1258 126 Directed-Addret/set: -3.242128 126.1258 126 Directed-Addret/set: -3.242128 126.1258 126 Directed-Addret/set: -4.242128 126.1268 126 Directed-Addret/set: -4.242128 126.1268 126.026 126.0268 126.0268 126.026 126.0268 126.0268 126.0268 126.0268 126.0268 126.0268 126.0268 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.0032</td> <td>124.1248</td> <td></td> <td></td> <td></td> <td></td>							1.0032	124.1248				
121 17 break 4 Methylens-Jossandrud-4-m-17/03 kentat 424718 42675 560638 40 50 50 70 80 80 42675 42675 42675 42675 42675 42675 42675 42675 42675 42675 42675 42675 42675 42675 42675 42675 42675 42675					1							
1111 [1/2/bell-Methylen-Jacabardist-4m-1/y] kettate 32/47/18 32/2718 32/2718 32/2718 32/2718 4/2/2/36 32/2718 4/2/2/36 32/2718 4/2/2/36 32/2718 4/2/2/36 32/2718 4/2/2/36 32/2718 4/2/2/36 32/2718 4/2/2/36 32/2718 4/2/2/36 32/2718 4/2/2/36 32/2718 4/2/2/36 32/2718 4/2/2/36 32/2718 4/2/2/36 32/2718 4/2/2/36 32/2718 4/2/2/37 36/2/20 4/2/2/37 32/2718 4/2/2/36 32/2/37 4/2/2/36 32/2/37 4/2/37 32/2/37 4/2/37 36/2/20 4/2/37 32/2/37 4/2/37 32/2/37 4/2/37 32/2/37 4/2/37 32/2/37 4/2/37 32/2/37 4/2/37 32/2/37 4/2/37 32/2/37 4/2/37 32/2/37 <					10% -	-12 0003		125.1282				
Control types 2/ Value 1/200 controls of Astala					5% -			(
3007 (435,651,228,125);10-Methory-4,658,12b: tetramethyl-1,23,445,568,12b: 12b: decalpdro-9H: benza[a]panthen 9-one 342,4718 100 200 300 400 9000 9000 9000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>- 1 a state had a the</td><td>LL LL</td><td></td><td></td><td></td><td></td><td></td></td<>						- 1 a state had a the	LL LL					
Display all Carbon Atoms ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓					0% +	100 200	300	400		700	800	900
eleded compatibles. C _{1,3} H ₁₃ O ₂ ⁺ (2131016 Da)	3407	(4a5,6a5,12aK,12bS)-10-Methoxy-4,4,6a,12b-tetramethyl-1,2,3,4,4a,5,6,6a,12a,12b-decahydro-9H-benzo[a]xanthen-9-one	342.4/18						Mass/Charge, Da			
CH3 CH3 CH3 CH3 Assigned Error (Da) 135.041 2.56 II 0.036 III 0.000 135.021 100.00 III 0.000 IIII 0.000 220.1048 14.09 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		Display all Carbon At	oms Options									Options.
CH3 CH3 CH3 CH3 Error (Da) CH3 CH3 CH3 2.56 III 0.036 135.041 2.50 III 0.000 IIII 0.000 219.1012 100.00 IIII 0.000 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ected co	noosition: C., H O.+* (219 1016 Da)		1 🖬	Fragments	Peaks						
CH3 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓				ШĊ	agments -							
Сн _а Спорти		CH ₃ OH CH ₃ CH ₃		11		Mass/Charge		Intensity (%)	Assigned		Error (Da)	
сна					135.0441			2.56		0.036		
Сн ³ Сн ³ 2.80 000 201012 100.00 00 201048 14.09 000 343.2264 16.08 000 344.2298 6.14 00 Маtches: 5 of 7 peaks, 86.0% of total intensity Select С												
С 000 0 000 0 000 201048 14.09 10000 201048 14.09 0.000 201048 14.09 0.000 201048 14.09 0.0000 0.000 0.0												
Он 220.1048 14.09 0.000 343.2264 16.08 0.000 344.2298 6.14 0												
343.2264 16.08 Image: Constraint of the second secon										0.000		
он Matches: 5 of 7 peaks, 86.0% of total intensity Select С										0.000		
он Matches: 5 of 7 peaks, 86.0% of total intensity Select		¥								0.000		
Myrsinoic acid					344.2298			6.14				
Myrsinoic acid												
Myrsinoic acid		ОГОН			M-4-6 E -6	7						
Myrsinoic acid					viatches: 5 of	7 peaks, 80.0% of total inten	sity					
Myrsinoic acid											Select	Cancel
COMPANY CONFIDENTIAL & PROPRIETARY © 2017 AB Sciex												
SCIEN Knowledge for Life. [™]		SCIEV Answers for Science.				COMPANY	CONFIL	ENTIAL & P	ROPRIETAR	(© 2017	7 AB Scie	×

A Ranking Confidence Level in Unknown Identification

- 1. Analytical Standard Comparison
- 2. Accurate Mass/ Isotope/ Fragments consistent with published data
- 3. Accurate Mass/ Isotope/ Fragments are consistent with proposed structure, but published spectra are not available
- Accurate Mass and Isotopes are consistent with proposed structure, but unable to attribute the major fragments to the proposed structure

Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ru, M., Singer, H. P., Hollender, J. (2014) Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. 2097–2098.

Ranking Confidence Level in Unknown Identification

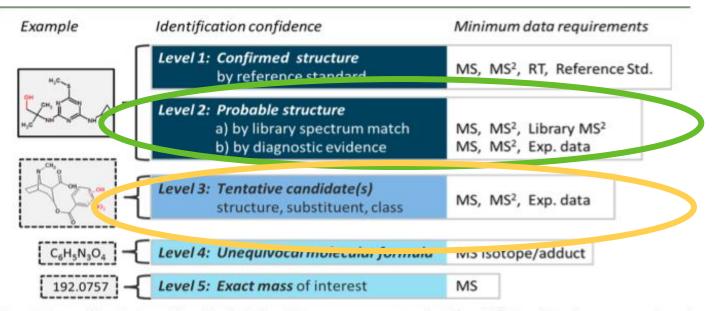


Figure 1. Proposed identification confidence levels in high resolution mass spectrometric analysis. Note: MS² is intended to also represent any form of MS fragmentation (e.g., MS^e, MS^e).

Schymanski *et al.* describes levels of identification criteria for nontargeted screening. With a library hit from a suspect screen, you can get as high as level 2 confidence (no reference standard, but good MS1 and MS2 matches). Without a library match, just your work on in silico fragment prediction of structures etc, you may only get as high as level 3 match.

- Peak of Interest #1: C₂₂H₂₈O₃ (492 structures in ChemSpider)
- Peak of Interest #5: C₁₄H₁₈O₄ (3,022 structures in ChemSpider)
- Peak of Interest #10: C₂₀H₂₄O₃ (16 structures in ChemSpider)
- Peak of Interest #11: C₂₁H₂₈O₄ (16 structures in ChemSpider)

Hmmm.... Why bother with the statistical analysis?

Can you just start with the SWATH data and the SUSPECT SCREEN?

Index	Sample Name □ ▽	Component Name ⊽	Precursor Mass ▽	Area Ratio… ▽	Mass Error	Library Confi	Found At Mass ⊽	Mass Error (⊽	Library Hit ⊽	Library ⊽ ⊽ Score	Formula Finder Results	Formula Finder
755	Chem Peta_1	357.2420 / 21.83 [M+H]+	357.242	N/A		V	357.2420	N/A	3.betaHydroxy-5-cholenoic a	100.0	No formula found	0.000
2487	OGD Bravo_1	357.2420/21.83 [M+H]+	357.242	N/A		~	357.2420	N/A	3.betaHydroxy-5-cholenoic a	100.0	No formula found	0.000
2192	OGD Bravo_1	136.0616 / 1.90	136.062	N/A		 Image: A set of the set of the	136.0616	N/A	Adenine (NIST)	99.5	C5H5N5	85.840
2321	OGD Bravo_1	317.2471/16.55	317.247	667.733		 Image: A set of the set of the	317.2474	N/A	Cannabigerol (NIST)	98.6	C21H32O2	95.408
1281	Gorilla Glue Chap_1	397.3829 / 25.79	397.383	77.424		~	397.3825	N/A	Monobehenin (NIST)	98.5	C29H48	92.728
1759	Sour Star Arnold_1	136.0616 / 1.90	136.062	N/A		~	136.0615	N/A	Adenine (NIST)	97.9	C5H5N5	82.204
3187	Double Sour OG Chap_1	317.2471 / 16.55	317.247	757.118		~	317.2472	N/A	Cannabigerol (NIST)	97.7	C21H32O2	88.288
460	Chem Peta_1	136.0616 / 1.90	136.062	N/A		~	136.0617	N/A	Adenine (NIST)	97.0	No formula found	0.000
2360	OGD Bravo_1	399.2339 / 19.10	399.234	N/A		~	399.2338	N/A	Methanesulfonamide, N-3-(9H	96.6	C16H34N2O9	97.624
2366	OGD Bravo_1	399.2340 / 19.61	399.234	N/A		~	399.2338	N/A	Methanesulfonamide, N-3-(9H	96.6	C16H34N2O9	97.624
597	Chem Peta_1	317.2474 / 17.62	317.247	N/A		~	317.2471	N/A	Cannabigerol (NIST)	95.7	C21H32O2	90.542
3013	Nepal Chap_1	397.3829 / 25.79	397.383	75.450		~	397.3825	N/A	Monobehenin (NIST)	95.5	C29H48	90.778
1888	Sour Star Arnold_1	317.2471 / 16.55	317.247	497.440		~	317.2473	N/A	Cannabigerol (NIST)	95.0	C21H32O2	94.419
2754	Nepal Chap_1	317.2471 / 16.55	317.247	381.961		~	317.2469	N/A	Cannabigerol (NIST)	95.0	C21H32O2	85.415
1022	Gorilla Glue Chap_1	317.2471 / 16.55	317.247	357.408		~	317.2472	N/A	Cannabigerol (NIST)	94.9	C21H32O2	90.432
1455	Negro Bonita_1	317.2471 / 16.55	317.247	159.548		~	317.2472	N/A	Cannabigerol (NIST)	94.8	C21H32O2	93.263
2762	Nepal Chap_1	317.2474 / 17.62	317.247	N/A		~	317.2472	N/A	Cannabigerol (NIST)	94.4	C21H32O2	92.589
589	Chem Peta_1	317.2471 / 16.55	317.247	336.278		~	317.2471	N/A	Cannabigerol (NIST)	93.7	C21H32O2	89.434
3154	Double Sour OG Chap_1	369.1332 / 12.70	369.133	N/A		~	369.1334	N/A	Methoxyfenozide (NIST)	92.3	C21H20O6	95.444
1544	Negro Bonita_1	337.1794 / 20.57 [M+CH3OH+H]+	337.179	192.132		~	337.1795	N/A	Acebutolol (NIST)	90.8	C21H20O2	92.439
3351	Double Sour OG Chap_1	233.1169 / 21.83 [M+H]+	233.117	562.790		 Image: A start of the start of	233.1171	N/A	2,4-Di-tert-amylphenol (NIST)	90.8	C7H16N6OS	66.430
1855	Sour Star Arnold_1	369.1332 / 12.70	369.133	N/A		~	369.1332	N/A	Methoxyfenozide (NIST)	90.3	C21H20O6	96.888
753	Chem Peta_1	233.1169/21.83 [M+H]+	233.117	1411.374		~	233.1169	N/A	2,4-Di-tert-amylphenol (NIST)	90.2	C14H16O3	87.243
1422	Negro Bonita_1	369.1332 / 12.70	369.133	N/A		 Image: A second s	369.1333	N/A	Methoxyfenozide (NIST)	90.0	C21H20O6	97.845
609	Chem Peta_1	287.2007 / 18.23	287.201	N/A		 Image: A second s	287.2004	N/A	Tetrahydrocannabivarin (NIST)	89.3	C19H26O2	91.959
1908	Sour Star Arnold_1	287.2007 / 18.23	287.201	N/A		 	287.2006	N/A	Tetrahydrocannabivarin (NIST)	88.5	C19H26O2	96.788
2054	Sour Star Arnold_1	357.2420 / 21.83 [M+H]+	357.242	N/A		~	357.2418	N/A	Ethanethioic acid, S-2-(hexade	88.5	No formula found	0.000

- THOUSANDS of hits, often across multiple sample groups
- Do we need all of them to get to the answer we seek???
- We want to CLASSIFY, DISTINGUISH and find DIFFERENCES that matter

Summary, Potential Applications, Potential Implications

- Unique Cannabis chemovars can be distinguished by their molecular signature
 - Strains cluster together and separate easily by PCA, even with no target masses defined
- Trace cannabinoids CBC and CBN identified as upregulated in Sour Star, Chem Peta, OG Bravo
- Myrsinoic Acid identified as a natural product downregulated in Nepal versus other strains
- Xanthorrhizol identified as a sesquiterpenoid present in multiple strains
 - Not one of the terpenes included in most targeted analyses

Summary, Potential Applications, Potential Implications

- Unique Cannabis chemovars can be distinguished by their molecular signature
 - Intellectual Property?
 - New strain behavior prediction?
 - Authenticity testing? Identifying fraudulent strain labelling?
 - Extraction and manufacturing process refinement?
 - Pharmaceutical/therapy design?
 - Identifying novel natural products?
- Food authenticity
- Metabolomic research
- Workflow: Classification of other types of complex samples

Questions?

Answers for Science. Knowledge for Life.™

Answers for Science. Knowledge for Life.™

HC

HO

For Research Use Only. Not for use in diagnostic procedures.

AB Sciex is doing business as SCIEX.

© 2017 AB Sciex. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX[™] is being used under license.

