For Research Use Only. Not for use in diagnostic procedures

High-Throughput and Automated Software Workflow Strategies for Small Molecule Identification and Characterization Using a High Resolution Q-TOF Mass Spectrometer

Alina Dindyal-Popescu; Iris Shek; Mohammad Jooyandeh; Ian Moore; Eva Duchoslav SCIEX, 71 Four Valley Drive, Concord, ON, L4K 4V8 Canada

ABSTRACT

Transformation of accurate mass product spectra into putative structures of metabolites poses a bottleneck in early discovery studies to identify metabolic soft spots, as well as in the subsequent characterization of active metabolites. Here we present an automated software workflow for the proposal of structure analogues and its application to a variety of small molecules. Attributes affecting performance of this qualitative workflow are discussed.

INTRODUCTION

While software-predicted results for metabolite structure proposals cannot beat human expertise, software strategies can greatly aid in streamlining the process of metabolite soft-spot identification.

In this work, a high-throughput and completely automated workflow strategy is investigated for small molecule metabolite identification and characterization using a high-resolution Q-TOF mass spectrometer.

Both parent-drug tailored IDA and generic SWATH® acquisition methods have been used for data collection. The resulting files were interrogated to find drug-related material. Since the MS/MS data were collected in parallel with accurate TOF MS data, metabolite fragments in conjunction with the known parent drug structure provided grounds for ranking of putative structures and proposal of biotransformation reactions.

MATERIALS AND METHODS

10 µM microsomal incubations of various compounds (nefazodone, propranolol, bromocriptine, diclofenac, verapamil, imipramine) were analyzed using a TripleTOF® 5600 system coupled with a Shimadzu Prominence UFLC System. A 300 µL/min gradient was utilized with a Kinetex C18 (2.6 u) 2 *50 mm column and run for 10 minutes.

Table 1. Core MS data collection parameters for variety of acquisition strategies

Both IDA and SWATH® acquisition methods in either positive or negative modes were used.

	IDA positive	SWATH positive	IDA negative	SWATH negative
TOF MS mass range	100 - 1000	100 - 1000	100 - 1000	100 - 1000
TOF MS/MS mass range	100 - 1000	100 - 1000	100 - 1000	100 - 1000
TOF MS/MS CE	35 ± 15	25 to 55	35 ± 15	-4 to -40
		300 - 800		100 - 915
SWATH Q1 coverage	N/A	(25*20)	N/A	(variable)
Number of MS/MS experiments	3	20	3	20
Cycle time (ms)	390	900	390	600

Resulting LC/MS data was mined with MetabolitePilot[™] 2.0 software using both hypothesis-driven and generic strategies to find drug-related material. Sites of modifications for major metabolites were proposed, ranked and scored within the batch processing. Automatically generated proposed metabolite structures were then validated either manually or against published data.

DISCUSSION

Within MetabolitePilot 2.0 software structures are proposed for the following metabolite types:

- \blacktriangleright One or more dealkylation cleavage,
- \succ One biotransformation,
- Combination of cleavage and biotransformation.

Scoring and ranking of potential modification sites is based on projection of information from the annotated MS/MS spectrum of parent drug onto the metabolite MS/MS spectrum. Subset of SOM candidate atoms is retrieved from the biotransformation database. Score for each SOM candidate atom is derived from the evidence supporting its both unchanged and modified states. Proposed structures are generated by attaching / removing biotransformation structure motif onto parent drug.

Auto Assign Report
Assign Structures or Sequences
Metabolites with peak areas above
Metabolites with analog peak area
Metabolites with MS/MS quality at
$\left(\right)$
LC/MS peak
(with MS/MS s

RESULTS

Figure 1. Automated structure proposal within an LC / HRMS qualitative data processing pipeline.

Accurate mass MS and MS/MS data were collected in parallel; complementary ions were grouped in TOF MS and MS/MS spectra of protonated / deprotonated precursor were used for structure proposal

Example 1: Nefazodone dealkylation metabolite, Loss of C_6H_3CI , m/z 360.2392, RT 2.09 minutes

gments: 17 of 43 Proposed Formulae									
Use	Mass (m/z)	Ion Formula	Error (mDa)	Intensity (cps)	RDB	Proposed Structures	Score		
1	110.0943	C7H12N	-2.2	48.3	3.0	1	32.0		
	121.0622	C8H9O	-2.6	335.7	5.0	1	40.0		
	138.1005	C7H12N3	-2.1	80.6	4.0	1	33.0		
	180.1106	C9H14N3O	-2.5	1808.3	5.0	1	36.0		
	274.1530	C15H20N3O2	-2.0	7583.3	8.0	1	40.0		
	360.2370	C19H30N5O2	-2.4	929.1	8.0	1	44.0		
1	149.0201	C6H3N3O2	-1.9	79.1	7.5	2	5.0		
1	246.1210	C13H16N3O2	-2.7	4066.6	8.0	3	22.0		
1	276.1601	C14H20N4O2	2.0	112.2	7.5	3	8.5		
	152.0800	C7H10N3O	-1.9	156.9	5.0	6	36.0		
	153.0881	C7H11N3O	-1.5	511.9	4.5	6	33.5		
	154.0953	C7H12N3O	-2.2	1652.5	4.0	6	36.5		
	124.0496	C5H6N3O	-1.0	48.3	5.0	8	21.0		
1	126.0639	C5H8N3O	-2.3	535.3	4.0	8	21.5		
	138.0633	C6H8N3O	-2.9	96.6	5.0	8	36.0		
	140.0799	C6H10N3O	-1.9	1552.7	4.0	8	36.5		
	211.1535	C10H19N4O	-1.8	48.2	4.0	9	32.5		

Two "Loss of C_6H_3CI " structures were considered.

Fragments: 13 of 43 Proposed Formulae									
	Use	Mass (m/z)	Ion Formula	Error (mDa)	Intensity (cps)	RDB	Proposed Structures	Score	
1		135.0790	C7H9N3	-0.1	160.4	5.5	1	31.0	
2	1	138.1005	C7H12N3	-2.1	80.6	4.0	1	32.0	
3		180.1106	C9H14N3O	-2.5	1808.3	5.0	1	36.0	
4	1	360.2370	C19H30N5O2	-2.4	929.1	8.0	1	44.0	
5		110.0943	C7H12N	-2.2	48.3	3.0	3	32.0	
6	1	152.0800	C7H10N3O	-1.9	156.9	5.0	7	36.0	
7		153.0881	C7H11N3O	-1.5	511.9	4.5	7	33.5	
8	1	154.0953	C7H12N3O	-2.2	1652.5	4.0	7	36.5	
9		211.1535	C10H19N4O	-1.8	48.2	4.0	7	8.5	
10	1	124.0496	C5H6N3O	-1.0	48.3	5.0	9	29.0	
11		126.0639	C5H8N3O	-2.3	535.3	4.0	9	32.0	
12		138.0633	C6H8N3O	-2.9	96.6	5.0	9	36.0	
13		140.0799	C6H10N3O	-1.9	1552.7	4.0	9	36.5	

Proposed structure 1 is supported by 6 unique fragment substructures including one for fragment 274.1530. No unique fragments support attachment of phenyl group to piperazine ring.

MS/MS Collection	Compound Name	Metabolite Name	RT (min)	m/z	Polarity	Candidate Structures	Structure Count* (Generated/ Expected)	Rank	Normalized Score (%)	NOTES
	Simulactatin	Oxidation	4.48	435.2747	+	17	2 / 2 ^[1]	1	100	
IDA	Sinivasialin	Demethylation	4.79	405.2639	+	0	0/0	1	100	
IDA	Methocarbamol	Oxidation	6.08	258.0967	+	11	1 / 1 ^[2]	1		
		Oxidation	7.27	258.0972	+	11	1 / 1 ^[2]	1	100	
		Loss of CHNO + Demethylation	8.03	185.0802	+	1	manual interpretation	n/a		
IDA	Verapamil	Loss of C10H12O2 and CH2 and Oxidation	2.49	293.1858	+	36	manual interpretation	n/a		
IDA		Loss of CH2 and CH2	3.03	427.2592	+	10	1 / 1 ^[3]	1	100	
IDA	Diclofenac	Oxidation 1.4 310.0039 - 13 4 / 4[^{4]} 1 100		100						
IDA	Benzbromarone	Oxidation	9.21	436.9021	-	10	2 / 2 ^[5]	1	100	
IDA	Bromocriptine	Oxidation	5.7	668.2154	-	22	1 / 1 ^[6]	1	100	
		Oxidation	1.87	276.1595	+	6	3 / 3 ^[7]	1 to 2	100/94.3	
		Oxidation	2.03	276.16	+	6	3 / 3 ^[7]	1 to 2	100/97.3	
C) A / A T I I	Dranzanalal	Glucuronidation	2.52	436.1979	+	2	1 / 1 ^[7]	1	100	
SWAIN	Propranoioi	Glucuronidation	2.69	436.1991	+	2	1 / 1 ^[7]	1	100	
		Loss of C3H7N+Demethylation to Carboxylic Acid	3.24	233.0822	+	1	1 / 1 ^[7]	1	100	
	Nefazodone	Loss of C10H11CIN2+Ketone Formation	2.66	290.1503	+	7	0 / 1 ^[8]			*
		Ethyl to Alcohol	3.43	458.1951	+	1	0 / 1 ^[8]			**
		Loss of C6H3CI	2.09	360.2392	+	2	1 / 1 ^[8]	1	100	
		Loss of C6H4	2.44	394.2006	+	1	1 / 1 ^[8]	1	100	
		Loss of C15H19N3O2+Oxidation	2.73	213.0784	+	11	1 / 1 ^[8]	1	100	
SWATH		Loss of C15H19N3O2+Oxidation	0.57	213.0791	+	11	1 / 1 ^[8]	1	100	
		Loss of C6H3CI+Oxidation	1.69	376.2343	+	38	12 / 2 ^[8]	6	99.3/98.3	
		Loss of C10H11CIN2+Oxidation	3.24	292.1657	+	15	1 / 1 ^[8]	1	100	
		Loss of C6H3Cl+Ketone Formation	2.19	374.2179	+	18	2 / 1 ^[8]	2	99.7	
		Loss of C6H4+Oxidation	2.17	410.1948	+	20	No reference found	n/a		
		Loss of C10H11CIN2+Demethylation to Carboxylic Acid	3.35	306.1445	+	2	1 / 1 ^[8]	1	100	
SWATH	Diclofenac	Oxidation	1.32	310.0044	-	13	4 / 4 ^[4]	1	100	
SWATH	Midazolam	Demethylation to Carboxylic Acid	3.67	356.0591	+	1	No reference found	n/a		
JVVAIT		Oxidation	2.55	342.081	+	14	2 / 2 ^[9]	1	100	
SWATH	Bromocriptine	Oxidation	3.9	670.2254	+	22	2 / 2 ^[6]	1	100	

1055 of 0.101110 m/z, $\pm 0, \pm 20$ (complex 5-step biotransformation, not in automated worknow scope) oxidation and re-arrangement (currently not represented in biotransformation database)

Table 2. Validation of automated structure proposal workflow.

**

Within the workflow validation, we found that low m/z fragments that originated from a limited specific region of the molecule provided confident insight into structure features. Also, informative MS/MS spectrum of parent drug that covered all portions of parent molecule typically enhanced contrast in candidate structure scores and confidence in putative structure assignment.

The new structure proposal and ranking workflow is complementary to existing "Interpret" functionality in MetabolitePilot[™] software. The processing workflow as indicated in Figure 1 is expandable to additional cleavage and biotransformation combinations.

Compatible parameters are critical for MS/MS fragmentation annotation, in examples 1 and 2 up to 30 fragments with S/N above 3 were used, mass tolerance was 5mDa, and in-silico fragments were generated by breaking up to 4 bonds (including aromatic ring) of the parent molecule.

CONCLUSIONS

A fully automated LC HRMS workflow involving either IDA or SWATH® collection and a comprehensive LC/MS data processing including metabolite structure proposal, was demonstrated and validated using variety of model compounds.

This workflow integrated within MetabolitePilot[™] 2.0 software, streamlines data processing and enables routine soft-spot analysis capturing major metabolites.

REFERENCES

- Thompson R. M. *et al*, Xenobiotica, 1975, 5, 145-153.
- Tracy T. S. *et al.*, Br. J. Clin. Pharmacol, 1999, 47, 545-552.
- Tang *et al.*, Curr Drug Metab. 2003, 4, 319-29
- Valente D. *et al.*, JPET, 1997, 282, 1408-1424.

- 9 Gallagher R. et al., Rapid Commun. Mass Spectrom. 2014, 28, 1293-1302.

TRADEMARKS/LICENSING

AB Sciex is doing business as SCIEX. © 2017 AB Sciex. For Research Use Only. Not for use in diagnostic procedures. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX[™] is being used under license.

Document number: RUO-MKT-10-5828-A

Example 2: Hydroxy metabolite of Diclophenac, m/z = 310.0039, RT = 1.4 minutes (negative polarity mode)

Assigned. To or so peaks, score for to proposed assignments. 511.5									
Fragments: 14 of 23 Proposed Formulae									
	Use	Mass (m/z)	Ion Formula	Error (mDa)	Intensity (cps)	RDB	Proposed Structures	Score	
1		160.9589	C6H3CI2O	2.2	6.5	4.0	1	51.5	
2		164.0518	C12H6N	1.2	4.0	10.0	1	30.5	
3		166.0658	C12H8N	-0.5	465.5	9.0	1	35.5	
4	1	176.0505	C13H6N	-0.1	7.0	11.0	1	35.5	
5		179.0363	C12H5NO	-1.4	6.0	10.5	1	31.0	
6		193.0537	C13H7NO	0.4	15.4	10.5	1	36.0	
7	1	194.0608	C13H8NO	-0.4	388.2	10.0	1	39.5	
8	1	140.0494	C10H6N	-1.2	5.5	8.0	2	20.5	
9		184.0796	C12H10NO	2.8	3.9	8.0	3	34.5	
10	1	228.0209	C13H7CINO	-1.2	8.8	10.0	6	38.0	
11	1	229.0294	C13H8CINO	-0.6	224.5	9.5	6	40.0	
12	1	230.0366	C13H9CINO	-1.3	540.0	9.0	6	38.5	
13	1	266.0130	C13H10Cl2NO	-1.5	732.3	8.0	8	42.5	
14	-	215.0130	C12H6CINO	-1.3	66.3	9.5	22	35.0	

Prueksaritanont, T et al, Drug Metab Dispos, 1997, 25, 1191-1199. Kitagawara Y. et al., Drug Metab Dispos, 2015, 43, 1303-1306. Baughman T. M. et al., Rapid Commun. Mass Spectrom. 2009, 23, 2146-2150. Li A. C. *et al.*, Rapid Commun. Mass Spectrom. 2007, 21, 1421-1430.