Electron Activated Dissociation in a Q-TOF Mass Spectrometer empowered by Zeno Trap Pulsing

<u>Takashi Baba</u>, Pavel Ryumin, Eva Duchoslav, Anjali Chelur, Bill Loyd, Igor Chernushevich, Jason Causon, and Jose Castro-Perez

SCIEX The Power of Precision

ThOA am 08:50 Nov 04 / 2021 ASMS, Philadelphia

© 2021 DH Tech. Dev. Pte. Lto

- Resolution: Quadrupole < TOF (m/Δm ~ 30,000-50,000) < Fourier transform
- ion transmission enhanced by Zeno trap pulsing
- Advantage: High sensitivity & precursor consumption (ion statistics)
- Applications using high sensitivity performance:

Detection of weak or rare Electron Activated Dissociation (EAD) products

- Top-down protein sequencing (this work: top-down de novo sequencing)
- Structural elucidation of lipids & small molecules (this work: <u>phospholipids with</u> <u>negative charge</u>)

Electron Activated Dissociation (EAD)

© 2021 DH Tech. Dev. Pte. Ltd.

The Power of Precision

EAD device using a branched RF ion trap

RF ion trap potential

electrostatic lenses

Improvement of electron beam transmission

The Power of Precisio

Zeno trap pulsing for ion transmission enhancement

Q2 unit for EAD-CAD-Zeno

Zeno trap pulsing principle

(1) Axial trapping by pseudo potential by the AC bias
 *AC "bias": the same AC phase on all four rods

(2) **m/z ordered ion ejection** by combination of the lamping AC and the extraction field on IQ3

Spatial focusing of wide range of m/z in the TOF accelerator

(3) Acceleration of the focused ions

Enhancement of ion transmission 4-10x

EAD and Zeno trap pulsing are combined. Ubiquitin 12+

Top-down sequencing of medium size protein carbonic anhydrase 2 (CA2)

Electron Activated Dissociation (EAD) family

negative precursors

many possibility of isomeric aa combinations

N=GG, 114.042928	ES=DT, 216.074623
Q=AG, 128.058578	PQ=AGP, 225.111342
GT=AS, 158.069143	QV=LN=GGL=AGV, 227.126992
GL=AV, 170.105528	NN=GGN=GGGG, 228.085856
GN=GGG, 171.064392	EV=DL, 228.111008
GQ=AN=AGG, 185.080042	DN=DGG, 229.069872
EG=AD, 186.064058	QT=AGT=AAS, 229.106257
AQ=AAG, 199.095692	AY=FS, 234.100443
LS=TV, 200.116093	LQ=AGL=AAV, 241.142642
NS=GGS, 201.074957	NQ=GGQ=AGN=AGGG, 242.101506
NP=GGP, 211.095692	KN=GGK, 242.137891
NV=GGV=AAA, 213.111342	EN=DQ=EGG=ADG, 243.085522
QS=NT=GGT=AGS, 215.090607	

One miss cleavage can increase sequence uncertainty
→
ECD is a less AA preferential dissociation than CID.

ECD vs. CID:
one cleavage by an electron
→ less internal fragmentation than CID.

Still need to avoid over electron irradiation to reduce further dissociation of fragments.

ECD vs. hot ECD: ECD produces less a• and y contamination

z• separation from c' for confident sequencing

 $z \bullet$ fragments can react with O_2 ref. Y. Xia et al. JACS2006 ref. T. Baba et al. ASMS2009 exception: Lys (K). No $z \bullet + O_2$, but z-H

 \rightarrow C terminal fragments (z•) can be separated from the total spectrum

Previous works: peptides

This work: $+O_2$ events appeared across the entire protein backbone.

The Power of Precisio

de novo sequencing of ubiquitin 9+

M=Q=L-F-V-K=T-L=TG=K-LT=T-L=E=VEPS-D-T-L-E-NVK-A-K-L=Q=D=K=E-G-LPP= D=Q=Q-R-LL=F=AG-K-QL-E=D=G=R=T-LS-D-Y-NL-QK-E-S-TL-H=LV=LR-L-RG-G

green - : Golden pairs are used, sequencing from the N terminus
red - : z• candidates are used, sequencing from the C terminus
violet = : both green & blue

Red AA: unique & correct answer. (except L/I) Black AA: correct answer but not unique = permutable, isomeric (e.g. Q=AG)

Can be solved by conventional top-down sequencing

Distinguishing Leu / Ile by secondary dissociation in hot ECD (15eV)

ref. F. Kjeldsen et al. Chem. Phys. Lett 2002 K. Rajabi et al. ASMS2020

hot ECD (15eV) applied to ubiquitin 9+

	z∙75	z∙70	z∙65	z•63	z∙55	z∙48	z•42	z•35	z•34	z•28	z•22	z∙17	z•11	z∙9	z•7	z∙5
standard aa	lle	Leu	lle	lle	lle	lle	lle	Leu	lle	Leu	Leu	lle	Leu	Leu	Leu	Leu
z• -Leu intensity	5.7	0.0	3.2	7.4	0.0	4.1	9.9	5.5	0.0	4.3	5.0	1.5	1.5	0.6	0.4	1.8
z• -Ile intensity	0.0	0.0	0.0	3.4	2.3	1.7	4.4	4.1	4.6	7.1	4.7	1.4	0.2	0.0	0.0	0.0
Hot ECD told	Leu		Leu	Leu	lle	Leu	Leu	Leu	lle	lle	Leu	Leu	Leu	Leu	Leu	Leu

Low success rate when fragment charge is large.

Difficult to find w ions from overlapped other products.

opportunity for improvement: higher mass resolution should solve this problem.

EID on positive phospholipid: complete structurral analysis

ThOE am 09:50, very soon

ref. L. Campbell et al. Anal. Chem. 2015 T. Baba et al. JLR 2018, etc. T. Baba et al. ASMS 2016, oral

Electron beam energy 10 eV to avoid neutralization by electron capture

Zeno trap pulsing ON \rightarrow spectrum accumulation of 0.1 s

EID (EIEIO) worked on all types of complex lipids, but inefficient ionization of acidic lipids was the problem.

Negative EID (35eV) on acidic phospholipids

(1) High sensitivity of Zeno trap enabled- TOF MS is ideal for top-down sequencing, and other molecular identification by low abundant products.

(2) Efficient electron activated dissociation allows various dissociation mode with high speed: ECD, hot ECD, EID, etc. including negatively charged species.

These features are available in ZenoTOF 7600 (Sciex)*

*Ke = 35eV and oxygen introduction are research features, not available in the product.

The latest publication (T. Baba et al. 2021, JASMS) doi.org/10.1021/jasms.0c00425

The SCIEX clinical diagnostic portfolio is For In Vitro Diagnostic Use. Rx Only. Product(s) not available in all countries. For information on availability, please contact your local sales representative or refer to https://sciex.com/diagnostics. All other products are For Research Use Only. Not for use in Diagnostic Procedures.

Trademarks and/or registered trademarks mentioned herein, including associated logos, are the property of AB Sciex Pte. Ltd. or their respective owners in the United States and/or certain other countries.

© 2021 DH Tech. Dev. Pte. Ltd.

RUO-MKT-11-13994-A

