# Automated mass spectra comparison algorithm for high-throughput compound QC applications

**SCIEX**: Chang Liu; Gordana Ivosev; Thomas R. Covey **Pfizer**: Alandra Quinn; Jeff Chin; Hui Zhang

ASMS 2021, Philadelphia, PA, November 1, 2021



#### Compound management and distribution

# **//// Echo**<sup>®</sup> MS System



The Pou

# Compound QC challenge

# **Echo** MS System



© 2021 DH Tech. Dev. Pte. Ltd.

### AEMS system







# AEMS for high-throughput analysis

# **//// Echo**<sup>®</sup> MS System



#### TOF based AEMS system prototype





| OPP MS     | Found           | Not Found        | Review | total cpds |  |
|------------|-----------------|------------------|--------|------------|--|
| Plate 1    | 304             | 10               | 6      | 320        |  |
| Plate 2    | 299             | 20               | 1      | 320        |  |
| Plate 3    | 308             | 10               | 2      | 320        |  |
| Plate 4    | 287             | 31               | 2      | 320        |  |
| Plate 5    | 285             | 34               | 1      | 320        |  |
| Plate 6    | 285             | 30               | 5      | 320        |  |
| Plate 7    | 281             | 28               | 11     | 320        |  |
| Plate 8    | 288             | 31               | 1      | 320        |  |
| Plate 9    | 297             | 16               | 7      | 320        |  |
| Plate 10   | 291             | 14               | 15     | 320        |  |
| Plate 11   | 317             | 3                | 0      | 320        |  |
| Plate 12   | 307             | 11               | 2      | 320        |  |
| Plate 13   | 304             | 15               | 1      | 320        |  |
| Plate 14   | 308             | 12               | 0      | 320        |  |
| Plate 15   | 311             | 9                | 0      | 320        |  |
| Plate 16   | 309             | 10               | 1      | 320        |  |
| Plate 17   | 303             | 17               | 0      | 320        |  |
| Plate 18   | 289             | 26               | 5      | 320        |  |
| Plate 19   | 298             | 16               | 6      | 320        |  |
| Plate 20   | 73              | 3                | 4      | 80         |  |
| Plate 21   | 310             | 9                | 1      | 320        |  |
| Plate 22   | 300             | 16               | 4      | 320        |  |
| Total cpds | 6354            | 371              | 75     | 6800       |  |
|            |                 |                  |        |            |  |
|            |                 |                  |        |            |  |
|            | % mass<br>match | <mark>93%</mark> |        |            |  |
|            | % not<br>Found  | 5%               |        |            |  |
|            | % review        | 1%               |        |            |  |
|            |                 |                  |        |            |  |

22 plates by AEMS within <1 day

Same samples would take > 1 month with current LC/MS based QC



### TOF based AEMS data

# Echo<sup>®</sup> MS System



SCIEX The Power of Precision

© 2021 DH Tech. Dev. Pte. Ltd.

#### **TOF based AEMS data**

# Echo<sup>®</sup> MS System





### Automated data processing overview

- Data splitting: correlate well position with each signal peak
- Integration and visualization
- Background identification and subtraction
- Spectra comparison



Echo<sup>®</sup> MS System

### Data splitting

# Echo<sup>®</sup> MS System

#### CORRELATE WELL POSITION WITH EACH SIGNAL PEAK





### Integration and report

**//// Echo** MS System

- Input information
  - Split data (MS signal correlated with well position)
  - Compound information table
  - Integration settings (MS window width, etc.)
- Report table
  - Intensity, mass accuracy, isotope pattern matching score, S/N, etc.

| sample | formula_group_1 | charge_agent_group_1 | formula_group_2 | charge_agent_group_2 | formula_group_3 | charge_agent_group_ |
|--------|-----------------|----------------------|-----------------|----------------------|-----------------|---------------------|
| A1     | C5H9NO2         | H+                   | C5H9NO3         | H+                   | C5H9NO4         | H+                  |
| A2     | C6H13NO         | H+                   | C5H9NO3         | H+                   | C5H9NO4         | H+                  |
| A3     | C6H11NO2        | H+                   | C6H11NO3        | H+                   | C6H11NO4        | H+                  |
| A4     | C6H11NO2        | H+                   | C6H11NO3        | H+                   | C6H11NO4        | H+                  |
| A5     | C5H9NO2         | H+                   | C5H9NO3         | H+                   | C5H9NO4         | H+                  |
| A6     | C5H9NO2         | H+                   | C5H9NO3         | H+                   | C5H9NO4         | H+                  |
| A7     | C5H9N           | H+                   | C5H9NO          | H+                   | C5H9NO2         | H+                  |
| A8     | C5H9N           | H+                   | C5H9NO          | H+                   | C5H9NO2         | H+                  |
| A9     | C7H13N          | H+                   | C7H13NO         | H+                   | C7H13NO2        | H+                  |
| A10    | C7H13N          | H+                   | C7H13NO         | H+                   | C7H13NO2        | H+                  |
| A11    | C6H13N          | H+                   | C6H13NO         | H+                   | C6H13NO2        | H+                  |
| A12    | C6H13N          | H+                   | C6H13NO         | H+                   | C6H13NO2        | H+                  |
| A13    | C6H13NO         | H+                   | C6H13NO2        | H+                   | C6H13NO3        | H+                  |
| A14    | C6H13NO         | H+                   | C6H13NO2        | H+                   | C6H13NO3        | H+                  |
| A15    | C6H9NO2         | H+                   | C6H9NO3         | H+                   | C6H9NO4         | H+                  |
| A16    | C6H9NO2         | H+                   | C6H9NO3         | H+                   | C6H9NO4         | H+                  |
| A17    | C7H11NO2        | H+                   | C7H11NO3        | H+                   | C7H11NO4        | H+                  |
| A18    | C7H11NO2        | H+                   | C7H11NO3        | H+                   | C7H11NO4        | H+                  |
| A19    | C7H11NO2        | H+                   | C7H11NO3        | H+                   | C7H11NO4        | H+                  |
| A20    | C7H11NO2        | H+                   | C7H11NO3        | H+                   | C7H11NO4        | H+                  |
| A21    | C6H9NO2         | H+                   | C6H9NO3         | H+                   | C6H9NO4         | H+                  |

| 0,7 | Sample 🔍 📎 | MZ (1) 0 🖉 📎 | Status (1) 🖓 🖉 | Intensity (1) 💷 📉 | 5/N (1) 0 🖉 📎 | Abs Mz Error (1) 0 / 🔍 | Error Type (1) 0 🖉 🖄 | AVG Ratio Diffs (1) |
|-----|------------|--------------|----------------|-------------------|---------------|------------------------|----------------------|---------------------|
| )   | A17        | 470.1145     | 9K 👻           | 379850.1          | 17067.9       | 1                      | Positive             | 0.0364375691427     |
| )   | A18        | 465.1356     | 08 🗸 👻         | 680719.1          | 10490.3       | 1                      | Positive             | 0.041457953915      |
| )   | A19        | 474.1247     | 00 👻           | 705874.2          | 32371.8       | 0                      |                      | 0.0409172184878     |
| )   | A20        | 465.1356     | 08 🔍 🕶         | 218335.2          | 3208.2        | 2                      | Positive             | 0.0361845186635     |
| )   | A21        | 471.1713     | 08 🔍 🕶 -       | 23219.5           | 413.1         | 1                      | Positive             | 0.0785033672792     |
| )   | A22        | 465.0913     | 0K 🚽 👻         | 1670878.0         | 63492.6       | 0                      | -                    | 0.0485186411713     |
| )   | 473        | 471 1713     |                | 70104 0           | 1617 3        | ٩                      | Positiva             | A A37AA75385586     |



### Data review and visualization

Echo<sup>®</sup> MS System

#### HEAT MAP



#### MASS SPECTRA AND XIC VISUALIZATION





XIC for Sample I7, Group #1 M/Z: 472.1553, +/- 0.02 Da





#### Validation rules

# Echo<sup>®</sup> MS System



- Validation rules
  - Mass accuracy
  - Isotope pattern
  - S/N



Spectrum for Sample O23, Group #1 around the MZ: 458.1509 (+/- 8 Da)







Pte. Ltd.

### Background mass spectra pemoval

Background identification and subtraction (with well-specific scaling factor)



© 2021 DH Tech. Dev. Pte. Ltd.

Echo<sup>®</sup> MS System

### Background mass spectra removal

Echo<sup>®</sup> MS System

Background identification and subtraction (with well-specific scaling factor)





© 2021 DH Tech. Dev. Pte. Ltd.

#### Spectra comparison

**Echo** MS System

- Auto pairing from two sets of data (reference and test sets)
- Calculating the spectra similarity score

| L1_20201120_OPP_JChinTackle_split | formula1    | ChargeAgent1 | ind1 | L2_20201117_OPP_ChinHipsplit | formula2    | ChargeAgent2 | ind2 | SumOfSquares_orig | SumOfSquares_log | SumOf_ABS_orig | DotProd_orig | DotProd_log | chebychev_orig | chebychev_log | hamming    |
|-----------------------------------|-------------|--------------|------|------------------------------|-------------|--------------|------|-------------------|------------------|----------------|--------------|-------------|----------------|---------------|------------|
| A1                                | C11H13N3O   | H+           | 1    | К7                           | C11H13N3O   | H+           | 77   | 0.959456172       | 0.955820259      | 0.645442795    | 0.959456172  | 0.95582026  | 0.796880899    | 0.849142716   | 0.7540124  |
| A2                                | C21H25N3S   | H+           | 2    | L1                           | C21H25N3S   | H+           | 78   | 0.012769056       | 0.035536743      | 0.024073165    | 0.012769056  | 0.03553674  | 0              | 0             | 0.63627819 |
| A3                                | C16H14N4O4S | H+           | 3    | P5                           | C16H14N4O4S | H+           | 110  | 0.376369085       | 0.521629264      | 0.431661871    | 0.376369085  | 0.52162926  | 0              | 0             | 0.57399973 |
| A4                                | C15H16CINO3 | H+           | 4    | L7                           | C15H16CINO3 | H+           | 84   | 0.575450241       | 0.798650943      | 0.59424423     | 0.575450241  | 0.79865094  | 0              | 0             | 0.57098524 |
| A5                                | C20H30N2O2  | H+           | 5    | E2                           | C20H30N2O2  | H+           | 30   | 0.246982531       | 0.514444398      | 0.360448312    | 0.246982531  | 0.5144444   | 0              | 0             | 0.57540668 |
| A6                                | C22H28N2O2  | H+           | 6    | B5                           | C22H28N2O2  | H+           | 12   | 0.934506833       | 0.934983036      | 0.673043026    | 0.934506833  | 0.93498304  | 0.710370764    | 0.815177024   | 0.69882028 |
| A7                                | C19H24N2O   | H+           | 7    | J5                           | C19H24N2O   | H+           | 68   | 0.975984359       | 0.975293725      | 0.717011186    | 0.975984359  | 0.97529373  | 0.807628839    | 0.876087665   | 0.67489348 |
| B1                                | C20H20N2OS  | H+           | 8    | M4                           | C20H20N2OS  | H+           | 88   | 0.942930052       | 0.923079481      | 0.579466376    | 0.942930052  | 0.92307948  | 0.760249987    | 0.803224657   | 0.61001602 |
| B2                                | C18H20O2    | H+           | 9    | A5                           | C18H20O2    | H+           | 5    | 0.629982577       | 0.806256346      | 0.571039906    | 0.629982577  | 0.80625635  | 0              | 0             | 0.58906072 |
| B3                                | C19H26N2O   | H+           | 10   | A3                           | C19H26N2O   | H+           | 3    | 0.97830618        | 0.969743791      | 0.668430451    | 0.97830618   | 0.96974379  | 0.865575518    | 0.880806797   | 0.61427126 |
| B4                                | C28H31N7O   | H+           | 11   | N6                           | C28H31N7O   | H+           | 97   | 0.455716805       | 0.55414278       | 0.388890379    | 0.455716805  | 0.55414278  | 0              | 0.057437431   | 0.56637181 |
| B5                                | C19H24N4O3  | H+           | 12   | M3                           | C19H24N4O3  | H+           | 87   | 0.720422371       | 0.737543874      | 0.595474874    | 0.720422371  | 0.73754387  | 0.02396553     | 0.325962775   | 0.58712939 |
| B6                                | C22H18N4O3  | H+           | 13   | N2                           | C22H18N4O3  | H+           | 93   | 0.784752158       | 0.801449044      | 0.491496274    | 0.784752158  | 0.80144904  | 0.285153155    | 0.57117613    | 0.58073362 |
| B7                                | C29H31N7O2  | H+           | 14   | G1                           | C29H31N7O2  | H+           | 43   | 0.513106546       | 0.689543154      | 0.458382234    | 0.513106546  | 0.68954315  | 0              | 0             | 0.57883667 |
| C1                                | C16H23NO2   | H+           | 15   | O2                           | C16H23NO2   | H+           | 100  | 0.600978976       | 0.677178713      | 0.508897909    | 0.600978976  | 0.67717871  | 0              | 0.308279677   | 0.57361002 |
| C2                                | C17H18N4    | H+           | 16   | D4                           | C17H18N4    | H+           | 25   | 0.953061801       | 0.942710098      | 0.601272225    | 0.953061801  | 0.9427101   | 0.803503805    | 0.86625866    | 0.61351478 |
| C3                                | C20H24N2    | H+           | 17   | M7                           | C20H24N2    | H+           | 91   | 0.961009919       | 0.965121483      | 0.700107091    | 0.961009919  | 0.96512148  | 0.782007216    | 0.863901431   | 0.70986386 |
| C4                                | C21H23N3OS2 | H+           | 18   | H2                           | C21H23N3OS2 | H+           | 51   | 5.56523E-05       | 0.000763311      | 0.000416035    | 5.56523E-05  | 0.00076331  | 0              | 0             | 0.58622389 |
| C5                                | C14H18N2O   | H+           | 19   | P6                           | C14H18N2O   | H+           | 111  | 0.800553535       | 0.772565728      | 0.518654281    | 0.800553535  | 0.77256573  | 0.424909407    | 0.548170368   | 0.60166026 |
| C6                                | C16H14N2O3  | H+           | 20   | K5                           | C16H14N2O3  | H+           | 75   | 0.665656906       | 0.768897344      | 0.604907656    | 0.665656906  | 0.76889734  | 0              | 0             | 0.58993183 |
| C7                                | C18H23N3O2  | H+           | 21   | L6                           | C18H23N3O2  | H+           | 83   | 0.639113904       | 0.758830027      | 0.499500931    | 0.639113904  | 0.75883003  | 0              | 0             | 0.56209077 |
| D1                                | C12H14N2O3  | H+           | 22   | J2                           | C12H14N2O3  | H+           | 65   | 0.667574896       | 0.774567625      | 0.550112697    | 0.667574896  | 0.77456763  | 0              | 0             | 0.57328049 |
| D2                                | C12H12F3N3S | H+           | 23   | 17                           | C12H12F3N3S | H+           | 63   | 0.74729223        | 0.729210257      | 0.449139073    | 0.74729223   | 0.72921026  | 0              | 0             | 0.60106138 |
| D3                                | C25H28N2O3  | H+           | 24   | O3                           | C25H28N2O3  | H+           | 101  | 0.008131822       | 0.03555204       | 0.019647503    | 0.008131822  | 0.03555204  | 0              | 0             | 0.62086475 |
| D4                                | C13H16N4O   | H+           | 25   | H7                           | C13H16N4O   | H+           | 56   | 0.948149344       | 0.929838929      | 0.61596809     | 0.948149344  | 0.92983893  | 0.759258155    | 0.800922094   | 0.63014892 |
| D5                                | C23H34N2O2  | H+           | 26   | H4                           | C23H34N2O2  | H+           | 53   | 0.959585554       | 0.950042239      | 0.681816781    | 0.959585554  | 0.95004224  | 0.812018621    | 0.828515384   | 0.61561804 |
| D6                                | C21H23NO2   | H+           | 27   | J4                           | C21H23NO2   | H+           | 67   | 0.955406317       | 0.941799395      | 0.591993253    | 0.955406317  | 0.9417994   | 0.829509871    | 0.855498614   | 0.62816314 |
| E1                                | C16H10N2OS  | H+           | 28   | F2                           | C16H10N2OS  | H+           | 37   | 0.794237262       | 0.775753339      | 0.471712523    | 0.794237262  | 0.77575334  | 0.41179044     | 0.583293401   | 0.58171648 |

© 2021 DH Tech. Dev. Pte. Ltd.

#### Spectra comparison



- Background removing feature enabled
- UI for data review
- PCA analysis included for direct visualization





**Echo** MS System

- AEMS enables the high-throughput compound QC
- The automated data processing workflow enabling
  - Target ion integration
  - Data visualization
  - Background processing
  - Spectra comparison across data set



The SCIEX clinical diagnostic portfolio is For In Vitro Diagnostic Use. Rx Only. Product(s) not available in all countries. For information on availability, please contact your local sales representative or refer to www.sciex.com/diagnostics. All other products are For Research Use Only. Not for use in Diagnostic Procedures.

Beckman Coulter® is being used under license.

Echo and Echo MS are trademarks or registered trademarks of Labcyte, Inc. in the United States and other countries, and are being used under license.

Trademarks and/or registered trademarks mentioned herein, including associated logos, are the property of AB Sciex Pte. Ltd. or their respective owners in the United States and/or certain other countries (see <a href="https://www.sciex.com/trademarks">www.sciex.com/trademarks</a>).

© 2021 DH Tech. Dev. Pte. Ltd. RUO-MKT-11-13981-A

