Protein disulfide bond characterization with DMS and ECD

J.C.Yves Le Blanc, Brendon Seale, Lyle Burton and Takashi Baba ; SCIEX, 71 Four Valley Drive, Concord, ON, L4K 4V8 Canada

ABSTRACT

Evaluating a collision cell with dual CID and ECD capability to characterize disulfide bond location in digested proteins.

INTRODUCTION

Identification and characterization of disulfide linkage yields critical information pertaining to biologic compound integrity throughout the entire development. Many of the approaches proposed have been relying on differential MS mapping of reduced and non-reduced digested sample. This is mainly due to the complexity of the MSMS fragmentation by CID, and the lack of automated tools for interpretation. It has been shown that ECD and ETD could yield simplified fragmentation that would improve the confidence in the identification and linkage of peptides [1-3]. When combined with differential mobility (DMS), additional selectivity could be obtained over LC separation [3] for sequence analogues. Here we explored the roles that both of these techniques (ECD and DMS) could play in the characterization of biologic compounds.

MATERIALS AND METHODS

Sample Preparation:

Bovine serum albumin (BSA) was digested with trypsin after alkylation but without the reduction step. BSA was used a simple model to generate mixture of intra- and cross-linked peptides. Table 1 give a list of the crosslinked peptides observed and detected with BioPharmaview Software(Sciex).

HPLC Conditions:

A Shimadzu Prominence-XR LC system with an Aries XB C18, 100x2.1mm, 2.6µm column (Phenomenex) at 45°C with a gradient of eluent A water/acetonitrile (98/2) + 0.1% formic acid and eluent B water/acetonitrile (5/95) + 0.1% formic acid was used at a flow rate of 300µL/min. Peptide elution was performed with a gradient to 45% of eluent B in 24 minute.

MS/MS Conditions:

An Sciex Turbo V[™] source and Electrospray Ionization (ESI) probe was used. The mass spectrometer was a research grade hybrid quadrupole time-of-flight system that share many of the ion optic element typically used on a TripleTOF® 5600 LC/MS system. The CID/ECD cell operational details were reported previously [4]. The ECD-enabled guadrupole time-of-flight (Q-ToF) mass spectrometer that can operated in 2 modes: 1) flow thought for CID and ECD and 2) simultaneous trapping of precursor ions with continuous beam of electron. This is achieved with a unique RF ion guide (Figure 1), whose branched structure enables the inter-crossing of an adjustable energy electron beam with the conventional analytical ion beam of the mass spectrometer.

RESULTS

When digested under non-reducing conditions, disulfide linked peptide yield larger charge state peptides are easily separated from others ones with DMS. Using BSA as a model protein, most of the disulfide linked peptides generated have charge state ranging from +3 to +7 (Table 1). Though all peptide originate from a single protein chain, a wide range of intra- and inter- linked disulfide peptides are generated and represent a good pool of peptides to evaluate both ECD and DMS as tools for characterization of proteins. Our attention focused on a particular case where it was not possible to distinguish between 2 possible sequence combination; neither high mass accuracy or CID fragmentation. The isobaric nature of the cases requires alternative tool to distinguish which combination is present in the sample and detected (Figure 1). Since ECD fragmentation yields dominant fragment ions that originate from the cleavage of the S-S bond, complementary sequence information can be used to identify the proper peptide.

Tabel 1 alkylatior generate

TCVADESHAGCEK 200

Figure 4. ECD spectra of the T7 peptide which contains a single intra-chain disulfide link. The reduction of the S-S bond is detected followed by cleavage of the backbone of the peptide. Similar to the cross-linked peptide, the higher charge states tend to provide more efficient fragmentation.

List of detected peptides containing disulfide links originating from BSA when digestion is performed with	
n and without reduction (allowed single missed cleavage). A mix of intra- and inter-sequence peptide are	
ed to evaluate CID and ECD fragmentation.	

Theoretical Mono	1	Observed Mono	Error							
m/z	BT	m/z	(PPM)	Score	Charge		Sequence	Disulfide Bonds	Pentide	Chair
449 84831	2 43476	449 84852	0.46627	-	3	112923 277	TCVADESHAGCEK	T7@2(53)=T7@11(62)	T7	1
1347 53038	2.43534	1347 53392	2 62945	_	1	1793 24401	TCVADESHAGCEK	T7@2(53)=T7@11(62)	T7	1
674 26883	2.43354	674 26898	0.22907	-	2	63545 8183	TCVADESHAGCEK	T7@2(53)=T7@11(62)	T7	1
074.20005	2.43450	074.20050	0.22507		-	03345.0105		T66@1(475)=T67-68@3(486)		-
855 6136	5 15146	855 59897	-17 09619	_	5	842 08478	EEVENER, EEVENER, AF EI SAETF DETT VERALD	T66@2(476)=T63@2(460)	T63.T66.T67-68	1.1.
855.0150	5.15140	855.55857	-17.05015	_		042.00478	ER	T66@1(475)=T67@3(486)	103,100,107-08	1,1,
921 69767	4 58202	921 69925	1 71108	_	4	1380 08083		T66@2(476)=T63@2(460)	T63.T66.T67	1.1.
521.05707	4.38202	521.05525	1.71158		4	1389.98985		T66@1(475)=T67@3(486)	103,100,107	1,1,
737 55959	4 57615	737 55869	-1 22106	_	5	8218 68246		T66@2(476)=T63@2(460)	T63.T66.T67	1.1.
/3/.33333	4.37013	/3/.33809	-1.22100	-	3	8218.08240	LCVLHER, CCTESEVINK, RFCF3ALTFDETTVFK	T66@1(475)=T67@3(486)	103,100,107	1,1,
614 80087	1 57956	614 80025	1 02101		6	11922 4500		TEE@2(476)=TE2@2(460)	T62.T66.T67	1.1.
014.80087	4.37830	014.80023	-1.02101	-	0	11055.4555	LCVLHER, CCTESEVINK, RFCF3ALTFDETTVFK	T66@1(475)=T67@2(486)	103,100,107	1,1,
E27 11607	4 57602	537 11550	0.0268		7	2122 20757		100@1(475)=107@3(480), Tec@2(47c)=Te2@2(4c0)	T62.T66.T67	1.1.
327.11007	4.37003	327.11335	-0.9208	-		5152.85757	LCVLHER, CCTESEVINK, RFCF3ALTFDETTVFK	T66@1(475)=T67@2(460)	103,100,107	1,1,
1228 50447	4 5 7 0 9 7	1228 50426	0.1667		2	252 40601		100@1(473)=107@3(480), TCC@2(47C)=TC2@2(4C0)	TEDITEEITET	1.1.
1228.39447	4.57087	1228.39428	-0.1067	-	3	255.49691	LCVLHER;CCTESLVNR;RPCFSALTPDETTVPR	T42@2(288)=T40_41@4(277)	103;100;107	1;1;
	3 63065	054 45033	2 99696			409 14906		142@3(288)=140-41@4(277),	T20.T40 41.T42	1.1.
934.45561	3.03905	954.45952	3.88080	-	4	408.14896	HCDNQDHSSK;LKECCDKPLLEK;SHCIAEVEK	T39@3(264)=140-41@3(278)	159;140-41;142	1;1;
626 6205	2 62616	636 63004	0.60633		6	5777 20222		142@3(288)=140-41@4(277),	T20.T40 41.T42	1.1.
636.6393	3.03010	636.63994	0.69633	-	0	5727.28225	HCDNQDHSSK;LRECCDRPLLER;SHCIAEVER	T39@3(264)=140-41@3(278)	159;140-41;142	1;1;
F 4 F 92 40	2 62562	545 02402	0.12004		_	2222 45202		142@3(288)=140-41@4(277),	T20.T40 41.T42	1.1.
545.8349	3.63562	545.83483	-0.12884	-		3232.45392	YICDNQDTISSK;LKECCDKPLLEK;SHCIAEVEK	139@3(264)=140-41@5(278)	139;140-41;142	1;1;
762 76504	2 62604	762 76601	0.0000		-	1002 21 442		142@3(288)=140-41@4(277),	T20.T40 41.T42	1.1.
763.76594	3.63604	763.76601	0.0889	-	5	1882.21442	YICDNQDTISSK;LRECCDRPLLEK;SHCIAEVER	139@3(264)=140-41@5(278)	139;140-41;142	1;1;
054 45564		054 45000	2 2222					141(2(277))=142(2(3(288)))		
954.45561	3.63965	954.45932	3.88686	-	4	408.14896	YICDNQDTISSKLK;ECCDKPLLEK;SHCIAEVEK	141@3(278)=139-40@3(264)	139-40;141;142	1;1;
762 7650 4		762 76604			-			141@2(277)=142@3(288),		
763.76594	3.63604	763.76601	0.0889	-	5	1882.21442	YICDNQDTISSKLK;ECCDKPLLEK;SHCIAEVEK	141@3(278)=139-40@3(264)	139-40;141;142	1;1;
626 6205	2 62646	626 62004	0.00000		6			141@2(277)=142@3(288),		
636.6395	3.63616	636.63994	0.69633	-	6	5727.28223	YICDNQDTISSKLK;ECCDKPLLEK;SHCIAEVEK	141@3(278)=139-40@3(264)	139-40;141;142	1;1;
5 4 5 0 2 4 0		5 4 5 4 2 4 2 2			_			141(2(277))=142(2(3(288)))		
545.8349	3.63562	545.83483	-0.12884	-	/	3232.45392	YICDNQDTISSKLK;ECCDKPLLEK;SHCIAEVEK	141@3(278)=139-40@3(264)	139-40;141;142	1;1;
		445 20407	0.00754		-	7760 04546		128@1(199)=137@3(245),	T 20 T 27	
445.38449	3.96898	445.38407	-0.93754	-	5	7768.94516	CASIQK;ECCHGDLLECADDR	137@2(244)=137@10(252)	128;137	1;1
744 62506		744 62620	0.574.65			1076 50077		128@1(199)=137@3(245),	T 20 T 27	
741.63596	3.96587	741.63639	0.57165	-	3	4276.59977	CASIQK;ECCHGDLLECADDR	13/(2(244)=13/(210(252)))	128;137	1;1
4444 05004		1111 05205				543 30300		128@1(199)=137@3(245),	T 20 T 27	
1111.95031	3.96394	1111.95306	2.48089	-	2	513.70399	CASIQK;ECCHGDLLECADDR	137@2(244)=137@10(252)	128;137	1;1
556 47070		FFC 47004	0.45444			22455 4070		128@1(199)=137@3(245),	T 20 T 27	
556.47879	3.96729	556.47904	0.45441	-	4	23455.1979	CASIQK;ECCHGDLLECADDR	137@2(244)=137@10(252)	128;137	1;1
								128@1(199)=136-37@6(245), 136-		
863.04339	3.53919	863.04717	4.37561	-	3	3379.29984	CASIQK;VHKECCHGDLLECADDR	3/@5(244)=136-3/@13(252)	128;136-37	1;1
								T28@1(199)=T36-37@6(245), T36-		
647.53436	3.54143	647.53437	0.01288	-	4	14364.5793	CASIQK;VHKECCHGDLLECADDR	37@5(244)=T36-37@13(252)	T28;T36-37	1;1
								T28@1(199)=T36-37@6(245), T36-		
518.22895	3.54251	518.22931	0.69678	4.27	5	41674.827	CASIQK;VHKECCHGDLLECADDR	37@5(244)=T36-37@13(252)	T28;T36-37	1;1
								T28@1(199)=T36-37@6(245), T36-		
432.02533	3.5418	432.02508	-0.58654	-	6	7641.97721	CASIQK;VHKECCHGDLLECADDR	37@5(244)=T36-37@13(252)	T28;T36-37	1;1
								T21-22@8(167)=T21-22@17(176),		
639.29827	5.48553	639.28913	-14.30031	-	6	876.87475	LKPDPNTLCDEFK;YNGVFQECCQAEDKGACLLPK	T14@9(123)=T21-22@9(168)	T14;T21-22	1;1
								T21-22@8(167)=T21-22@17(176),		
958.44377	5.30873	958.4458	2.11756	-	4	597.43848	LKPDPNTLCDEFK;YNGVFQECCQAEDKGACLLPK	T14@9(123)=T21-22@9(168)	T14;T21-22	1;1
								T21-22@8(167)=T21-22@17(176),		
766.95647	5.30838	766.95731	1.08323	-	5	1845.59535	LKPDPNTLCDEFK;YNGVFQECCQAEDKGACLLPK	T14@9(123)=T21-22@9(168)	T14;T21-22	1;1

Figure 2 shows that ECD fragmentation yields fragmentation information that confirm detection of the T39-40 and T41 peptide in both the M(SH) and M(S) form as doubly and singly charged species. As show in Table 2, the higher charge states (Z=7+ and 6+) yielded fragment ions that confirmed the proper peptide. Additional fragmentation allowed confirmation that the proper peptide detected. From the data, it is possible to extract additional fragmentation information that confirmed the proper linkage S-S linkage (depicted in Figure 2)

	SH for [M+H]+	SH for [M+2H]2+	S for [M+H]2+ ·	2xS for [M]2+	Observed for Z
YI <mark>C</mark> DNQDTISSKLK	1627.79959	814.40343	813.89952	n.a.	7&6
ECCDKPLLEK	1177.55915	589.28321	589.28321	588.27539	7&6
SHCIAEVEK	1015.4877	508.24749	507.74357	n.a.	7&6
YI <mark>C</mark> DNQDTISSK	1386.62057	693.81392	693.31001	n.a.	n.d.
LKECC DKPLLEK	1418.73818	709.87273	709.36881	708.8649	n.d.
SHCIAEVEK	1015.4877	508.24749	507.74357	n.a.	7&6

Table 2. Expect list of masses predicted and observed to confirm which of the peptide is present (green highlight). Of note, the higher charge states tend to generates the diagnostic fragment ions that confirm the T39-40:T41:T42.

CONCLUSIONS

ECD fragmentation offers additional complimentary information over CID in the case of disulfide containing peptides. When the link is intra-peptide, ring opening is observed and minimal fragmentation information is obtained. When the disulfide link is across peptide originating from different section of the sequence, cleavage of the bond generates individual chains which can yield information about the individual chains as well as some sequence information for each. This provides improved confidence in the location of the disulfide bonds.

Future efforts will concentration of development of comprehensive IDA logic to ensure data collection in automated way to optimize sequence information from the ECD and CID perspective. This future work would also include integration of DMS into the work flow. DMS has demonstrated that multiply charged species can be segregated ahead of mass selection, thus further simplifying the data reduction.

REFERENCES

- 3 Shiaw-Lin Wu, et al. Anal. Chem. (2009) 81, 112-122

TRADEMARKS/LICENSING

AB Sciex is doing business as SCIEX. © 2017 AB Sciex. For Research Use Only. Not for use in diagnostic procedures. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX[™] is being used under

license.

Document number: RUO- MKT-10- 5831

Huilin Li, Peter O'Connor, J.Am. Soc. Mass Spectrom. (2012) 23, 2001-2010 2 Barbara Ganisl, Kathrinn Breuker, Chemistry OPEN (2012) 1, 260-268 4 Takashi Baba, Larry Campbell, J.C.Yves Le Blanc, Bruce Thomson, Anal. Chem. (2014) 87, 785-792