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Over the past several years, a number of studies have shown how various structural features of compounds Building upon earlier studies relating DMS behavior with ion structure Developing a machine learning-based model using DMS and other meta data Interesting features among the ML modeled physicochemical properties

influence their observed behavior during differential mobility spectrometry (DMS) experiments. For example, e T e o e

DMS data have revealed the specific influences of a molecule’s site of charging (Campbell et al., 2012; Kova&evié § . - N - : . /O)LO/\ ceolfd RePrediction®) o ire 8. Plot comparing the MOBCAL-

et al., 2014; Walker et al., 2018), the steric hinderance proximal to the charge site (Campbell et al., 2014; Liu et orifice . e - oo [T ey 12037 120.92043)  peedicted CCS values for three classes of
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al., 2015), o_r_the resonance staplIlzatlon/delocallzgthn of an ion’s chgrge (Liu et al., 2017). As an overall result, Fiqure 1. Exoloded view of the DMS svstem < T 3 . . Rl o e o 150} :\I>I/|C|Q_”03H | =] C compounds  (IMHB-designed  drugs, 2-

the applicability and understanding of processes within the DMS have increased substantially. g - EXPI _ : yster 3 L 3 P i MY e < 140 | Acrylamides FT . 0 methylquinolines (and quinoline-8-ols), and
\ | 4 : employed in this study, including the hybrid ; I o S 110 e i 5 N acrylamide CRGs with the ML-modeled CCS
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Beyond, these structural relationships, we have also identified that the observed DMS behaviors of ions (i.e., the -~ .”%;L N Lesl T Selisian quadrupole linear ion trap mass spectrometer. se " wmT v ||k ez | (|0 o sy || g 20 #@? 1 1 12156 12161(02) o0 ot include DMS. data Highlighted

relationship between the optimal separation voltage (SV) and compensation voltage (CV) needed for o . a1 T ) n :;z {L {1 L are three IMHB isomers, whose DMS CV

transmission) also encode for the physicochemical properties of those molecules. For example, we observed - ) oseaLccs - oscaLcs B ogcaLces ¢ ) oBcAL 5/ S N R? = 0.9969 ] N shifts provide clear separation (data not
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how Dl\/tl)?.t.beh?wors c?rr(fela:[[ed tstrol?gly IW'lthd tze measlure(? pKa anddeb_ v.alute.,-s, GE)S tweII as the pas];s,lve ceI]Ic Figure 5. The effect of including various amounts of DMS-based data into the ML model is highlighted in the plots B0 HNJKE 12167  121.66(06)  Shown) as well as the correct rank ordering of

{)hermeg i |esL_ or ta lse 28175 rIL—JIC urally rteha ed [u? mo eICltJ' es, eveg |scr|rrf1|na Inlg tiwegnﬂgowe{"; 0”:'$ 0 above. If only a limited number of DMS (SV, CV) data points are used to build and train the ML model (far left plot), a CCS/ /A2 B CCS values.
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min persion p oo playec ' edly, are included in the ML modeling (plots advancing to the right), the correlation between the ML model and the MOBCAL- . . ; . - - -

knowledge could be garnered from these rich data sets if a more global view of the DMS data were available. redicted CCS values areatly increases N . Figure 9. Plot comparing the MOBCAL-predicted
_ 1o o P greatly ' <200f CCS values for all 255 compounds examined thus
To provide a more comprehensive, precise, and accurate method that links DMS behavior to physicochemical P A o » > Figure 2. The effect of steric hinderance ML Prediction ML Prediction S far with the ML-modeled CCS values that include
properties, we have adopted supervised machine learning to treat the DMS data from over 250 molecules having R roin " |- S 1 asimony 3 of a modifier molecules (e.g., water) to a 75 100 125 150 A 0 1 2 5 160} DMS data. While strong correlation is observed
varied chemical structures. Here, we demonstrate that indeed the gas-phase clustering behavior of an ion in a emeanene e ome T v charge site (quinoline ring N) s - 2FLogp % | Figure 6. Other  physicochemical 3 between the MOBCAL- and ML-based CCS values,
DMS cell can be used to predict a number of physicochemical properties, including collision cross sections N \ D L demonstrated here. When a substituent is s | R?=0990 parameters were used to train predictive o 120 outliers remain. In this highlighted case, the outlier
(CCSs), as well as condensed phase molecular properties like cell permeability, chemical reactivity, solubility, Cl@ > g of ¥ ot ey 1o % located in the 8-position (right-hand 3 125 | g 1} i models for compounds examined using the 31 W oe zlcf;ﬁ S IS t_he tr_|ply pr(_)tonated form of the _ peptide,
polar surface area, and water/octanol distribution coefficient. B c o 10 | chioro 1 Tt Lo column, black traces), the CV shifts are @ 10,0 3 1 DMS data. For example, the 2- 80 , , . M\u’ % o3 Angiotensin |. Given that the vast majority of the
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OZN\CE\/L @j > [ Pure, L fz_o.f,Nj,tr_.___"_.J" lo > binding (Liu et al., 2015). ' ) . . . as the acrylamide CRGs, were used to CCS/A non-peptide species, this outlier makes sense.
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Sample Preparation. More than 250 compounds were analyzed during the course of this study. Each SV/V SV/V 5 = motif 1l . y » N '
compound was present at 100 ng/mL and subjected to ESI(+) prior to DMS analysis. These compounds included —— ——— Figure 3. For the isomeric compound sets 2 < T motif I 1  The quality of the models will continue to By using DMS analyses and ML modeling, we are able to obtain good predictions for the physicochemical properties
species that had been the subject of previous studies, including quinoline-based drugs (Liu et al., 2015), 0L A o, (2-methyl-quinoline-8-ols, left-hand side) g g improve with the inclusion of additional of a large number of compounds. This work is on-going and will expand to a much larger cohort of compounds,
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