
Using differential mobility spectrometry and machine learning-based modeling to predict the 

physicochemical properties of molecules
J. Larry Campbell1 and W. Scott Hopkins2

1SCIEX, Concord, ON, Canada; 2 Department of Chemistry, University of Waterloo, Waterloo, ON, Canada 

TRADEMARKS/LICENSING
AB Sciex is doing business as SCIEX.

© 2018 AB Sciex. For Research Use Only. Not for use in diagnostic procedures. The trademarks mentioned herein 

are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license.  

Document number: [RUO-MKT-10-7830-A]

For Research Use Only. Not for use in diagnostic procedures.

INTRODUCTION

Over the past several years, a number of studies have shown how various structural features of compounds

influence their observed behavior during differential mobility spectrometry (DMS) experiments. For example,

DMS data have revealed the specific influences of a molecule’s site of charging (Campbell et al., 2012; Kovačević

et al., 2014; Walker et al., 2018), the steric hinderance proximal to the charge site (Campbell et al., 2014; Liu et

al., 2015), or the resonance stabilization/delocalization of an ion’s charge (Liu et al., 2017). As an overall result,

the applicability and understanding of processes within the DMS have increased substantially.

Beyond, these structural relationships, we have also identified that the observed DMS behaviors of ions (i.e., the

relationship between the optimal separation voltage (SV) and compensation voltage (CV) needed for

transmission) also encode for the physicochemical properties of those molecules. For example, we observed

how DMS behaviors correlated strongly with the measured pKa and pKb values, as well as the passive cell

permeabilities for a set of structurally related drug molecules, even discriminating between isomeric forms of

these drugs.(Liu et al., 2017) However, these initial correlations made use of a select key DMS-related metric –

the SV@CVmin – where the ions’ dispersion plots (SV vs. CV) displayed a minimum value. Undoubtedly, more

knowledge could be garnered from these rich data sets if a more global view of the DMS data were available.

To provide a more comprehensive, precise, and accurate method that links DMS behavior to physicochemical

properties, we have adopted supervised machine learning to treat the DMS data from over 250 molecules having

varied chemical structures. Here, we demonstrate that indeed the gas-phase clustering behavior of an ion in a

DMS cell can be used to predict a number of physicochemical properties, including collision cross sections

(CCSs), as well as condensed phase molecular properties like cell permeability, chemical reactivity, solubility,

polar surface area, and water/octanol distribution coefficient.

MATERIALS AND METHODS

Sample Preparation. More than 250 compounds were analyzed during the course of this study. Each

compound was present at 100 ng/mL and subjected to ESI(+) prior to DMS analysis. These compounds included

species that had been the subject of previous studies, including quinoline-based drugs (Liu et al., 2015),

quinoline-8-ol-based drugs (Liu et al., 2017), tetraalkylammonium ions (Campbell et al., 2014), drugs designed to

incorporate intramolecular hydrogen bonds (IMHBs) (Goetz et al., 2014), electrophilic chemically reactive groups

(CRGs) used in drug design (Flanagan et al., 2014), and a test mixture of ~180 compounds (Schneider et al.,

2015) used to evaluate DMS and MS performance.

DMS-MS Conditions. A differential mobility spectrometer (Figure 1) was mounted in the atmospheric region

between the sampling orifice and ESI source (5500V) of a hybrid triple quadrupole – linear ion trap mass

spectrometer (Figure 1). The fundamentals of the DMS device have been described elsewhere. (Schneider et al.,

2010) The temperature of the DMS cell was maintained at a selected temperature (150, 225, or 300 ºC) during

the course of an experiment, and the nitrogen curtain gas was operated at 10 psi. In this study, the separation

voltage (SV) was held at a constant value (3250, 3500, 3750, or 4000 V) while the compensation voltage (CV)

was scanned from -40 V to +20 V in 0.10-V increments.

Data analysis and Machine Learning (ML) Modeling.  All data were analyzed using a research version of 

PeakView® Software (SCIEX) and the DMS ionogram data (SV versus CV versus Intensity) were output to 

Orange Canvas (v. 3.4.2) – a Python-based machine learning interface.  These data were treated with five 

different ML algorithms: [1] k Nearest Neighbors (kNN), [2] Random Forest, [3] Decision Tree, [4] Linear 

Regression, and [5] Adaptive Boosting (AdaBoost) to evaluate the quality of the predictive models; ultimately, 

random forest regression was selected based upon this appraisal.  This supervised ML uses multiple decision 

trees and statistically analyzes outcomes to generate a predictive model.  The data (DMS and associated meta 

data, including m/z, MOBCAL-modeled (Mesleh et al., 1996; Shvartsburg and Jarrold, 1996) CCS values, 

experimentally determined cell permeability, pka, ion/solvent binding energies, etc.) were randomly split differently 

for each tree, of which there were 10 trees.  The data were randomly binned into 5 folds and the algorithm was 

run a total of 5 times (matching the number of folds), each time leaving 1 fold out of the training set for cross 

validation.  This allows us to infer relationships in the labeled data sets.

RESULTS

Building upon earlier studies relating DMS behavior with ion structure 

CONCLUSIONS

By using DMS analyses and ML modeling, we are able to obtain good predictions for the physicochemical properties 

of a large number of compounds.  This work is on-going and will expand to a much larger cohort of compounds, 

including biological species, and will explore the application of more advanced ML algorithms.
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Figure 1. Exploded view of the DMS system

employed in this study, including the hybrid

quadrupole linear ion trap mass spectrometer.

RESULTS

Developing a machine learning-based model using DMS and other meta data

RESULTS

Interesting features among the ML modeled physicochemical properties

Figure 2. The effect of steric hinderance

of a modifier molecules (e.g., water) to a

charge site (quinoline ring N) is

demonstrated here. When a substituent is

located in the 8-position (right-hand

column, black traces), the CV shifts are

less negative, indicating weaker ion/solvent

binding (Liu et al., 2015).

Figure 3. For the isomeric compound sets

(2-methyl-quinoline-8-ols, left-hand side)

analyzed by DMS, the positive charge

originating from the protonated ring

nitrogen can be delocalized efficiently by

electron donating groups in the 5- and 7-

postions, but not the 6-position. As a

consequence, the 5- and 7-substituted

species were found to bind more weakly

than their 6-substituted isomers. (Liu et al.,

2017). The strong correlation between the

substituents’ respective SV@Cvmin values

with σ+ parameters (Brown and Okamoto,

1958) and the calculated ion/modifier

binding energies (right hand plots) support

these findings.

Figure 4. Relating the DMS behaviors of isomeric

drug molecules to their relative passive cell

permeabilities. With more charge delocalization

from the 5- and 7-substituted isomers, greater

passive cell permeabilities were observed for

these species compared to the 6-substituted

isomers for a given substituent (Liu et al., 2017). It

is postulated that the greater permeability derives

from the weaker binding of those isomers to water,

which must be shed prior to passage through a

lipid bilayer.

Figure 5. The effect of including various amounts of DMS-based data into the ML model is highlighted in the plots

above. If only a limited number of DMS (SV, CV) data points are used to build and train the ML model (far left plot), a

model of weak predictive power results (low R2 value). However, as more and more of the DMS dispersion plot data

are included in the ML modeling (plots advancing to the right), the correlation between the ML model and the MOBCAL-

predicted CCS values greatly increases.

Figure 6. Other physicochemical

parameters were used to train predictive

models for compounds examined using the

DMS data. For example, the 2-

methylquinoline (and quinolin-8-ols), as well

as the acrylamide CRGs, were used to

build and train models to predict pka, pkb,

LogD, and Log(t1/2) values (experimental

values obtained by Pfizer, Groton, CT).

The quality of the models will continue to

improve with the inclusion of additional

compounds to these data sets.

Figure 7. Improving the quality of the ML modeling by selection of additional meta data. As shown in the plots

above, when an ML model was developed to predict passive cell permeability (RRCK value) using the test

compounds’ DMS data (upper left-most plot), a model of moderately strong correlation was the result. However, as

is the case with ML methods, the inclusion of additional qualifying labels/meta data can improve the quality of the

model’s prediction. Here, the inclusion of the MOBCAL-predicted CCS values for each of the test compounds

further improved the accuracy of the ML models for RRCK, as well as for (A) EPSA – polar surface areas, (B)

eLogD – experimental octanol/water coefficient, (C) Log D, and (D) compound solubility.

Figure 9. Plot comparing the MOBCAL-predicted

CCS values for all 255 compounds examined thus

far with the ML-modeled CCS values that include

DMS data. While strong correlation is observed

between the MOBCAL- and ML-based CCS values,

outliers remain. In this highlighted case, the outlier

is the triply protonated form of the peptide,

Angiotensin I. Given that the vast majority of the

other test compounds were singly charged species,

non-peptide species, this outlier makes sense.

Figure 8. Plot comparing the MOBCAL-

predicted CCS values for three classes of

compounds (IMHB-designed drugs, 2-

methylquinolines (and quinoline-8-ols), and

acrylamide CRGs with the ML-modeled CCS

values that include DMS data. Highlighted

are three IMHB isomers, whose DMS CV

shifts provide clear separation (data not

shown) as well as the correct rank ordering of

CCS values.


