

LIFluor[™] EnhanCE

for use with dsDNA 1000 and dsDNA 20,000 Kits

For the Separation of Double Stranded DNA by P/ACE[™] Fluorescent Capillary Electrophoresis

> 725824 AB September 2006

Beckman Coulter, Inc. 4300 N. Harbor Blvd., Fullerton, CA 92834-3100 © Copyright 2006 Beckman Coulter, Inc. Printed in U.S.A.

Copyright, Licenses and Trademarks

Copyright

© Beckman Coulter, Inc., 2006. All rights reserved. No part of this publication may be reproduced, transcribed, transmitted, or translated into any language in any form by any means without the written permission of Beckman Coulter, Inc.

Licenses and Trademarks

Beckman Coulter® is a registered trademark of Beckman Coulter, Inc.

LIFluor EnhanCE and P/ACE MDQ are trademarks of Beckman Coulter.

Table of Contents

Introduction	
Using LIFluor EnhanCE with the dsDNA 1000 Kit	
6	
Preparing dsDNA 1000 Gel Buffer with EnhanCE	
Sample Injection	
Equilibrating a New Capillary	
Performing a Test Run using the dsDNA 1000 Test Mix	
Checking Your Results	
Using LIFluor EnhanCE with the dsDNA 20,000 Kit	
Preparing dsDNA 20,000 Gel Buffer with EnhanCE	
Sample Injection	
Performing a Test Run using the dsDNA 20,000 Test Mix	
Checking Your Results	
Troubleshooting Guide	. 16

LIFluor EnhanCE

This product is for use with dsDNA 1000 and dsDNA 20,000 kits and a P/ACE MDQ Capillary Electrophoretic System, equipped with a laser-induced fluorescence (LIF) detector.

Introduction

This package includes one vial of EnhanCE (500 μ g in 500 μ l of methanol) and the instructions required to use EnhanCE with dsDNA 1000 and dsDNA 20,000 kits.

Upon receipt, store the vial of EnhanCE at -15°C or less.

NOTE Before use, let the vial of EnhanCE warm at room temperature for 20 minutes and then mix well.

IMPORTANT The EnhanCE is light sensitive. Do not leave it exposed to light when it is not in use.

IMPORTANT Always keep the EnhanCE vial capped tightly when not in use. If the vial is left opened, the methanol will evaporate, thus increasing the dye concentration.

Materials Required but not provided by Beckman Coulter:

- dsDNA 1000 kit (PN 477414)
- dsDNA 20,000 kit (PN 477475)
- LIFluor Performance Test Mix (PN 726022)
- Deionized water
- Parafilm
- Magnetic stir plate and stir bar
- 0.45 µm Syringe Filter with disposable syringe (for aqueous filtering)
- Volumetric Pipet, 20 mL
- Micropipets to deliver 1- 100 µL volume
- Capillary Cartridge, blank (PN 144738)
- 488 nm Notch Filter (PN 144941)
- 520 nm Emission Filter (PN 144940)
- Vials, 2 mL (PN 144980)
- Vial Caps, red (PN 144648)
- PCR Vials (PN 144709)
- PCR Vial Holder (PN 144657)
- PCR Vial Springs (PN 358821)
- PCR Vial Caps, gray (PN 144656)
- DNA Capillary (PN 477477)
- Test Mix λ DNA/Hind III Fragments (PN 447483)
- dsDNA 20,000 Gel Buffer (PN 477485)
- dsDNA 1000 Gel Buffer (PN 477628)
- dsDNA 1000 Test Mix (PN 477414)

Using LIFluor EnhanCE with the dsDNA 1000 Kit

Preparing dsDNA 1000 Gel Buffer with EnhanCE

- 1. To rehydrate the buffer, add 20 mL deionized water to the Gel Buffer vial.
- 2. Using a magnetic stir bar and stir plate, stir the solution until the hydrated gel is dissolved.

It may take up to 24 hours to ensure that the dried gel is completely dissolved.

3. Prior to use, filter the Gel Buffer using a 0.45 μm filter and, if necessary, sonicate it for one minute to remove small bubbles in the Gel.

Rehydrated Gel Buffer will last for thirty days when stored at 2°C to 8°C.

 Add 15.0 μL EnhanCE to 20 mL of rehydrated, filtered Gel Buffer and mix well.

CAUTION Do not filter the Gel Buffer after the EnhanCE is added.

The EnhanCE is light-sensitive. Do not leave it exposed to light when not in use. It is recommended that aluminum foil be used to cover the Gel Buffer vial to reduce exposure to light. However, EnhanCE may still show deterioration after 10 hours.

NOTE The concentration of EnhanCE in the Gel Buffer has been optimized in order to saturate a DNA sample with a concentration of 10 μ g/mL. However, for samples with low concentration of DNA (<1 μ g/mL), use less EnhanCE (<10 μ L) per rehydrated buffer vial for optimal signal.

Sample Injection

Pressure or electrokinetic injection can be used for dsDNA samples. Pressure injection makes quantitation of DNA possible without sample preparation (i.e. high salt samples). A 10 second pressure injection is recommended. Longer injection times may cause peak shape distortion and migration times to vary. LIFluor Performance Test Mix may be added as an injection marker to DNA Test Mix or your sample. If used, 1 µL of LIFluor Performance Test Mix should be added per 80 µL of sample of Test Mix.

Use Electrokinetic injection with desalted and diluted dsDNA samples. Optimize the injection parameters, depending on the concentration and amount of the sample. As a starting point, use a 2 second injection at 1 KV for a 2.0 μ g/mL dsDNA sample.

Equilibrating a New Capillary

To obtain the best function of the system and capillary, it is recommended to pre-equilibrate and calibrate the capillary by doing the following:

1. Install a DNA capillary into a cartridge so that the total length is 40.2 cm, and the length from the inlet to the window is 30 cm.

NOTE Do not expose the capillary ends to air for more than 6 minutes. Excessive exposure to air may permanently damage the inner coating.

- 2. Calibrate the system as described under "Calibrating the LIF Detector" on this page.
- 3. Rinse the capillary with prepared Gel Buffer, containing EnhanCE, for 20 minutes at 20 psi.
- 4. Perform a test separation of the dsDNA test mix per the instructions in "Performing a Test Run using the dsDNA 1000 Test Mix" on page 6.
- 5. When not in use, rinse the capillary with unused DNA Gel Buffer and store it with both ends submerged in gel at 2-8°C.

Calibrating the LIF Detector

Whenever the capillary, detector, or laser are changed for the P/ACE MDQ LIF detector, it is recommended to recalibrate the photomultiplier tube.

Calibrate as outlined below:

- 1. Warm the LIF Performance Test Mix at room temperature for at least 30 minutes
- 2. Close all open applications except the 32 Karat software.
- 3. From the Enterprise Screen, open the P/ACE MDQ Instrument for Configuration.
- 4. Right-click on the LIF Module and select **Configure**.
- 5. Click **Configure** again.
- 6. When the **Configured Modules** dialog is displayed (right side), double-click on the LIF Detector icon.
- On the P/ACE MDQ Instrument Configuration Window, select LIF Calibration Wizard.
- 8. Select Auto Calibration and click Next.

9. Enter the following calibration parameters:

Detector Channel	1
Target RFU	62
Capillary Dimensions:	
Internal Diameter	100 µm
Total Length	40 cm (dsDNA 1000)
	50 cm (dsDNA 20,000)

10. Click Next.

- 11. Place a vial filled with deionized water on position A1 at the Inlet.
- 12. Place a vial filled with LIF Performance Test Mix on position B1.
- 13. Place an empty vial on Position A1 outlet.
- 14. Click Next.

The Calibration Wizard will start and a new window will show its progress. When the calibration is complete, a new window will open showing the Calibration Correction Factor (CCF). The CCF value should be between 0.5 and 1.5. A CCF value in excess of 1.5 indicates dirty or misaligned optics. If the CCF value is out of the recommended range, refer to the P/ACE MDQ User's Guide for troubleshooting methods.

Performing a Test Run using the dsDNA 1000 Test Mix

- 1. Fill three glass vials with rehydrated, filtered dsDNA 1000 Gel Buffer containing EnhanCE.
- 2. Sonicate the vials for 5 seconds to remove any bubbles.
- 3. Place the required vials in the following positions:

Buffer Inlet Tray	Buffer Outlet Tray
A1 - DI H ₂ 0	A1 - DI H ₂ 0
B1 - dsDNA 1000 Gel Buffer	, , , ,
C1 - dsDNA 1000 Gel Buffer	C1 - dsDNA 1000 Gel Buffer

- 4. Add 1 mL of deionized water to the dsDNA 1000 Test Mix vial.
- 5. Vortex the mixture.
- 6. Transfer 80 μL of the dsDNA 1000 Test Mix mixture to a PCR vial.
- 7. Aliquot the remainder of the Test Mix in 80 μL volumes and store them at -20°C.
- 8. Place the dsDNA 1000 Test Mix in the inlet sample tray at position SAI:A1.
- 9. Use the Methods given in Figures 1 3 to analyze the dsDNA 1000 Test Mix.

			Inlet	Outlet		
Event	Value	Duration	vial	vial	Summary	Comments
Rinse - Pressure		I	BI:B1	B0:B1	forward	filling with gel buffer
Wait			BI:A1	B0:A1		
Inject - Voltage		2.0 sec	SI:A1	B0:C1	Override, reverse polarity	sample injection
Wait			BI:A1	B0:A1		water dip
Separate - Voltage	7.8 KV	25.00 min	BI:C1		0.17 Min ramp, reverse polarity	separation
Autozero						Autozero
pq					End	Pd

Figure 1: Time Program in dsDNA 1000 method

🔅 Initial Conditions 🔆 LIF Detect	or Initial Conditions 🛛 🕥 Time Program 🛛
Auxiliary data channels ✓ Voltage max: 30.0 kV ✓ Current max: 300.0 µA	Temperature Peak detect parameters Cartridge: 20.0 *C Sample storage: 10.0 *C Peak width: 9
Power Pressure Mobility channels Mobility	Trigger settings Wait for external trigger Wait until cartridge coolant temperature is reached Wait until sample storage temperature is reached
Apparent Mobility Plot trace after voltage ramp Analog output scaling Factor: 1	Inlet trays Outlet trays Buffer: 36 vials Sample: 48 vials Sample: 48 vials

Figure 2: Initial Conditions in dsDNA 1000 method.

🔅 Initial Conditions 🗮 LIF Detector Initial (Conditions 🚫 Time Program
Electropherogram channel 1	Electropherogram channel 2
Acquisition enabled	Acquisition enabled
Dynamic range: 100 💌 RFU	Dynamic range: 100 💌 RFU
Filter settings	Filter settings
C High sensitivity	 High sensitivity
Normal	Normal
C High resolution	C High resolution
Peak width (pts): 16-25	Peak width (pts): 16-25 💌
Signal	Signal
Direct O Indirect	Direct O Indirect
Laser/filter description - information only	Laser/filter description - information only
Excitation wavelength: 488 nm	Excitation wavelength: 635 nm
Emission wavelength: 520 nm	Emission wavelength: 675 nm
Data rate	Relay 1 Relay 2
Both channels: 4 🔽 Hz	● Off ● Off
Hz	C On C On

Figure 3: LIF Detector Setting in dsDNA 1000 method

NOTE During the separation, salts and EnhanCE migrate from one vial of Gel Buffer to the other, changing the composition of the Gel Buffer. It is therefore recommended that the vials of Gel Buffer be replaced with unused Gel Buffer, after 15 injections. If less than 15 μ L of EnhanCE is added to the Gel Buffer, change the vials more often.

NOTE Due to the viscosity of the Gel Buffer, it is necessary to clean the lever arms, electrodes and the outside of the capillary frequently.

Checking Your Results

The dsDNA 1000 Test Mix contains Phi-X 174 DNA *Hae III* digest, consisting of 11 DNA fragments. The Test Mix should separate in twenty-five minutes using the recommended method with baseline separation of the 271 and 281 base pairs, as shown in Figure 4.

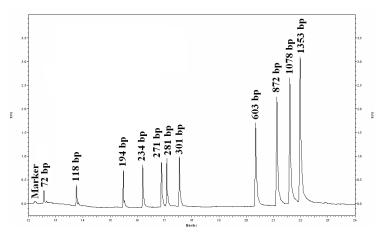


Figure 4: Electropherogram of dsDNA 1000 Test Mix

When different dye concentrations are used, variations in migration time will be observed.

If more than 15 μ L of EnhanCE is used, the migration time of the dsDNA fragments will increase. But, if less than 15 μ L of EnhanCE is used, the dsDNA fragments migrate rapidly. For example, the 72 bp fragment will migrate before the LIF Performance Test Mix, if 2 μ L of EnhanCE is used.

If EnhanCE is added directly to the dsDNA sample, it will result in extreme peak tailing. Add EnhanCE to the separation Gel Buffer only.

If any of the dsDNA peaks are followed by a negative baseline upset, then there is not enough EnhanCE in the Gel Buffer to stain all of the dsDNA. Either inject less sample or increase the amount of EnhanCE in the Gel Buffer to eliminate this artifact.

The current should remain fairly stable. Small variations in the current may indicate that the capillary is experiencing temperature fluctuations or the presence of air bubbles in the Gel Buffer. This could result in a noisy baseline, miscellaneous spikes or broad peaks.

Using LIFluor EnhanCE with the dsDNA 20,000 Kit

Preparing dsDNA 20,000 Gel Buffer with EnhanCE

- 1. To rehydrate the buffer, add 18.0 mL deionized water to the Gel Buffer vial.
- 2. Using a magnetic stir bar and stir plate, stir the solution until the dehydrated gel is dissolved.

It may take up to 10 hours to ensure that the dried gel is completely dissolved.

3. Prior to use, filter the Gel Buffer using a 0.45 μm filter and sonicate for one minute to remove small bubbles in the Gel.

Rehydrated Gel Buffer will last for two weeks when stored at 2°C to 8°C.

 Add 15.0 μL of EnhanCE to the 18.0 mL of rehydrated, filtered Gel Buffer and mix well.

Do not filter the Gel Buffer after the EnhanCE is added. The EnhanCE is light-sensitive.

WARNING Do not leave the EnhanCE exposed to light when it is not in use.

It is recommended that aluminum foil be used to cover the vial to reduce exposure to light. However, EnhanCE may still show deterioration after 10 hours.

NOTE The concentration of EnhanCE in the Gel Buffer has been optimized in order to saturate a DNA sample with a concentration of 10 μ g/mL. However, for sample with low concentration of DNA (<1 μ g/mL), use less EnhanCE (<10 μ L) per rehydrated buffer vial for an optimal signal.

Sample Injection

Pressure of electrokinetic injection can be used for DNA samples. Pressure injection makes quantitation of DNA possible without sample preparation (i.e. high salt samples). Five second pressure injection is recommended. Longer injection times may cause peak shape and migration times to vary. LIFluor Performance Test Mix may be added as an injection marker to the DNA Test Mix or your sample. If used, 1 μ L of LIFluor Performance Test Mix should be added per 80 μ L of sample of Test Mix.

Electrokinetic injection should be used with diluted and desalted dsDNA samples. The injection parameters should be optimized depending on the concentration and amount of dsDNA.

Performing a Test Run using the dsDNA 20,000 Test Mix

1. Install a DNA capillary into a cartridge so that the total length is 50.2 cm, and the length from the inlet to the window is 40 cm.

NOTE Do not expose the capillary ends to air for more than 6 minutes. Excessive exposure to air may permanently damage the inner coating.

- 2. Before performing a test run as outlined on the following pages, perform a system calibration. See "Calibrating the LIF Detector" on page 4.
- 3. Equilibrate the capillary by rinsing it for 20 minutes at 20 psi, with dsDNA 20,000 Gel Buffer containing EnhanCE.
- 4. Fill three 2 mL vials with rehydrated, filtered dsDNA 20,000 Gel Buffer, containing EnhanCE.
- 5. Sonicate the vials for 5 seconds to remove any bubbles.
- 6. Place the required vials in the following positions:

Buffer Inlet Tray	Buffer Outlet Tray
A1 - DI H ₂ 0	A1 - DI H ₂ 0
B1 - dsDNA 20,000 Gel Buffer	B1 - Waste (Empty)
C1 - dsDNA 20,000 Gel Buffer	C1 - dsDNA 20,000 Gel Buffer

- 7. Transfer 50 μ L of the dsDNA 20,000 Test Mix into a PCR sample vial, and cover the top with parafilm.
- 8. Heat the sample at 65° for 5 to 7 minutes in a water bath.
- 9. Cool this sample down immediately in an ice-water bath for 3 to 5 minutes.
- 10. Use the methods in Figures 5 7, to analyze the dsDNA 20,000 Test Mix.

NOTE During the separation, salts and EnhanCE migrate from one vial of Gel Buffer to the other, changing the composition of the Gel Buffer. It is therefore recommended that the vials of Gel Buffer be replaced with unused Gel Buffer, after 15 injections. Change the Gel Buffer more often, if less than 15 μ L of EnhanCE is added to the Gel Buffer.

NOTE Due to the viscosity of the Gel Buffer, it is necessary to clean the lever arms, electrodes and the outside of the capillary frequently.

ĺ								
	Time (min)	Event	Value	Value Duration	Inlet vial	Outlet vial	Summary	Comments
		Rinse - Pressure	20.0 psi	3.00 min	BI:B1	80:81	forward	filling with dsDNA gel against vial filled with water
		∀ait		0.00 min	BI:A1	B0:A1		cleaning capillary tips in vials filled with water
		^o ressure	0.5 psi	10.0 sec	SI:A1	BO:B1	Override, forward	dsDNA injection against vial filled with gel
		Wait		0.00 min	BI:A1	B0:A1		cleaning capillary tips in vials filled wih water
	0.00	Separate - Voltage	10.0 KV	25.00 min	BICI	80:C1	0.17 Min ramp, reverse polarity	separation between gel filled vials
	1.00	Autozero						
	25.00							

Figure 5: Time Program in dsDNA 20,000 method LIFlour™EnhanCE

🔅 Initial Conditions 🔆 LIF Detec	tor Initial Conditions 🛛 🕥 Time Program
Auxiliary data channels ☐ Voltage max: 30.0 kV ✔ Current max: 300.0 µA	Temperature Peak detect parameters Cartridge: 20.0 °C Threshold 2 Sample storage: 10.0 °C Peak width: 9 ✓
Power Pressure	Trigger settings
Mobility channels Mobility Apparent Mobility	 Wait until cartridge coolant temperature is reached Wait until sample storage temperature is reached
Plot trace after voltage ramp Analog output scaling Factor:	Inlet trays Outlet trays Buffer: 36 vials Sample: 48 vials Sample: 48 vials

Figure 6: Initial Conditions in dsDNA 20,000 method

🔅 Initial Conditions LIF Detector Initial C	Conditions 🕥 Time Program
Electropherogram channel 1	Electropherogram channel 2
Acquisition enabled	Acquisition enabled
Dynamic range: 100 💌 RFU	Dynamic range: 100 💌 RFU
Filter settings	Filter settings
C High sensitivity	C High sensitivity
Normal	Normal
C High resolution	C High resolution
Peak width (pts): 16-25	Peak width (pts): 16-25 💌
- Signal	- Signal-
Direct O Indirect	Direct O Indirect
Laser/filter description - information only	Laser/filter description - information only
Excitation wavelength: 488 nm	Excitation wavelength: 635 nm
Emission wavelength: 520 nm	Emission wavelength: 675 nm
Data rate	Relay 1 Relay 2
Both channels: 4 💌 Hz	● Off ● Off
Both channels: 4 <u> </u>	O On O On

Figure 7: LIF Detector Setting in dsDNA 20,000 method

Checking Your Results

The dsDNA 20,000 Test Mix contains λ *Hind III* digest, consisting of 8 DNA fragments. The Test Mix should separate in twenty-five minutes using the recommended method as shown in Figure 8. The 125 base pair fragment may be difficult to detect, due to its small size.

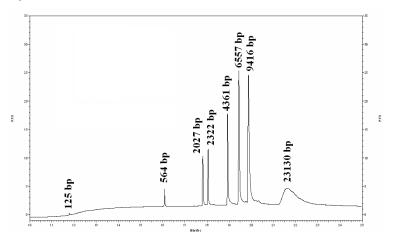


Figure 8: Electropherogram of dsDNA 20,000 Test Mix

Variations in migration time can be observed when different dye concentrations are used.

If more than 15 μ L of EnhanCE is used, the migration time of the dsDNA fragments will increase. But, if less than 15 μ L of EnhanCE is used, the migration time of the dsDNA fragments will decrease.

If EnhanCE is added directly to the dsDNA sample, it will result in extreme peak tailing. Add EnhanCE to the separation Gel Buffer only.

If any of the dsDNA peaks are followed by a negative baseline upset, then there is not enough EnhanCE in the Gel Buffer to stain all of the dsDNA. Either inject less sample or increase the amount of EnhanCE in the Gel Buffer to eliminate this artifact.

The current should remain fairly stable. Small variations in the current may indicate that the capillary is experiencing temperature fluctuations or the presence of air bubbles in the Gel Buffer. This could result in a noisy baseline, miscellaneous spikes or broad peaks.

Troubleshooting Guide

Problem	Possible Cause	Corrective Action
Low Current	Plugged Capillary	Replace the Gel Buffer in the capillary by rinsing it
		with deionized water at 70 psi for 1 minute.
Broad peaks or	Dried gel on	Clean electrodes, ends of capillary and P/ACE
changing	electrodes	lever arms.
migration times	Deteriorating Test	Replace the Test Mix or Gel Buffer as needed.
	Mix or Gel Buffer	
No peaks	Plugged or dried	Replace Gel Buffer inside the capillary as
	capillary	described above or replace the capillary.
	Broken capillary	Replace the capillary.
Spikes in the	Bubble in the Gel	Make sure that the reconstituted buffer is at room
electropherogram	Buffer	temperature and that air is removed, by
		degassing or sonicating the gel buffer vials before
		use.
Noisy baseline	Microparticles in	Prepare fresh filtered Gel Buffer.
	Gel Buffer	
Decrease in peak	Dye deterioration	Prepare fresh EnhanCE-gel solution. Protect gel/
height		dye solution from light.
Migration time	Dye deterioration	Prepare fresh EnhanCE-gel solution. Protect
change		EnhanCE-gel solution from light.
	Non-homogeneous	Make sure that the EnhanCE-gel solution has
	dye/gel solution	been mixed well.
	Dye/gel	Prepare fresh EnhanCE-gel solution.
	evaporation	
Current change	Dye deterioration	Prepare fresh EnhanCE-gel solution. Protect
		EnhanCE-gel from light.
	Dirty electrodes	Clean electrodes and P/ACE lever arms.
Low peak signal	Sample	Increase injection amount.
	concentration was	
	too low	
	Dye concentration	Reduce dye volume added to gel for diluted
	was too high	sample.
	Capillary window	Check the cartridge to make sure that the window
	not aligned with	is aligned correctly.
	detector	
High peak signal	Sample overload	Dilute the sample and/or inject less sample.
with poor peak		Reduced sample loads will improve both
resolution		resolution and peak efficiency.