

Application of multiple isotope pattern searches for in-depth plant metabolism determination

Chris Brown¹; Jeffrey R. Gilbert¹; Yelena Adelfinskaya¹; Jesse Balcer¹; Eva Duchoslav²; Yves Le Blanc² ¹Corteva Agriscience, Indianapolis, IN; ²SCIEX, Canada

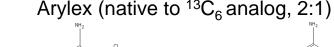
ABSTRACT

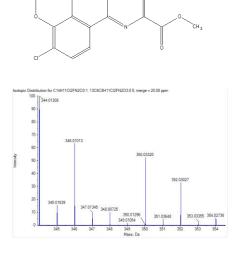
Here, we illustrate the utility of high-resolution LC-MS workflows for trace-level detection of metabolites in complex sample matrix based on characteristic isotope patterns, and the utility of the collision-induced dissociation (CID) and electron-activated dissociation (EAD) fragmentation to propose and confirm structures of these compounds.

INTRODUCTION

Identification of major xenobiotic metabolites is required for registration of agrochemicals around the world. Mass spectrometry (MS) has been instrumental for understanding the environmental impact of new product candidates by enabling the detection and structural characterization of metabolites and impurities of the active ingredients in complex matrices.

Halauxifen-methyl (Arylex[™]), a broad-spectrum herbicide effective for controlling broadleaf and sedge weeds and some grass weed species, is an agrochemical that generates a series of metabolites that can conjugate with various moieties in plant and animal species. In this study, we investigated metabolism products of a mixture of native and isotopically enriched Arylex, with the aim to characterize trace amounts of its phase II and phase III metabolites.


MATERIALS AND METHODS


A simulated metabolite sample was generated by dosing an isotopically labeled mixture of Arylex into wheat cell cultures These were allowed to metabolize the active ingredient for 0, 24, 48 and 120 hours. After the incubation, cell cultures were harvested and lysed with acetonitrile.

LC was performed using an Exion LC system and compounds were separated on a Zorbax Eclipse Plus C18 (2.1x50mm, 1.8u) column using a 20-minute gradient from 0%-65% organic (water / acetonitrile). The extracts were analyzed in positive ion mode on a ZenoTOF 7600 system with both data-dependent acquisition (DDA) and SWATH data-independent acquisition (DIA) workflows using CID and EAD fragmentation modes (see Table 1 for a summary of the MS settings). The data were interrogated with Molecule Profiler software applying isotope pattern-derived peak finding strategies and a customized set of biotransformation reactions.

	MS/MS collection strategy	DDA	SWATH	
	Spray voltage (V)	5500	5500	
	Spray temperature (°C)	550	550	
Course and Coo	Ion source gas 1(psi)	25	25	
Source and Gas	Ion source gas 2(psi)	70	70	
parameters	Curtain gas (psi)	35	35	
	CAD gas	7	7	
	Declustering potential	80	80	
	MS	100 to 1000	100 to 1000	
MS range	MS/MS	80 to 1000	100 to 1000	
	SWATH Q1 range	NA	300 to 1020	
	MS/MS accumulation time(ms)	50	20	
	CE (V)	40	40	
MC/MC	CES (V)	15	0	
MS/MS	KE (V)	10	10	
parameters	Zeno trap	on demand	on	
	Q1 window	1	39	
	Q1 window overlap	NA	9	

 Table 1. Mass spectrometer settings for DDA
and SWATH DIA acquisitions.

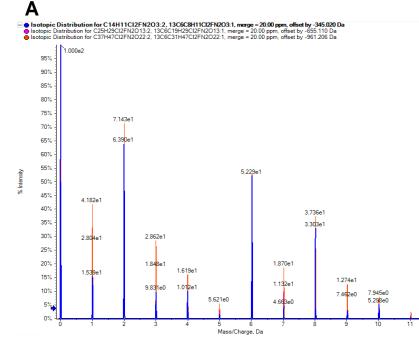
300 400 500 600 700 800 900 1000

Figure 1. Transfer of the characteristic isotope pattern of the Arylex native and labeled mixture into a variable window SWATH DIA method design.

RESULTS

Major metabolic pathways of Arylex have been established¹. Two processes transform the active metabolite, halauxifen acid, into inactive metabolites: o-demethylation of the aryl ring and glucose conjugation.

With a dedicated set of typical plant phase I, II and III metabolism reactions, we could find 50 metabolites covering 3 orders of magnitude (see Table 2 for the list of metabolites that contribute by >0.1% to the total metabolic profile at 48 hours). The metabolites were mainly glucoside conjugates combined with O-demethylation, loss of water and the addition of malonic acid to the sugar conjugate.


In our study we focussed on minor metabolites and the utility of isotope patterns in both MS and MS/MS measurements, to uncover these metabolites in matrices of different complexities. Halauxifen-methyl molecule has 2 chlorine atoms and therefore the mixture of native and ¹³C₆-enriched molecules gives a comprehensive, unique isotopic fingerprint that holds across a wide range of concentrations. With SWATH DIA, we set up the Q1 windows to transmit the full isotopic pattern within a single SWATH DIA experiment (Figure 1), maintaining the full isotope fingerprint of MS/MS fragments.

For the isotope pattern-based data mining the conditions were set to accommodate for the chemical changes due to polysaccharide conjugations. The relative signal of peaks at M+2, M+6 and M+8 had the smallest spread over the series of Arylex conjugates (M from 300 to 1000), and these peaks were considered in the pattern-driven MS data mining (Figure 2A).

While using just the 2-peak chlorine-derived isotope pattern to extract LC/MS peaks from the cell culture matrix sample was sufficient, the 4-peak isotope-enriched pattern was needed to get comprehensive metabolite coverage in the typical environmental matrix.

For the fragment isotope patterns in the SWATH DIA data, we found that Q1 window overlaps of 9 Da covered the full isotope pattern of the isotopically enriched molecule and gave the best metabolite coverage. The 4-peak fragment isotope patterns did not vary much across the wide molecule size range of the detected metabolites (Figure 3). This approach also allowed to detect additional singly and multiply charged metabolites (Figure 4).

(Figure 5).

EAD MS/MS data pinpointed the location of glucose conjugations. The CID data helped to confirm phase III metabolites

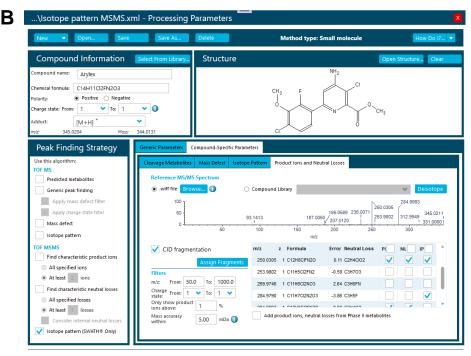


Figure 2. Composing robust target isotope patterns. The image on the left (A) illustrates changes in the theoretical isotope pattern for a glycosylated Arylex molecule, with the demethylation (M=344) pattern in blue, the disaccharide (M=654) pattern in pink and the tetra saccharide (M=960) pattern in orange. The image on the right (B) shows fragment isotope patterns reflecting 1 and 2 chlorine atoms selected from the annotated Arylex MS/MS spectrum.

50	Groups	s of 63 Potential Metabolit
	Group ID	Name
1	G1	Parent
2	G2	Loss of CH2+Maleyl glucose conjugate
3	G3	Loss of CH2+2 (Gluc) and maleic acid
4	G4	Loss of CH2
5	G5	Loss of CH2+Glucose Conjugation
6	G6	Glucose Conjugation
7	G7	3 (Gluc) and oxalic acid
8	G8	Loss of CH2+3 (Gluc) and maleic acid
9	G9	Loss of CH2+2 (Gluc) and maleic acid
10	G10	2 (gluc) and oxalic acid
11	G11	Loss of CH2+Trisaccharide and loss of water
12	G18	2 (gluc) and oxalic acid
13	G12	Loss of C2H4+Glucose Conjugation
14	G13	Loss of C2H4+Glucose Conjugation
15	G14	Loss of CH2+Oxalyl glucose conjugation
16	G15	Loss of CH2+Glucose Conjugation
17	G16	Loss of CH2+Disaccharide
18	G17	Loss of C2H4+Disaccharide and loss of water
19	G20	3 (Gluc) and oxalic acid
20	G19	Loss of CH2+Oxalyl glucose conjugation
21	G21	Loss of CH2+Disaccharide and loss of water
22	G22	2 (gluc) and oxalic acid
23	G23	Loss of CH2+4 glucose units and loss of water
24	G24	2 (gluc) and oxalic acid
25	G25	Loss of CH2+Glucose Conjugation
26	G26	Loss of C2H4+Disaccharide and loss of water
27	G27	Loss of CI->H and CH2+S-Cysteine Conjugation
28	G28	Oxalyl glucose conjugation
29	G29	Loss of CH2
30	G30	Loss of CH2
31	G31	Loss of CH2+Trisaccharide and loss of water
32	G44	3 (Gluc) and oxalic acid
33	G32	3 (Gluc) and oxalic acid

agreement is indicated in the "% Score" column.

	metabolites	average isotope signal	average isotope signal	log 10 linear dynamic range
sample	inspected	accuracy	precision	inspected
t48	12	-0.9%	4.6%	2.2
t120 1/10 in matrix	10	1.8%	9.4%	1.5
t120 1/100 in matrix	4	6.4%	6.4%	0.6
t120 1/10 in matrix SWATH	14	2.4%	15.0%	1.6
t120 1/100 in matrix SWATH	9	3.6%	24.0%	1.9
	MS/MS	m/z offset	m/z offset	log 10 linear
	patterns	accuracy	precision	dynamic range
sample	inspected	(mDa)	(mDa)	inspected
t120 1/10 in matrix SWATH	14	1.4	1.10	1.6
t120 1/100 in matrix SWATH	9	0.80	2.9	1.9

 Table 3. Characteristics of the 4-peak isotope pattern
across a dynamic range of metabolites detected with the Molecule Profiler software. The m/z tolerance for the pattern was set to 3mDa and the intensity tolerance to 15%.

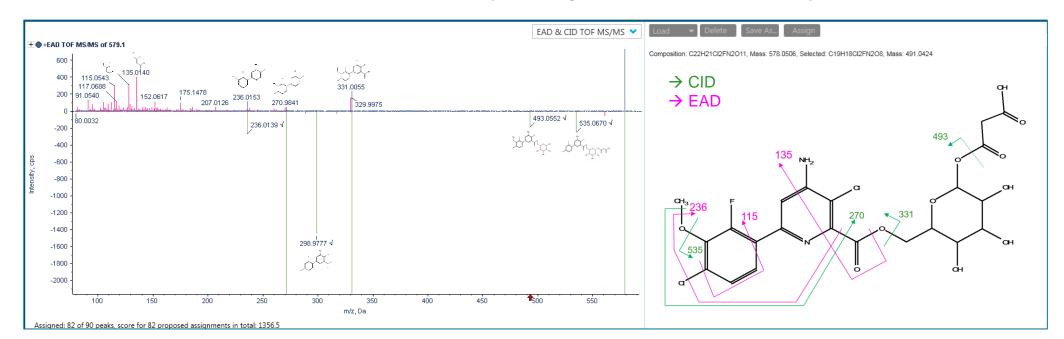


Figure 5. Contribution of CID and EAD MS/MS to the structure assignment for a metabolite at retention time of 9.78 minutes.

e Peaks							
	Formula	Neutral Mass Charge	ppm	R.T. (min)	Peak Area	% Area	% Score
	C14H11Cl2FN2O3	344.01 From 1 To 1	0.7	15.51	2.54E+06	31.27	100.0
	C22H21Cl2FN2O11	578.05 From 1 To 1	-0.5	9.78	1.90E+06	23.44	100.0
	C28H31Cl2FN2O16	740.10 From 1 To 1	-1.2	9.42	1.33E+06	16.39	100.0
	C13H9Cl2FN2O3	330.00 From 1 To 1	-0.1	6.58	3.94E+05	4.86	100.0
	C19H19Cl2FN2O8	492.05 From 1 To 1	-0.1	5.41	2.86E+05	3.52	100.0
	C20H21Cl2FN2O8	506.07 From 1 To 1	-1.3	10.93	2.37E+05	2.92	100.0
	C34H41Cl2FN2O21	902.16 From 1 To 1	-0.4	8.40	2.29E+05	2.82	100.0
	C34H41Cl2FN2O21	902.16 From 1 To 1	-0.6	8.52	1.66E+05	2.04	100.0
	C28H31Cl2FN2O16	740.10 From 1 To 1	-1.0	8.74	1.48E+05	1.83	100.0
	C28H31Cl2FN2O16	740.10 From 1 To 1	-0.5	8.86	1.27E+05	1.57	100.0
	C31H37Cl2FN2O17	798.14 From 1 To 1	-0.7	9.55	1.20E+05	1.48	100.0
	C28H31Cl2FN2O16	740.10 From 1 To 1	-0.8	8.52	5.21E+04	0.64	100.0
	C18H17Cl2FN2O8	478.03 From 1 To 1	-0.1	3.16	5.21E+04	0.64	100.0
	C18H17Cl2FN2O8	478.03 From 1 To 1	-0.5	3.62	4.47E+04	0.55	100.0
	C21H19Cl2FN2O11	564.04 From 1 To 1	0.6	4.46	4.46E+04	0.55	100.0
	C19H19Cl2FN2O8	492.05 From 1 To 1	-0.8	8.79	4.11E+04	0.51	100.0
	C25H29Cl2FN2O13	654.10 From 1 To 1	-0.8	8.62	3.96E+04	0.49	100.0
	C24H25Cl2FN2O12	622.08 From 1 To 1	0.3	4.91	3.20E+04	0.39	100.0
	C34H41Cl2FN2O21	902.16 From 1 To 1	-0.7	8.28	3.15E+04	0.39	100.0
	C21H19Cl2FN2O11	564.04 From 1 To 1	0.2	4.15	3.08E+04	0.38	100.0
	C25H27Cl2FN2O12	636.09 From 1 To 1	-0.6	9.87	2.46E+04	0.30	100.0
	C28H31Cl2FN2O16	740.10 From 1 To 1	-0.5	9.63	2.26E+04	0.28	100.0
	C37H47Cl2FN2O22	960.20 From 1 To 1	-0.7	8.64	1.75E+04	0.22	100.0
	C28H31Cl2FN2O16	740.10 From 1 To 1	-1.2	8.63	1.56E+04	0.19	100.0
	C19H19Cl2FN2O8	492.05 From 1 To 1	-0.2	9.30	1.31E+04	0.16	100.0
	C24H25Cl2FN2O12	622.08 From 1 To 1	-0.8	4.67	1.26E+04	0.16	100.0
1	C16H15CIFN3O5S	415.04 From 1 To 1	7.4	4.84	1.17E+04	0.14	100.0
	C22H21Cl2FN2O11	578.05 From 1 To 1	-0.8	9.91	1.11E+04	0.14	100.0
	C13H9Cl2FN2O3	330.00 From 1 To 1	-1.5	9.44	1.07E+04	0.13	100.0
	C22H20Cl2FN2O11	577.04 From 1 To 1	-1.6	10.01	9.79E+03	0.12	100.0
	C31H37Cl2FN2O17	798.14 From 1 To 1	-1.8	8.92	9.29E+03	0.11	100.0
	C34H41Cl2FN2O21	902.16 From 1 To 1	-0.3	9.26	8.64E+03	0.11	100.0
	C34H41Cl2FN2O21	902.16 From 1 To 1	-0.8	8.08	7.72E+03	0.10	100.0

Table 2. Arylex metabolites found in 48-hour incubate. The isotope pattern

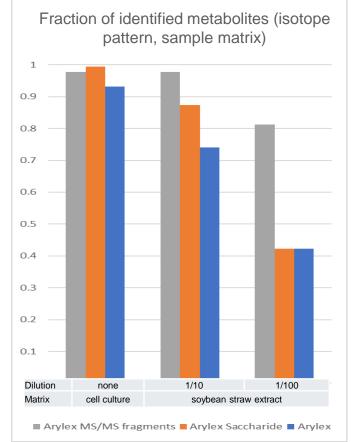
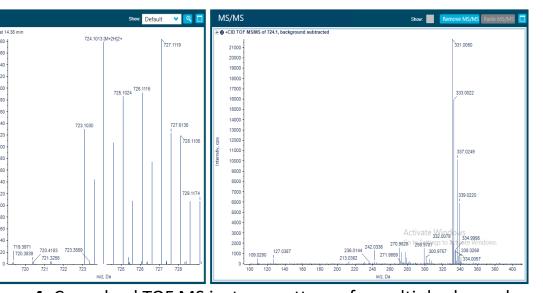
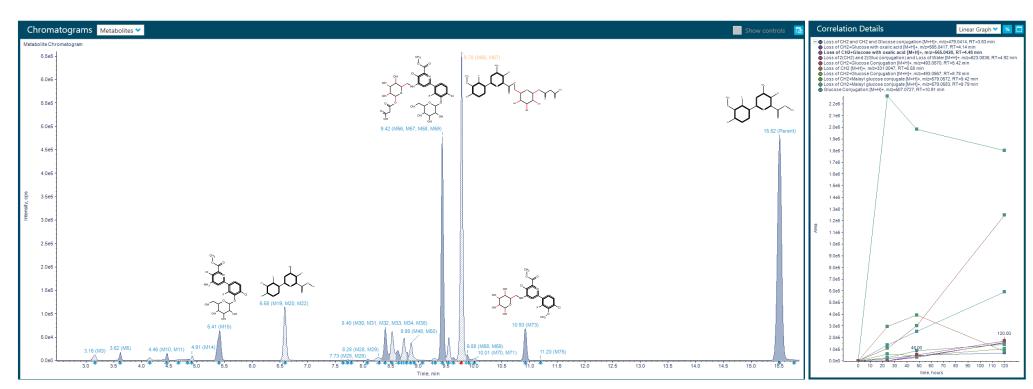




Figure 3. MS (orange, blue) and MS/MS (grey) isotope pattern efficiencies to detect Arylex metabolites in varying matrices.

Figure 4. Convolved TOF MS isotope pattern of a multiply charged unexpected metabolite gives several characteristic fragment pattern signatures in the SWATH DIA experiment.

CONCLUSIONS

- unexpected low-level material since:
 - fragment sizes

REFERENCES

TRADEMARKS/LICENSING

The SCIEX clinical diagnostic portfolio is For In Vitro Diagnostic Use. Rx Only. Product(s) not available in all countries. For information on availability, please contact your local sales representative or refer to www.sciex.com/diagnostics. All other products are For Research Use Only. Not for use in Diagnostic Procedures. Trademarks and/or registered trademarks mentioned herein, including associated logos, are the property of AB Sciex Pte. Ltd. or their respective owners in the United States and/or certain other countries (see www.sciex.com/trademarks). © 2024 DH Tech. Dev. Pte. Ltd. MKT-31768-A

For Research Use Only. Not for use in diagnostic procedures

Figure 6. Major Arylex metabolites (t=48 hours) and their time profiles in the incubation experiment.

• Characteristic isotope pattern-driven HRMS data mining offers unprecedented specificity and allows for the detection of impurities and metabolites in complex sample matrices across a wide dynamic range

• SWATH DIA Q1 window positioning that preserves the full fragment isotope pattern is instrumental in the search for

Multiple fragments could carry complementary isotope pattern signatures

• Pattern reproducibility and accuracy across metabolites is superior due to a lesser variation in target

• Multiple mass pattern template-based data extraction and filtering enabled in Molecule Profiler software is suited to studies of the agrochemical metabolism pathways in complex environmental matrices

• Deploying 2 independent fragmentation mechanisms, DDA and SWATH DIA, in the ZenoTOF 7600 system generated complementary diagnostic fragments leading to an in-depth understanding of Arylex metabolism in plants

. United States Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention. Halauxifenmethyl – New Active Ingredient Human Health Risk Assessment for Proposed Uses on Cereal Grains (Barley, Wheat, and Triticale). PP# 2F8086, March 21, 2016. https://www.regulations.gov/document/EPA-HQ-OPP-2012-0919-0005 2. University of Nebraska-Lincoln. Plant and Soil Sciences eLibrary. https://passel2.unl.edu/

To receive a copy of this poster:

- Scan the code with your phone camera
- Complete the form