Advancing electron activated dissociation (EAD) in a datadependent acquisition (DDA) method for improved biotherapeutics characterization

Zhengwei Chen, Zoe Zhang, Kerstin Pohl, Todd Stawicki, Lei Xiong SCIEX, USA

RUO-MKT-11-13924-A

- Background
- Robust peptide mapping enabled by EAD
- Site-specific intact N/O-linked glycopeptide analysis by EAD
- Amino acid isomer differentiation and its application in sequence variants (SV) analysis
- Conclusions

Importance of glycosylation in biotherapeutics development

- **Biotherapeutics**: monoclonal antibodies, fusion proteins and therapeutic replacement enzymes etc.
- Critical quality attributes (CQA)
- Safety and efficacy
- Different stages
 - Discovery
 - Development
 - Quality control

Challenges in glycosylation analysis

Three MS-based approaches

CID: Collision-Induced Dissociation ETD: Electron-Transfer Dissociation ECD: Electron-Capture Dissociation

MS/MS fragmentation

Intact glycopeptides

MS/MS spectra

- CID:
 - Dissociation of labile covalent PTMs
- ETD:
 - Slow reaction
 - Poor MS2 data quality ETnoD
 - Prefer higher charge states
- ECD
 - Flow-through devices with poor efficiency and software integration

Electron activated dissociation (EAD)

- Free electrons are captured by ions and form a radical state which then fragments
- Electrons introduced with different energies will induce fragmentation in different molecule types
- EAD cell enables you to perform ECD, EAD (Hot ECD) and EIEIO in one instrument

25

5

Baba, Takashi, et al. Journal of the American Society for Mass Spectrometry (2021).

EAD implemented in Q-TOF system

EAD cell Traditional CID cell Mirror = Detector \rightarrow product ions precursor ions TOF magnetic field 🚽 electrons Shield 'liner' Zeno trap lon source Accelerator Mirror Q0 Q1 Q2 N2 Ion optics

ZenoTOF 7600 System

Key features of EAD

- Speed of fragmentation and acquisition
 - Electron capture reaction times ~ 10-30ms
 - DDA on LC time scale up to 20 Hz
- Reagent-free, electron capture dissociation
- Tunable energy
- No need for further activation of charged reduced species by CID

LC-MS workflow

- Reduced peptide mapping:
 - Denaturation
 - Reduction
 - Alkylation
 - Enzyme digestion
 - Quench reaction

LC condition	Values	MS condition	Values
LC system	ExionLC system (SCIEX)	MS system	ZenoTOF 7600 system
Mobile phase	0.1% FA H ₂ O/ACN		DDA with top10 and dynamic
Gradient	35 min to 45% B	Experiment type	exclusion
Column	C18 1.7 µm; 2.1 x 150 mm	Cycle time	1.25 s
Column temp.	50°C	Fragmentation	EAD with 7eV, 10 ms reaction time
Flow rate	0.25 mL/min	Zeno trap	ON

Posters: Mon. #96, 284; Tue. #148, 156, 290; Wed. #245; Thur. #005

EAD in a DDA acquisition of NISTmAb peptide digest

EAD provides exceptional peptide sequencing

Limitations of CID for site-specific N-glycopeptide analysis

Benefits of EAD for site-specific N-glycopeptide analysis

Benefits of EAD for site-specific O-glycopeptide analysis

Fragment	Peptide	Modifications
c2	EA	
в	EAI	
c6	EAISPP	
c7	EAISPPD	
c8	EAISPPDA	
c9	EAISPPDAA	
c10	EAISPPDAAS	Core1_S2 [S10]
c11	EAISPPDAASA	Core1_52 [510]
c13	EAISPPDAASAAP	Core1_S2 [S10]
c14	EAISPPDAASAAPL	Core1 S2[S10]

- 4th Ser and 10th Ser
- *c*9 and *c*10
 Δ*m*/*z* = 1034.45
- Confident O-glycan localization at 10th Ser

EAD generates diagnostic ions for isoAsp

Asp deamidation process

isoAsp with EAD

isoAsp signature ion z.6-57 was observed in EAD spectra

XIC of deamidated form

EAD MS/MS of deamidated form Z3+1 2000 1800

z.6

EAD generates diagnostic ions for Leu and isoLeu

isoLeu signature ion z.7-29 was observed in EAD spectra

Sequence variants (SV) analysis – F to I/L

17

Conclusions

- EAD enables improved biotherapeutics characterization.
- <u>Superior sequence coverage</u> for mAb analysis.
 - EAD performed in a DDA experiment enables high-throughput and highly effective electron-based fragmentation of large number of peptides from protein digests
 - The reagent-free EAD equipped with adjustable electron energy provides highly efficient fragmentation to generate a wealth of *c*/*z*, *b*/*y*, *a*/*x* ions for exceptional sequence coverage for peptide mapping
- EAD preserves labile PTMs (i.e. glycosylation).
 - enabling unambiguous site localization for both N-glycopeptides and O-glycopeptides with multiple (potential) glycosylation sites
- EAD provides the capability for amino acid isomer differentiation
 - Can readily applied for sequence variants analysis for isomer differentiation (i.e. F->I/L)

The SCIEX clinical diagnostic portfolio is For In Vitro Diagnostic Use. Rx Only. Product(s) not available in all countries. For information on availability, please contact your local sales representative or refer to <u>www.sciex.com/diagnostics</u>. All other products are For Research Use Only. Not for use in Diagnostic Procedures.

Trademarks and/or registered trademarks mentioned herein, including associated logos, are the property of AB Sciex Pte. Ltd. or their respective owners in the United States and/or certain other countries (see <u>www.sciex.com/trademarks</u>).

© 2021 DH Tech. Dev. Pte. Ltd. DOC-MKT-10-13924-A