Food and Environmental

CC_{α} and CC_{β} Automatic Calculation and Flagging in SCIEX OS-Q Software

Yoann Fillâtre,¹ Loïc Beyet,¹ Jianru Stahl-Zeng² ¹SCIEX/France, ²SCIEX/Germany

Veterinary drugs are commonly used in livestock breeding to prevent or treat infections of the animals and to ensure their optimal growth. LC-MS/MS is the method of choice to routinely control the concentration of their residues in food of animal origin. As some of the veterinary drugs are banned substances, the traceability of the methods performance is critical. Laboratories must follow the European Decision no. 657/2002/EC concerning the performance of analytical methods and the interpretation of results and calculate two statistical limits:¹

- The decision limit CC_{α} means the limit at and above which it can be concluded with an error probability of α (1% for substances with non-permitted limits and 5% for substances with a permitted limit such as the Maximum Residue Limit (MRL) that a sample is non-compliant¹
- Detection capability (CC_β) means the smallest content of the substance that may be detected, identified and/or quantified in a sample with an error probability of β (5% for all substances with a permitted or no permitted limit)¹

Based on the recommendation of CD657/2002/EC, CC_{α} and CC_{β} can be calculated with either one of the two following approaches. The first method is based on the calculation of the signal-to-noise ratio of 20 blank samples for banned substances and 20 blank samples spiked at the MRL for permitted substances. The second approach, based on the calibration curve procedure defined in the ISO 11843,² is often preferred by the laboratories because of its greater ease of implementation for routine analyses. The calculation is based on day-to-day calibration of the method analyzing the batch of interest including the unknown samples to be controlled.³

Sample Name 🛛	Component Name 🗸 🔻	Calculated Concentration	*MRL 🛛	*CCalpha_1% ⊽	*Flag CCalpha_1% [™]	*CCalpha_5% v	*Flag CCalpha_5% ▽	*CCbeta ⊽	*Flag CCbeta [▽]
Unknown_2	Diclofenac_Auth 1	< 0	5.000	5.693		5.394		5.789	
Unknown_2	Flunixin_Auth 1	< 0	20.000	23.564		22.028		24.056	
Unknown_2	Ketoprofen_Ban 1	9.277	0.000	0.552	8.725	0.341	8.936	0.683	8.595
Unknown_2	Mefenamic Acid_Ban 1	1.036	0.000	0.615	0.421	0.380	0.656	0.760	0.276
Unknown_2	Meloxicam_Auth 1	< 0	20.000	21.401		20.797		21.594	
Unknown_2	Naproxen_Ban 1	< 0	0.000	0.683		0.422		0.844	
Unknown_2	Oxyphenbutazone_Ban 1	< 0	0.000	0.352		0.218		0.435	
Unknown_2	Phenylbutazone_Ban 1	< 0	0.000	0.481		0.298		0.595	
Unknown_2	Tolfenamic Acid_Auth 1	< 0	50.000	53.644		52.073		54.146	
Unknown_2	Vedaprofen_Ban 1	< 0	0.000	1.987		1.228		2.457	

Figure 1. Automatic Analysis. Automatic calculation of CC_{α} and CC_{β} for both non-permitted and permitted substances with defined MRL + automatic flagging of samples with concentration above those decision limits.

The complexity of the calculation requires the use of a spreadsheet software such as Excel to determine CC_{α} and CC_{β} . This procedure requires, at minimum, the manual step of copying/pasting the area of each analyte peak into the spreadsheet. Therefore for each analyte and each batch of analyses, CC_{α} and CC_{β} must be first calculated before the analyst can then compare and review the analyte concentration versus these decision limits. This means that the procedure is very time consuming for a laboratory to perform routinely.

Thanks to the inclusion of advanced and flexible calculation capabilities in SCIEX OS software as shown in Figure 1, this calculation can now be executed automatically in the software, saving a lot of time and minimizing the risk of error for laboratories.

Key Features

- Automatic calculation of CC_α and CC_β for both non-permitted and permitted substances at the same time
- Automatic flagging of samples with analyte concentrations above CC_{α} and/or CC_{β}

Methods

A set of matrix-spiked calibrants must be analyzed with at least three levels of equally-distant concentrations. The critical concentration can be calculated as followed:

• For non-permitted substances

$$CC_{\alpha} = t_{(\alpha,IJ-2)} \frac{\hat{\sigma}}{\hat{b}} \sqrt{\frac{1}{K} + \frac{1}{IJ} + \frac{\bar{x}^2}{\sum(x_{ij} - \bar{x})^2}}$$
$$CC_{\beta} = \delta_{(IJ-2,\alpha,\beta)} \frac{\hat{\sigma}}{\hat{b}} \sqrt{\frac{1}{K} + \frac{1}{IJ} + \frac{\bar{x}^2}{\sum(x_{ij} - \bar{x})^2}}$$

· For permitted substances with a defined MRL

$$CC_{\alpha} = x_{MRL} + t_{(\alpha,IJ-2)}\frac{\hat{\sigma}}{\hat{b}}\sqrt{\frac{1}{K} + \frac{1}{IJ} + \frac{x_{MRL} - \bar{x}^2}{\sum(x_{ij} - \bar{x})^2}}$$
$$CC_{\beta} = x_{MRL} + \delta_{(IJ-2,\alpha,\beta)}\frac{\hat{\sigma}}{\hat{b}}\sqrt{\frac{1}{K} + \frac{1}{IJ} + \frac{x_{MRL} - \bar{x}^2}{\sum(x_{ij} - \bar{x})^2}}$$

Table 1. Definition of the Calculation Parameters.

Parameters	Definition
1	Number of calibrating levels of concentration
J	Number of replicates per calibrating level of concentration
к	Number of unknown replicates
x_{ij}	Concentration of calibration levels
x	Average concentration of the calibration levels
x _{MRL}	Referenced MRL value of the analyte
$\hat{\sigma}$	Residual standard deviation of the regression function
ĥ	Slope of the calibration curve
$t_{(\alpha, lJ-2)}$	t Student at risk α and for degree of freedom (dof) equal to (I.J)-2
$\delta_{(\beta,IJ-2)}$	Statistical function that can be approximated by using 2 $t_{(\alpha,IJ-2)}$

The following constant values I, J, K, t student at confidence level of 95 and 99 % and the MRL are manually entered in the corresponding custom column. Some of these values can be different from one analyte to another and can be modified accordingly. By using \hat{b} , the slope of the calibration curve and $\hat{\sigma}$, a custom calculated column of formulae $\hat{\sigma} = \sqrt{\frac{1}{n-2}\sum_{l=1}^{n}(yl-\hat{y}_l)^2}$, the critical limits CC_{α} and CC_{β} can be calculated for each analyte and displayed (with or without the other columns) in the results

table. This calculation procedure includes, if necessary, the use of internal standards.

CC_{α} and CC_{β} Calculation

For non-permitted substances:

Figure 2 displays the results comparison of CC_{α} and CC_{β} between the automatic calculation with SCIEX OS software and the classical calculation with a spreadsheet software (bottom right) for the non-permitted substance Mefenamic Acid.

In this case, the constant values have the following values: I = 4, J = 2, K = 2 (only one repetition is shown in the results table), MRL = 0, t student (1%) = 3.143 and t student (5%) = 1.943. SCIEX OS software is then able to calculate $\delta_{(IJ-2,\alpha,\beta)}$ (Delta), $\hat{\sigma}$ (Sigma) and finally CC α (1%) and CC β (5%).

As shown in Figure 1, the results obtained with SCIEX OS software ($CC_{\alpha} = 0.615$; $CC_{\beta} = 0.760$) are strictly identical as those obtained by the spreadsheet software.

For permitted substances with a defined MRL:

Figure 3 displays the results comparison of CC_{α} and CC_{β} between the automatic calculation with SCIEX OS software and the classical calculation with a spreadsheet software (bottom right) for the permitted substance Tolfenamic Acid.

In this case, the first calibration level is removed thus changing the value of I (I = 3) and t student (1 %: 3.747; 5 %: 2.132) which can be done directly in the result table. Additionally, the regulatory MRL of Tolfenamic acid must be set in the MRL column. The calculation of CC_{α} (5%) and CC_{β} (5%) return the exact same results as the spreadsheet software (CC_{α} = 52.073; CC_{β} = 54.146) confirming the validity of the calculations.

		Custom column: Speceific value can be changed directly in the column								in	Calculated Column with Formulae							
Index	Used ⊽	7 Sample Name ⊽	Component Name	7 IS Name ⊽	Area Ratio ⊽	Actual Concentr⊽	Calculated Concentration	•MRL ⊽	*I 7	ک ا.	•ĸ ⊽	*t stude `	rt stude… ⊽	*Delta ⊽	*Sigma ⊽	*CCalpha_1% ⊽	*CCalpha_5% ⊽	*CCbeta ⊽
▶ 35		Muscle Blank 0_1	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.00016	0.0000	< 0	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
69		Muscle Std 1_1	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.23842	2.5000	2.569	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
103		Muscle Std 2_1	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.45561	5.0000	4.915	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
137		Muscle Std 3_1	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.73112	7.5000	7.892	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
205		Unknown_1	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.00569	N/A	0.054	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
239		Unknown_2	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.09164	N/A	0.983	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
273		Unknown_3	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.00399	N/A	0.036	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
307		Unknown_4	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.00231	N/A	0.018	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
341		Unknown_5	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.00454	N/A	0.042	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
375		Unknown_5	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.00743	N/A	0.073	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
409		Unknown_6	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.00217	N/A	0.016	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
443		Unknown_7	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.00423	N/A	0.039	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
511		Muscle Blank 0_2	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.00008	0.0000	< 0	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
545		Muscle Std 1_2	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.23735	2.5000	2.557	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
579		Muscle Std 2_2	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.45115	5.0000	4.867	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
613		Muscle Std 3_2	Mefenamic Acid_Ban 1	Mefenamic Acid_C13	0.66809	7.5000	7.211	0.000	4.000	2.000	2.000	3.143	1.943	3.886	0.0196	0.615	0.380	0.760
Calibrat	tion for N	Mefenamic Acid	Ban 1: y 0.09256 x	+ 6.53859e-4 (r = 0	.99785, r² = 0	.99570) (we	eighting: None)					CCα	and C	Cβ C	alculta	ation She	et	
	07							•		Mefen	am ic A	cid MRN	11			Mefenamic /	Acid MRM1	
	0.71						/	🖌 Co	ncen	tratio	n Are	ea	dx ²					
	1							-		~~	0.00							
	0.6 -								0.0	00	0.00	000	14.063	b	0.0925	66 0.001		
							/		2.5	00	0.00	000 °	14.063	b	0.0925	66 0.001		
						/			2.5	00	0.00	84 *	14.063 1.563	b	0.00248	66 0.001 395 0.012	Cimmo	
	054					/			0.0 2.5 5.0	00 00 00	0.00 0.23 0.45	84 56	14.063 1.563 1.563	b	0.0925 0.00248 0.99569	66 0.001 395 0.012 813 0.0196	Sigma	
	0.5 -					/			0.0 2.5 5.0 7.5	00 00 00 00	0.23 0.45 0.73	84 - 56 - 511 -	14.063 1.563 1.563 14.063	b	0.0925 0.00248 0.995699 1388.74	66 0.001 395 0.012 813 0.0196 322 6	<mark>Sigma</mark> №2 = nu	
.0	0.5 -								0.0 2.5 5.0 7.5	00 00 00 00 00	0.23 0.45 0.73 0.00	84 5 6 5 6 5 11 5 00	14.063 1.563 1.563 14.063 14.063	b	0.0925 0.00248 0.99569 1388.74 0.53553	66 0.001 395 0.012 813 0.0196 322 6 365 0.002	<mark>Sigma</mark> №2 = nu	
latio	0.5 - 0.4 -								0.0 2.5 5.0 7.5 0.0	00 00 00 00 00 00	0.00 0.23 0.45 0.73 0.00 0.23	84 5 56 5 11 5 01 5 74 5	14.063 1.563 1.563 14.063 14.063 1.563	b	0.0925 0.00248 0.99569 1388.74 0.53553	66 0.001 395 0.012 813 0.0196 322 6 365 0.002	<mark>Sigma</mark> №2 = nu	
a Ratio	0.5 - 0.4 -			/					0.0 2.5 5.0 7.5 0.0 2.5	00 00 00 00 00 00	0.23 0.45 0.73 0.00 0.23	84 556 111 001 574	14.063 1.563 1.563 14.063 14.063 1.563 1.563	b	0.0925 0.00248 0.99569 1388.74 0.53553	66 0.001 395 0.012 813 0.0196 322 6 365 0.002	Sigma N+2 = nu	z
Area Ratio	0.5 -								0.0 2.5 5.0 7.5 0.0 2.5 5.0	00 00 00 00 00 00 00	0.23 0.45 0.73 0.00 0.23 0.45	000 884 556 611 001 574 512	14.063 1.563 1.563 14.063 14.063 1.563 1.563	b	0.0925 0.00248 0.995699 1388.74 0.53553 0.95	66 0.001 395 0.012 813 0.0196 322 6 365 0.002	Sigma N-2 = nu t student 5%	, 0
Area Ratio	0.5 - 0.4 - 0.3 -								0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5	00 00 00 00 00 00 00 00	0.00 0.23 0.45 0.73 0.00 0.23 0.45 0.66	000 84 556 611 001 674 612 681	14.063 1.563 1.563 14.063 14.063 1.563 1.563 14.063	b	0.0925 0.00248 0.995699 1388.74 0.53553 0.95 0.95	66 0.001 395 0.012 813 0.0196 322 6 365 0.002 1.943 3.143	Sigma N-2 = nu t student 5% t student 1%	, , ,
Area Ratio	0.5 -		×						0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5	00 00 00 00 00 00 00 00	0.00 0.23 0.45 0.73 0.00 0.23 0.45 0.66	000 884 556 911 901 874 874 812 881	14.063 1.563 1.563 14.063 14.063 1.563 1.563 14.063	b	0.0925 0.002483 0.995693 1388.743 0.535533 0.95 0.95 0.99 2t _{1-alpha} (i	66 0.001 395 0.012 813 0.0196 322 6 365 0.002 I.943 3.143 nu) 3.89	Sigma N+2 = nu t student 5% t student 1% Delta	, , 0
Area Ratio	0.5 - 0.4 - 0.3 - 0.2 -		×						0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5	00 00 00 00 00 00 00	0.00 0.23 0.45 0.73 0.00 0.23 0.45 0.66	000 184 1556 1511 1511 1574 1574 1512 1581	14.063 1.563 1.563 14.063 14.063 1.563 1.563 14.063	b	0.0925 0.00248: 0.995694 1388.74: 0.53553: 0.95 0.99 2t _{1-alpha} (t	66 0.001 395 0.012 813 0.0196 322 6 365 0.002 1.943 3.143 nu) 3.89 2	Sigma N-2 = nu t student 5% t student 1% Delta Nb of Sam ple	s Repetitio
Area Ratio	0.5 -		_						0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5	00 00 00 00 00 00 00	0.00 0.23 0.45 0.73 0.00 0.23 0.45 0.66	000 184 156 111 101 174 127 127 1374 13	14.063 1.563 1.563 14.063 14.063 1.563 1.563 14.063	b	0.0925 0.00248: 0.995694 1388.74: 0.53553: 0.95 0.99 2t _{1-alpha} (K	i66 0.001 395 0.012 813 0.0196 322 6 365 0.002 1.943 3.143 nu) 3.89 2 4	Sigma N-2 = nu t student 5% t student 1% Delta Nb of Sam ple Nb of Calibrat	s Repetitio
Area Ratio	0.5 - 0.4 - 0.3 - 0.2 - 0.1 -								0.00 2.50 5.00 7.50 0.00 2.50 5.00 7.50	00 00 00 00 00 00 00 00	0.00 0.23 0.45 0.73 0.00 0.23 0.45 0.66 Ba	100 184 156 111 101 174 174 174 174 174 174 174 17	14.063 1.563 1.563 14.063 14.063 1.563 1.563 14.063	b	0.0925 0.00248: 0.995694 1388.74: 0.535533 0.95 0.99 2t _{1-atpha} (K I J	i66 0.001 395 0.012 813 0.0196 322 6 365 0.002 1.943 3.143 nu) 3.89 2 4 2 4	Sigma N-2 = nu t student 5% t student 1% Delta Nb of Sam ple Nb of Calibrat Denlicate	s Repetitio ion Level ion Level
Area Ratio	0.5 - 0.4 - 0.3 - 0.2 - 0.1 - 0.0 - 0.1 - 0.0 - 0.1 - 0.0 - 0.1 - 0.0 - 0								0.00 2.50 7.50 7.50 2.50 5.00 7.50	00 00 00 00 00 00 00 00	0.00 0.23 0.45 0.73 0.00 0.23 0.45 0.66 Ba	100 184 156 111 1001	14.063 1.563 1.563 14.063 14.063 1.563 1.563 14.063	b	0.0925 0.00248: 0.995694 1388.74: 0.535533 0.95 0.99 2t _{1-alpha} (K I J	i66 0.001 395 0.012 813 0.0196 322 6 365 0.002 1.943 3.143 nu) 3.89 2 4 2	Sigma N-2 = nu t student 5% t student 1% Delta Nb of Sam ple Nb of Calibrat Replicates	s Repetitio ion Level ion Level
Area Ratio	0.5 - 0.4 - 0.3 - 0.2 - 0.1 - 0.0 -		2	3 4	5	6	7		0.00 2.50 7.50 0.00 2.50 5.00 7.50 7.50	00 00 00 00 00 00 00 00 00	0.00 0.23 0.45 0.73 0.00 0.23 0.45 0.66 Ba	100 184 156 111 1001 112	14.063 1.563 1.563 14.063 14.063 1.563 1.563 14.063 ubstance		0.0925 0.00248: 0.995699 1388.74: 0.53553: 0.99 2t _{1-alpho} (K I J	666 0.001 395 0.012 813 0.0196 322 6 365 0.002 1.943 3.143 3.143 3.143 3.143 3.143 2 4 2 4 2 4 2	Sigma N-2 = nu t student 5% t student 1% Delta Nb of Sam ple Nb of Calibrat Nb of Calibrat Replicates	s Repetitio ion Level

Figure 2. CC_{α} and CC_{β} for the Non-Permitted Substance Mefenamic Acid.

			Custom column: Specific value car be changed directly in the column							an	Calculated Column with Formulae							
Index	Used ⊽	7 Sample Name ⊽	Component Name	7 IS Name ⊽	Area Ratio ⊽	Actual Concentr ⊽	, Calculated Concentration	*MRL 🛛	* ⊽	*J 🛛	*K ⊽	*t stude 7	*t stude ⊽	*Delta 5	i *Sigma ⊽	*CCalpha_1% ⊽	*CCalpha_5% ⊽	*CCbeta 7
▶ 38		Muscle Blank 0_1	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	0.00153	0.0000	< 0	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
72		Muscle Std 1_1	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	2.13552	25.0000	24.444	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
106		Muscle Std 2_1	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	4.19500	50.0000	50.053	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
140		Muscle Std 3_1	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	6.06324	75.0000	73.284	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
208		Unknown_1	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	0.00204	N/A	< 0	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
242		Unknown_2	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	0.02425	N/A	< 0	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
276		Unknown_3	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	0.00081	N/A	< 0	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
310		Unknown_4	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	0.00057	N/A	< 0	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
344		Unknown_5	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	0.00089	N/A	< 0	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
378		Unknown_5	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	0.00167	N/A	< 0	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
412		Unknown_6	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	0.00212	N/A	< 0	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
446		Unknown_7	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	0.00041	N/A	< 0	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
514		Muscle Blank 0_2	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	0.00125	0.0000	< 0	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
548		Muscle Std 1_2	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	2.18243	25.0000	25.027	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
582		Muscle Std 2_2	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	4.27148	50.0000	51.004	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
616		Muscle Std 3_2	Tolfenamic Acid_Auth 1	Tolfenamic Acid_C13	6.29667	75.0000	76.187	50.000	3.000	2.000	2.000	3.747	2.132	4.264	0.0958	53.644	52.073	54.146
Calibra	ation for	r Tolfenamic Acio	d_Auth 1: y = 0.08042	r + 0.16974 (r = 0.	99887, r² = 0.9	19774) (weig	hting: None)					CCα	and C	СВ С	alculta	ation She	et	
		1						•		Tolfen	am ic A	cid MRM	1	1		Tolfe nam ic	Acid MRM1	
	6	5-					/		ncon	tratio	n An	0.9	dv ²	-				
								0	05.0	00	0.4				0.000	0 470		
									25.0	00	2.1.	300 0	25.000	1	0.080	42 0.170		
	5	21							50.0	00	4.19	950 _	0.000		0.00191	553 0.103		
		1			_				75.0	00	6.06	632 6	25.000		0.99773	572 0.0958	Sigma	
	Δ				x				25.0	00	2.18	824 6	25.000		1762.56	324 4	N-2 = nu	
0		'							50.0	00	4.2	715	0.000		16,1682	802 0.037		
ati		1		/					75.0	00	6.20	067 G	25 000					
e e	3								75.0	00	0.23	507 0	25.000			0.400	4 - to - to - to 50	,
Are															0.95	2.132	t student 5%	6
		1	~												0.99	3.747	t student 1%	6
	2	2 -													2t _{1-alpha} (nu) 4.26	Delta	
															K	2	Nb of Sam ple	s Repetition
			/								Ba	anned Su	bstance	1	1	7 3	Nb of Calibra	tion Level
	1	1									MF	RL	50		j	2	Nb of Calibra	tion Level
																_	Replicates	
	0	5 1	0 15 20 25	30 35 40	45 50	55 60	65 70		Меа	n x			Sum dx ²		CCa	: 52.073		

Figure 3. CC_{α} and CC_{β} for the Permitted Substance Tolfenamic Acid with a MRL of 50 $\mu g/kg.$

Flagging Non-Compliant Results

By adding calculated columns (Flag CCalpha 1%) and (Flag CCbeta) which compare the calculated concentration of the analyte in the sample with the calculated CC_{α} and CC_{β} , SCIEX OS software is able to automatically flag every concentration above these decision limits. Figure 4 shows the example of the non-permitted substance Ketoprofen. In this example, the concentrations of Ketoprofen found in samples "Unknown_2" (9.277 µg/kg) and "Unknown_7" (0.630 µg/kg) are exceeding CC_{α} (0.552) and CC_{β} (0.683) in the first case but only exceeds CC_{α} (0.552) in the second case.

Index	Used 7	Sample Name 🛛	Component Name 🛛	IS Name 🛛	Area Ratio 🛛	Calculated Concentration	•MRL V	*CCalpha_1% V	*Flag CCalpha_1% V	*CCbeta ⊽	*Flag CCbeta
51		Muscle Blank 0_1	Ketoprofen_Ban 1	Ketoprofen_d3	0.00019	< 0	0.000	0.552		0.683	
85		Muscle Std 1_1	Ketoprofen_Ban 1	Ketoprofen_d3	0.39170	2.636	0.000	0.552	2.084	0.683	1.954
119		Muscle Std 2_1	Ketoprofen_Ban 1	Ketoprofen_d3	0.72454	5.003	0.000	0.552	4.451	0.683	4.321
153		Muscle Std 3_1	Ketoprofen_Ban 1	Ketoprofen_d3	1.03878	7.238	0.000	0.552	6.686	0.683	6.555
221		Unknown_1	Ketoprofen_Ban 1	Ketoprofen_d3	0.01352	< 0	0.000	0.552		0.683	
255		Unknown_2	Ketoprofen_Ban 1	Ketoprofen_d3	1.32561	9.277	0.000	0.552	8.725	0.683	8.595
289		Unknown_3	Ketoprofen_Ban 1	Ketoprofen_d3	0.06151	0.288	0.000	0.552	-0.264	0.683	-0.394
323		Unknown_4	Ketoprofen_Ban 1	Ketoprofen_d3	0.02472	0.027	0.000	0.552	-0.525	0.683	-0.656
357		Unknown_5	Ketoprofen_Ban 1	Ketoprofen_d3	0.05455	0.239	0.000	0.552	-0.313	0.683	-0.444
391		Unknown_6	Ketoprofen_Ban 1	Ketoprofen_d3	0.06576	0.319	0.000	0.552	-0.233	0.683	-0.364
425		Unknown_7	Ketoprofen_Ban 1	Ketoprofen_d3	0.10961	0.630	0.000	0.552	0.078	0.683	-0.052
459		Unknown_8	Ketoprofen_Ban 1	Ketoprofen_d3	0.01245	< 0	0.000	0.552		0.683	
527		Muscle Blank 0_2	Ketoprofen_Ban 1	Ketoprofen_d3	0.00036	< 0	0.000	0.552		0.683	
561		Muscle Std 1_2	Ketoprofen_Ban 1	Ketoprofen_d3	0.39946	2.691	0.000	0.552	2.139	0.683	2.009
595		Muscle Std 2_2	Ketoprofen_Ban 1	Ketoprofen_d3	0.75567	5.224	0.000	0.552	4.672	0.683	4.542
629	M	Muscle Std 3_2	Ketoprofen_Ban 1	Ketoprofen_d3	1.07588	7.501	0.000	0.552	6.949	0.683	6.819

Figure 4. SCIEX OS Software Flags Results Above CC_{α} and CC_{β} .

Therefore, the automatic calculation of CC_{α} and CC_{β} in combination with the real-time flagging of samples with concentrations above these decision limits can save a lot of time and minimize the risk of error for laboratories thus improving the efficiency of their workflow.

References

- European Commission, 2002/657/EC: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (Text with EEA relevance) (notified under document number C(2002) 3044), 2002. http://data.europa.eu/eli/dec/2002/657/oj/eng (accessed August 28, 2019).
- ISO, ISO 11843-2:2000, n.d. http://www.iso.org/cms/render/live/en/sites/isoorg/contents/d ata/standard/02/01/20186.html (accessed August 30, 2019).
- E. Verdon, D. Hurtaud-Pessel, P. Sanders, Evaluation of the limit of performance of an analytical method based on a statistical calculation of its critical concentrations according to ISO standard 11843: Application to routine control of banned veterinary drug residues in food according to European Decision 657/2002/EC, Accreditation Qual. Assur. 11 (2006) 58–62. doi:10.1007/s00769-005-0055-y.

The SCIEX clinical diagnostic portfolio is For In Vitro Diagnostic Use. Rx Only. Product(s) not available in all countries. For information on availability, please contact your local sales representative or refer to https://sciex.com/diagnostic All other products are For Research Use Only. Not for use in Diagnostic Procedures.

Trademarks and/or registered trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners in the United States and/or certain other countries.

© 2019 DH Tech. Dev. Pte. Ltd RUO-MKT-02-10631-A. AB SCIEX™ is being used under license.

