Systematic optimization of electron activated dissociation for top-down targeted protein sequencing
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INTRODUCTION

Recent developments in mass spectrometry hardware and software have significantly improved top-down and
middle-down analysis of proteins and protein sub-units in the case of monoclonal antibodies (mAbs). Acquisition
methodology, chromatography separation and data processing are all factors in maximizing performance and
sequence coverage.'-3

In this work, we detail the systematic optimization of electron activated dissociation (EAD) with MRMFR for top-down /
middle-down protein sequence confirmation, and we will investigate the dependencies between acquisition and
processing strategies.

MATERIALS AND METHODS

Sample:
Equine myoglobin was obtained from Sigma-Aldrich, reconstituted and diluted down to a concentration of 1 ug/uL
and 100 ng/puL.

HPLC:
The separation was achieved using a Waters ACQUITY UPLC BEH C4 column (2.1 x 50 mm, 1.7 ym, 300 A) at a
flow rate of 0.4 mL/min. The column was kept at 60°C in the column oven of an ExionLC AD system.

MS/MS:
MRMHFR EAD experiments were performed in SCIEX OS software using the ZenoTOF 7600 system. Multiple
experiment setups were evaluated for determining the dependencies. The data were analyzed using a new middle-
down workflow template in the Biologics Explorer software.4-6
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Figure 1 shows an overview of the EAD-based workflow, and Figure 2 shows the fragmentation provided by EAD
when the Zeno trap is activated in the ZenoTOF 7600 system.
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Figure 1. Overview of the EAD-based top-down workflow. TOF MS data is acquired, chargé ::s;téf_es-identified and
then a targeted MRMFR per charge state is acquired. EAD data are analyzed and annotated using a workflow
template offered by Biologics Explorer software.
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Figure 2. A representative EAD spectrum. EAD using the Zeno trap provided excellent fragmentation of myoglobin
and permitted the detection of low-abundant fragments. Insets are regions of the MS/MS data that show the
matching of isotope abundances across charge states.

Figure 3 shows the impact on both the number of mapped fragments and the total sequence coverage for the
selected charge states. The general trend is that the lower charge states generate the highest sequence coverage
versus the most abundant higher charge states.
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Figure 3. The impact of charge state on sequence coverage. (a) shows the bond coverage and the number of
mapped fragments per charge state. A range of 15% to 90% is achieved. (b) — (e) fragment maps for charge states
14, 9, 20 and 16.
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impact on the sequence coverage maps
when different charge states are
summed.

Figure 4. Is summing across charge states is the solution? A
comparison of single charge state versus summed.
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Figure 5. Comparative analysis of summing raw EAD MS/MS data. (a) fragment map for charge state 20, (b)
fragment map for charge state 14 (c) combined fragment map d) tabulates bond coverage and number of mapped
fragments.

So, is the glass half full or half empty? A game of two halves... Figure 5 shows the individual maps for charge state
20 and 14 and the sum. If you start with 20 and sum with 14, you would say there was an improvement. If you start
with 14, you see a reduction. In essence, there will be a charge state that generates maximum coverage versus the
most abundant charge state under these reverse phase conditions. Figure 6 shows that the summation of the 2
highest coverage states almost equals the individuals.
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Figure 6. Comparative analysis of summing raw EAD MS/MS data. (a) fragment map for charge state 14, (b)
fragment map for charge state 13 (c) combined fragment map (d) tabulates bond coverage and number of mapped
fragments.
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Figure 7. Sequence coverage per scans summed in Biologics Explorer software (a) coverage and mapped
fragments versus scans summed with two different intensity thresholds, (b) matching of theoretical isotope
envelopes per fragment with scans summed.

Figure 7 shows the trend in coverage per sequential summing of EAD MS/MS scans across the LC peak. The graph
shows that just 2 scans are required to reach 80% coverage, which equates to a total of 800 ms of scan time.

In Figure 8, the impact of the electron beam current is shown. The beam current controls the number of electrons
within the EAD cell. As shown, coverage increases up to 3,500 nA, after which, the coverage plateaus. Interestingly,
the intensity of the high-mass fragments continues to increase while the intensity of the low-mass fragments

decreases.
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Figure 8. Electron beam current versus bond coverage. (a) sequence coverage and mapped fragments versus
beam current. (b) low and high mass fragments at increasing beam current.

CONCLUSIONS

* When optimized for the best charge state, high sequence coverages can reach the 90% mark for myoglobin

» Biologics Explorer software offers an easy-to-use workflow that can help rapidly assess the quality of the total
acquisition strategy

* In general, the selected charge states have the highest impact on sequence coverage, followed by how many
MS/MS scans are summed and then the beam current and summing of charge state data

* The best option is to sum individual sequence coverage maps after processing each of them individually

» Potential optimization of instrument control acquisition strategies - while the most abundant species are typically
chosen for MS/MS, the data from this study indicate a preference for low charge states at lower abundance under
reverse phase conditions
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