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electron activated dissociation (EAD) 
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ABSTRACT

This poster describes a single-injection CID/EAD peptide mapping workflow for the enhanced characterization 

of biotherapeutics. This workflow combines the advantages of CID and EAD in 1 method with minimal 

adjustment required for the existing CID platform method. This workflow provies high sequence coverage 

(>96%) of light and heavy chains (LC and HC) in a single experiment and confident identification of singly 

charged or long peptides. The workflow enables the unambiguous differentiation of amino acid isomers such as 

aspartic (Asp) vs. isoaspartic (isoAsp) acids and the accurate localization of labile post-translational 

modifications (PTMs), such as N- and O-linked glycosylation.

INTRODUCTION

Peptide mapping is widely used for sequence confirmation and PTM identification for antibody-based 

therapeutics. Peptide mapping is typically performed with collision-based MS/MS fragmentation methods, such 

as CID. While CID offers high sensitivity and efficient fragmentation of common peptides, it is limited in its 

abilities to fragment long peptides, localize labile PTMs and differentiate amino acid or positional isomers. By 

comparison, electron-based MS/MS approaches, such as EAD, offer excellent fragmentation of long peptides, 

accurate localization of labile PTMs and confident isomer differentiation.1-4 In this work, a joint CID/EAD method 

was developed to provide enhanced peptide mapping results in a single injection. The CID/EAD workflow 

combines the advantages of these 2 MS/MS techniques with minimal adjustments to the existing CID platform 

method.

MATERIALS AND METHODS

Sample:

NISTmAb and etanercept were denatured by guanidine hydrochloride, reduced with dithiothreitol, and alkylated 

using iodoacetamide. The samples were then buffer exchanged using Bio-Spin columns (Bio-Rad) and digested 

using trypsin/Lys-C mix (Promega). The etanercept digest was further treated with SialEXO (Genovis) to 

remove sialic acids.

HPLC:

The peptides were chromatographically separated with a 60-minute LC gradient using an ACQUITY CSH C18 

column (Waters) at a flow rate of 0.25 mL/min. The column was kept at 60C in the column oven of an ExionLC

AD system (SCIEX). 

Mass spectrometry:

LC-MS data were acquired with CID and EAD data-dependent acquisition (DDA) in SCIEX OS software 

(SCIEX) using the ZenoTOF 7600 system (SCIEX). The CID/EAD DDA method was built by combining CID and 

EAD DDA in the same method with minor adjustments of the number of precursors and accumulation time for 

MS/MS. DDA data were analyzed using the pre-built peptide mapping workflow templates in Biologics Explorer 

software. 

CONCLUSIONS

• The single-injection CID/EAD workflow combines the advantages of complementary CID and EAD 
techniques and offers a comprehensive characterization of biotherapeutics.

• The CID/EAD workflow offered high sequence coverage (>96%) of LC and HC from 1 trypsin digest of 
NISTmAb in a single injection.

• While CID provided confident identification of short peptides, EAD led to excellent fragmentation of long 
peptides.

• EAD data provided by the CID/EAD workflow enabled confident differentiation of amino acid isomers such 
as Leu vs. Ile and Asp vs. isoAsp and accurate localization of N- and O-linked glycosylation.

• The CID/EAD workflow requires minimal adjustment to the existing CID platform method while offering 
additional benefits for isomer differentiation and PTM analysis using EAD.
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RESULTS

Figure 1. The joint CID/EAD DDA method offers high sequence coverage (>96%) of NISTmAb LC and HC 

in a single injection of a trypsin digest. The CID/EAD workflow combines CID and EAD in the same method. 

This method provides comparable or better sequence coverages of LC and HC compared to the method using 

CID or EAD alone. 

Figure 2. Confident identification of a singly charged short peptide (VQWK) by CID and a multiply charged 

long peptide (~6.7kDa) using EAD. The 2 complementary fragmentation techniques offered by the CID/EAD 

method allowed confident identification of challenging peptides, such as singly charged short peptides or multiply 

charged long peptides. The short and long peptides shown here are from LC and HC of NISTmAb, respectively.

Figure 5. Characterization of N-linked glycosylation in NISTmAb using CID and EAD. The CID/EAD workflow 

provided complementary CID and EAD data for confident identification and localization of N-linked glycosylation. 

While CID generated abundant oxonium ions to confirm the presence of glycosylation in peptide 

TKPREEQYNSTYR (A), the EAD spectrum of this peptide (B) provides with a nearly complete series of c/z ions 

with (shaded in blue) or without (shaded in yellow) glycosylation. Specifically, the detection of non-glycosylated z1-

z4 and glycosylated z5-z9 fragments allows accurate localization of the G0F glycan to the Asn residue. 

Figure 4. Identification and differentiation of Asp vs. isoAsp isomers using EAD. Three deamidation isomers 

were identified in the extracted ion chromatogram of peptide FNWYVDGYEVHNAK (A). EAD led to the 

differentiation of these 3 isomers based on the detection of a z-57 or z-44 fragment (B-E). The detection of a z13-

57 ion (B) confirms the isoAsp isomer from N2 deamidation (B), while the detection of a z3-44 or z3-57 fragment 

enabled the differentiation of Asp vs. isoAsp isomers from N12 deamidation (D and E).

Figure 6. Accurate localization of O-linked glycosylation in etanercept using EAD. The location of 1 

HexHexNAc moiety in the glycopeptide THTCPPCPAPELLGGPSVFLFPPKPK was pinpointed to the Thr3

residue out of 3 potential O-linked glycosylation sites including 2 Thr and 1 Ser based on the detection of non-

glycosylated c2 and glycosylated c3 fragments (circled in A). Similarly, the sites of 2 O-glycans in the 

glycopeptide SMAPGAVHLPQPVSTR were confidently determined based on the detection of z1-z3 (circled in B) 

with 0, 1 and 2 HexHexNAc moieties, respectively.
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Figure 3. Confirmation of leucine (Leu) vs. isoleucine (Ile) residues using diagnostic EAD fragments. The 

Leu2 and Ile6 residues in the peptide ALPAPIEK can be confirmed based on the detection of signature w3 (z3-29) 

and w7 ions (z7-43) for Ile and Leu, respectively, in the EAD data. 
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