

LC-MS/MS Chiral Separation of "d" and "l" Enantiomers of Amphetamine and Methamphetamine

For Research Use Only. Not for Use in Diagnostic Procedures

Enantiomeric Separation

Ian Moore¹, Takeo Sakuma¹, Michael J. Herrera², David Kuntz² ¹AB SCIEX; Concord, Canada; ²Clinical Reference Laboratory, Kansas, USA

Amphetamine and methamphetamine are psycho-stimulant drugs of the phenethylamine and amphetamine class of psychoactive drugs. Both compounds occur in two enantiomers, dextrorotary and levorotary.

In the case of the methamphetamine, the

dextromethamphetamine [*d*-isomer; (S)-(+)-methamphetamine] is pharmacologically more active than the levomethamphetamine [*I*-isomer; (R)-(-)-methamphetamine] and therefore has a higher potential for abuse; typically being found in illicit preparations. The *I*-methamphetamine has less activity towards the central nervous system and is often used in nasal decongestant pharmaceutical preparations that are sold over-the-counter (OTC) and is therefore legal. Levomethamphetamine is also a metabolite of various drugs, for example selegiline which is used for treatment of Parkinson's and dementia.

(±)-Amphetamine, marketed as *Benzedrine*, has traditionally been used for the treatment of asthma and congestion. The *d*-enantiomer is pharmacologically more active and *d*-amphetamine, marketed as *Dexedrine*, is used as treatment for narcolepsy and as a diet pill. Adderall is a blend of *d* and *I*enantiomers of amphetamine used for the treatment of attention deficit-hyperactivity disorder (ADHD). Due to widespread abuse, amphetamine was made a Schedule II drug in the USA.

Amphetamine was first synthesized in 1887^1 and is a semisynthetic form of ephedrine. Ephedrine is a natural product from *Ephedra sinica* and extracts are traditionally used for the treatment for asthma, hay fever and colds. (±)-Ephedrine and its diastereomer (±)-pseudoephedrine are the primary interfering compounds in an analysis of amphetamine and methamphetamine. This is made more significant by the fact that pseudoephedrine (Sudafed) is found in OTC formulations and supplements.

Chiral analysis in drug detection has become increasingly important over the past decade. Traditional screening methods for the detection of amphetamines include immunoassays and GC-MS.

Figure 1. Structures of amphetamine and methamphetamine enantiomers

Immunoassays that have been designed to cross react with one or the other enantiomer often have problems with cross reactivity with the wrong enantiomer. GC-MS has a few disadvantages when compared to other analytical techniques. One being the extra step required in the sample preparation involving derivitization of the analytes, commonly using 1-(trifluoroacetyl)-L-prolyl chloride (L-TPC). The purity of such derivitization reagents is often not 100 %, leading to result bias. LC-MS/MS utilization in forensic toxicology screening for drugs and metabolites has become increasingly popular due to the selectivity, sensitivity and speed of LC-MS/MS. For the analysis of the amphetamines, LC-MS/MS eliminates the need to derivitize and allows direct, 100 % detection. Mass spectrometry alone, however, cannot distinguish between stereoisomers, since it characterizes compounds solely in terms of mass. Separations are required up front of the mass spectrometer. Diastereomers were traditionally separated by cellulose or cyclodextrin-based normal phase chromatography, which were not always compatible with electrospray ionization (ESI). In the last several years a new generation of LC phases were developed that can be used in more ESI- compatible reversed phase chromatography. Enantiomers however require a chiral column. Chiral columns have a single enantiomer of a chiral compound bonded to a solid support and in this chiral environment two enantiomers have a different affinity to the stationary phase and can be successfully separated. Here we present a chiral LC-MS analysis that uses a macrocyclic

glycopeptide-based chiral LC column for the separation of the amphetamine and methamphetamine enantiomers.

Experimental

Urine was spiked with racemic amphetamine and methamphetamine at concentrations of 1, 2, 4, 8, 40, 200, 1000, 5000, 25 000 ng/mL in order to prepare the calibrators. Urine was also spiked at concentrations 6, 20 and 15 000 ng/mL for QCs.

Sample Preparation

Phenomenex Strata-X Drug B strong cation exchange with mixed-mode sorbent was used for the solid phase extraction (SPE) procedure. 25 μ L of internal standard solution (1000 ng/mL racemic amphetamine-D₈ and 200 ng/mL racemic methamphetamine-D₁₄) was added to 250 μ L of sample. 250 μ L 50 mM phosphate buffer pH 6 was then added to the sample before loading onto the SPE column. No equilibration of the SPE cartridges was necessary. The cartridge was then washed with 1 mL of 100 mM sodium acetate pH 5 followed by a further wash with 1 mL methanol. The SPE cartridge was dried under full vacuum for 10 minutes and the analytes eluted using 500 μ L ethyl acetate, isopropyl alcohol, ammonium hydroxide 70:20:10. 25 μ L 0.5 M methanolic-HCI was added prior to drying for 15 minutes at 35 °C under nitrogen. The sample was then reconstituted in 250 μ L mobile phase.

Liquid Chromatography

Separation was carried out using a Shimadzu Prominence HPLC system and Supelco Astec Chirobiotic V2 25 cm x 2.1 mm, 5 μ m column held at 20 °C. Mobile phase was methanol, 0.1 % (v/v) glacial acetic acid and 0.02 % (v/v) ammonium hydroxide, 250 μ L/min flow rate.

Mass Spectrometry

A 3200 QTRAP[®] System operating in Multiple Reaction Monitoring (MRM) mode was used for detection. Each analyte and internal standard was monitored using two transitions and the system ran in positive TurbolonSpray[®] probe mode. A twoposition; six-port diverter value was used to direct water, delivered from pump A, into the ionization source for the first seven minutes of the LC run whilst directing the mobile phase to waste. At seven minutes the diverter value was switched to direct the mobile phase into the mass spectrometer, at 14 minutes the diverter valve was switched again to direct water into the source. Table 1. MRM transitions for amphetamine and methamphetamine and their respective internal standards

Compound	Q1	Q3	
Amphetamine 1	136	91	
Amphetamine 2	136	119	
Amphetamine-D ₈ 1	144	97	
Amphetamine-D ₈ 2	144	127	
Methamphetamine 1	150	91	
Methamphetamine 2	150	119	
Methamphetamine-D ₁₄ 1	164	98	
Methamphetamine-D ₁₄ 2	164	130	

Results and Discussion

Figure 3 shows a representative chromatogram of urine spiked at 40 ng/mL of each analyte, extracted and analyzed. The LLOQs for methamphetamine and amphetamine are 1 ng/mL and 4 ng/mL, respectively. Data at these levels are shown in figures 4 and 5. How well the separation of the enantiomeric forms of both amphetamine and methamphetamine was achieved in relation to concentration is shown in Figure 2. Adequate separation is achieved for all concentrations with baseline resolution up to the 1000 ng/mL for methamphetamine enantiomer separation. Baseline separation is achievable up to a concentration of 25 000 ng/mL, for both racemic amphetamine and methamphetamine, if 25 fold less sample is loaded on the column.

Concentration (ng/mL)	Average Resolution			
	Amphetamine	Methamphetamine		
1	N/A	1.699		
2	N/A	1.730		
4	1.409	1.647		
8	1.411	1.722		
40	1.278	1.596		
200	1.338	1.544		
1000	1.346	1.505		
5000	1.221	1.246		
25000	1.093	1.064		

Resolution calculated using width at 50% height

Figure 2. Chromatographic separation of racemic amphetamine and methamphetamine

Figure 3. Extracted ion chromatograms for a 40 ng/mL extracted calibrator

Figure 4. Chromatogram of methamphetamine at LLOQ, 1 ng/mL

Signal to Noise obtained at three standard deviations

Figure 5. Chromatogram of amphetamine at LLOQ, 4 ng/mL

Signal to Noise obtained at three standard deviations

Linearity of the method covered the range from LLOQ to 25000 ng/mL. Precision and accuracy were typically better than 10%. Calibration curves demonstrating the precision, accuracy and linearity for each analyte are shown in Figure 6. Figure 11 shows the linearity statistics over three batches with a minimum correlation coefficient (r) of 0.9953 and coefficient of determination (r^2) of 0.9906 and a maximum r value of 0.9988 and r^2 of 0.9978. The cutoff value of 20 ng/mL is typically used and with LLOQ of \leq 4 ng/mL, this method has more than sufficient sensitivity. Both intra-day and inter-day accuracy and precision of the assay were determined and are summarized in Figures 7, 8, 9 and 10. All intra-day and inter-day % accuracy and % CVs for all calibrators and QCs were below 15 %.

Recoveries from urine using the SPE method were evaluated and determined to be >95% for all compounds. Matrix effects were evaluated at 20 ng/mL using three different lots of urine. Average % accuracy differences obtained for all four compounds from lot A, B and C were 4.3 %, 24.3 % and -3.3 % respectively. Interferences from over-the-counter-drugs on a 20 ng/mL racemic sample of amphetamine and methamphetamine were also evaluated. The drugs investigated in the study ranged from 50 to 625 µg/mL and included those shown in Table 2. Of the 20 compounds listed (including enantiomers) only phenylephrine and norephedrine showed any interference with the analysis of either amphetamine or methamphetamine enantiomers. Phenylephrine present at 10 µg/mL, leads to a 10 times overestimation of the (S)-methamphetamine concentration present (219 ng/mL versus 20 ng/mL). Norephedrine present at 100 µg/mL leads to ~3.5 times overestimation of the (S)amphetamine concentration present.

Figure 6. Calibration curves for amphetamine and methamphetamine

Precision (%CV) and accuracy were typically within 5% and 10%, respectively, across the analytical range.

		Inter-Day
		Accuracy Prec
Finne 7 later deviand inter deviances, and presiding for each size	MIN	93.29
Figure 7. Inter-day and intra-day accuracy and precision for analysis	MAX	104.21
of amphetamine calibrators		

					(S)-Amphetamine Standards (ng/mL)						
					с	D	E	F	G	н	- I
	Intra-Da	ау			4.00	8.00	40.0	200	1000	5000	25000
A	Accuracy Pre	ecisio n		Mean, N=5	4.23	7.24	36.68	192.1	992.51	5311.03	27657
MIN	88.20	1.13	Batch #1	%CV	3.32	4.85	4.41	2.25	1.45	1.48	2.01
MAX	110.63	10.43		Accuracy	105.67	90.47	91.71	96.05	99.25	106.22	110.63
				Mean, N=5	4.17	7.49	35.28	207.97	985.51	5052.72	27187.7
			Batch #2	%CV	6.76	10.43	1.23	7.37	1.54	1.13	3.5
				Accuracy	104.28	93.59	88.2	103.98	98.55	101.05	108.75
				Mean, N=5	4.01	N/A	N/A	185.29	931.65	5332.09	26845.7
			Batch #3	%CV	5.59	N/A	N/A	1.28	1.35	1.84	2.13
	Inter-Da	ау		Accuracy	100.17	N/A	N/A	92.64	93.16	106.64	107.38
A	Accuracy Pre	ecision		Mean, N=15	4.13	7.36	35.98	196.63	969.89	5231.94	27230.1
MIN	89.96	2.74	Inter-Day	%CV	5.55	7.94	3.72	7.14	3.20	2.88	2.74
					1.00.07	92.04	20.06	98 31	96.99	104.64	1.02.93
MAX	108.92	7.94		Accuracy	(2) 4	*N=10	05.50	50.51		104.04	100.52
MAX	108.92	7.94		Accuracy	(R)-Am	*N=10	ne Stand	ards (ng/r	nL)	104.04	100.52
MAX	108.92	7.94		Accuracy	(R)-Am C	*N=10 phetami	ne Standa E	ards (ng/r F	nL) G	н	100.52
MAX	108.92 Intra-Da	7.94 ay		Accuracy	(R)-Am C 4.00	*N=10 nphetami D 8.00	ne Stand E 40.0	ards (ng/r F 200	nL) G 1000	н 5000	100.92
MAX	108.92 Intra-Da Accuracy Pre	7.94 ay ecision		Accuracy Mean, N=5	(R)-Am C 4.00 4.21	*N=10 phetami D 8.00 7.27	ne Standa E 40.0 37.45	50.31 F 200 191.40	nL) G 1000 991.84	H 5000 5319.43	108.52 25000 27236.9
MAX /	108.92 Intra-Da Accuracy Pre 88.71	7.94 ay ecision 0.62	Batch #1	Mean, N=5 %CV	(R)-Am C 4.00 4.21 4.47	*N=10 mph etamii D 8.00 7.27 3.32	ne Stand: E 40.0 37.45 1.60	ards (ng/r F 200 191.40 1.05	nL) G 1000 991.84 1.70	H 5000 5319.43 1.20	100.52 25000 27236.9 0.62
MAX MIN MAX	108.92 Intra-Da Accuracy Pre 88.71 109.76	7.94 ay ecision 0.62 6.78	Batch #1	Accuracy Mean, N=5 %CV Accuracy	(R)-Am C 4.00 4.21 4.47 105.29	*N=10 mphetami D 8.00 7.27 3.32 90.85	ne Standa E 40.0 37.45 1.60 93.64	ards (ng/r F 200 191.40 1.05 95.70	nL) G 1000 991.84 1.70 99.18	H 5000 5319.43 1.20 106.39	100.52 25000 27236.9 0.62 108.95
MAX MIN MAX	108.92 Intra-Da Accuracy Pro 88.71 109.76	7.94 ecision 0.62 6.78	Batch #1	Accuracy Mean, N=5 %CV Accuracy Mean, N=5	(R)-Am C 4.00 4.21 4.47 105.29 4.15	*N=10 ph etami D 8.00 7.27 3.32 90.85 7.57	e Stand E 40.0 37.45 1.60 93.64 35.48	ards (ng/r F 200 191.40 1.05 95.70 202.82	nL) G 1000 991.84 1.70 99.18 988.74	H 5000 5319.43 1.20 106.39 5115.33	1 25000 27236.9 0.62 108.95 27440.5
MAX MIN MAX	108.92 Intra-Da Accuracy Pro 88.71 109.76	7.94 ay ecision 0.62 6.78	Batch #1 Batch #2	Mean, N=5 %CV Accuracy Mean, N=5 %CV	(R)-Am C 4.00 4.21 4.47 105.29 4.15 3.75	*N=10 ph etami D 8.00 7.27 3.32 90.85 7.57 4.43	e Stand E 40.0 37.45 1.60 93.64 35.48 1.25	ards (ng/r F 200 191.40 1.05 95.70 202.82 6.78	nL) G 1000 991.84 1.70 99.18 988.74 1.93	H 5319.43 1.20 106.39 5115.33 1.53	1 25000 27236.9 0.62 108.95 27440.5 3.10
MAX MIN MAX	108.92 Intra-Da Accuracy Pro 88.71 109.76	7.94 ecision 0.62 6.78	Batch #1 Batch #2	Accuracy Mean, N=5 %CV Accuracy Mean, N=5 %CV Accuracy	(R)-Am C 4.00 4.21 4.47 105.29 4.15 3.75 103.80	*N=10 phetami 0 8.00 7.27 3.32 90.85 7.57 4.43 94.58	ne Standa E 40.0 37.45 1.60 93.64 35.48 1.25 88.71	ards (ng/r F 200 191.40 1.05 95.70 202.82 6.78 101.41	mL) G 1000 991.84 1.70 99.18 988.74 1.93 98.87	H 5000 5319.43 1.20 106.39 5115.33 1.53 102.31	I 25000 27236.9 0.62 108.95 27440.5 3.10 109.76
MAX MIN MAX	108.92 Intra-Da Accuracy Pro 88.71 109.76	7.94 ay ecision 0.62 6.78	Batch #1 Batch #2	Mean, N=5 %CV Accuracy Mean, N=5 %CV Accuracy Mean, N=5	(R)-Am C 4.00 4.21 4.47 105.29 4.15 3.75 103.80 4.01	*N=10 *N=10 D 8.00 7.27 3.32 90.85 7.57 4.43 94.58 N/A	ne Standa E 40.0 37.45 1.60 93.64 35.48 1.25 88.71 N/A	ards (ng/r F 200 191.40 1.05 95.70 202.82 6.78 101.41 183.23	nL) 6 1000 991.84 1.70 99.18 988.74 1.93 98.87 929.58	H 5000 5319.43 1.20 106.39 5115.33 1.53 1.53 1.02.31 5302.88	1 25000 27236.5 0.62 108.95 27440.5 3.10 109.76 27295.4
MAX MIN MAX	108.92 Intra-D: Accuracy Pro 88.71 109.76	7.94 ay ecision 0.62 6.78	Batch #1 Batch #2 Batch #3	Mean, N=5 %CV Accuracy Mean, N=5 %CV Accuracy Mean, N=5 %CV	(R)-Am C 4.00 4.21 4.47 105.29 4.15 3.75 103.80 4.01 3.34	*N=10 *N=10 D 8.00 7.27 3.32 90.85 7.57 4.43 94.58 N/A N/A	ne Stand E 40.0 37.45 1.60 93.64 35.48 1.25 88.71 N/A N/A	ards (ng/r F 200 191.40 1.05 95.70 202.82 6.78 101.41 183.23 1.17	nL) G 1000 991.84 1.70 99.18 988.74 1.93 98.87 929.58 0.68	H 5000 5319.43 1.20 106.39 5115.33 1.53 102.31 5302.88 1.12	I 25000 27236.5 0.62 108.95 27440.5 3.10 109.76 27295.4 2.65
MAX MIN MAX	108.92 Intra-Da Accuracy Pre 88.71 109.76 Inter-Da	7.94 ay ecision 0.62 6.78	Batch #1 Batch #2 Batch #3	Accuracy Mean, N=5 %CV Accuracy Mean, N=5 %CV Accuracy Mean, N=5 %CV Accuracy	(R)-Am C 4.00 4.21 4.47 105.29 4.15 3.75 103.80 4.01 3.34 100.19	*N=10 *N=10 b 8.00 7.27 3.32 90.85 7.57 4.43 94.58 N/A N/A N/A	ne Stand E 40.0 37.45 1.60 93.64 35.48 1.25 88.71 N/A N/A N/A N/A	ards (ng/r F 200 191.40 1.05 95.70 202.82 6.78 101.41 183.23 1.17 91.61	nL) G 1000 991.84 1.70 99.18 988.74 1.93 98.87 929.58 0.68 92.96	H 5000 5319.43 1.20 106.39 5115.33 1.53 102.31 5302.88 1.12 106.06	250000 27236.9 0.62 108.95 27440.5 3.10 109.76 27295.4 2.65 109.18
MAX MIN MAX	108.92 Intra-Da Accuracy Pre 88.71 109.76 Inter-Da Accuracy Pre	7.94 avy ecision 0.62 6.78 avy ecision	Batch #1 Batch #2 Batch #3	Mean, N=5 %CV Accuracy Mean, N=5 %CV Accuracy Mean, N=5 %CV Accuracy Mean, N=15	(R)-Am C 4.00 4.21 4.47 105.29 4.15 3.75 103.80 4.01 3.34 100.19 4.12	*N=10 *N=10 D 8.00 7.27 3.32 90.85 7.57 4.43 94.58 N/A N/A N/A N/A 7.42 	ne Stand: E 40.0 37.45 1.60 93.64 35.48 1.25 88.71 N/A N/A N/A N/A 36.47	ards (ng/r F 200 191.40 1.05 95.70 202.82 6.78 101.41 183.23 1.17 91.61 193.70	mL) G 1000 991.84 1.70 99.18 988.74 1.93 98.87 929.58 0.68 92.96 970.05	H 5000 5319.43 1.20 106.39 5115.33 1.53 102.31 5302.88 1.12 106.06 5245.88	25000 27236.9 0.62 108.95 27440.5 3.10 109.76 27295.4 2.65 109.18 27324.3
MAX MIN MAX	INTR-D2 Intra-D2 Accuracy Pro 88.71 109.76 Inter-D2 Accuracy Pro 91.17	7.94 ecision 0.62 6.78 ecision 2.18	Batch #1 Batch #2 Batch #3 Inter-Day	Mean, N=5 %CV Accuracy Mean, N=5 %CV Accuracy Mean, N=5 %CV Accuracy Mean, N=15 %CV	(R)-Am C 4.00 4.21 4.47 105.29 4.15 3.75 103.80 4.01 3.34 100.19 4.12 4.22	*N=10 *N=10 phetami 0 8.00 7.27 3.32 90.85 7.57 4.43 94.58 N/A N/A N/A N/A 7.42 4.30	ne Stand: E 40.0 37.45 1.60 93.64 35.48 1.25 88.71 N/A N/A N/A N/A 36.47 3.16	ards (ng/r F 200 191.40 1.05 95.70 202.82 6.78 101.41 183.23 1.17 91.61 193.70 6.22	nL) G 1000 991.84 1.70 99.18 98.87 929.58 0.68 92.96 970.05 3.38	H 5000 5319.43 1.20 106.39 5115.33 1.53 102.31 5302.88 1.12 106.06 5245.88 2.18	I 25000 27236.9 0.62 108.95 27440.5 3.10 109.76 27295.4 2.65 109.18 27324.3 2.23

% Accuracy and % CV are shown for differing concentration amphetamine calibrators

Figure 8. Inter-day and intra-day accuracy and precision for analysis of methamphetamine calibrators

						(5)-Meth	namphetar	nine Stand	ards (ng/m	L)			
					Α	В	С	D	E	F	G	н	1
	Intra-D	ay			1.00	2.00	4.00	8.00	40.00	200.00	1000.00	5000.00	25000.00
	Accuracy Pr	recision		Mean, N=5	1.04	1.94	3.84	7.33	39.67	206.73	1056.95	5216.03	24845.22
MIN	91.61	0.74	Batch #1	%CV	1.35	3.90	2.52	1.73	1.32	1.68	1.10	0.78	0.74
MAX	108.58	12.53		Accuracy	103.59	96.96	95.90	91.61	99.18	103.36	105.69	104.32	99.38
				Mean, N=5	1.03	1.95	3.79	7.57	39.88	217.16	1009.59	5000.94	24335.09
			Batch #2	%CV	11.24	3.63	3.02	1.59	3.03	1.66	1.05	0.96	2.40
				Accuracy	103.27	97.33	94.73	94.63	99.71	108.58	100.96	100.02	97.34
				Mean, N=5	1.00*	2.01	3.94	N/A	N/A	196.49	986.41	5303.76	24455.73
			Batch #3	% C V	9.69	12.53	7.13	N/A	N/A	0.80	1.26	2.71	3.15
	Inter-D	ay		Accuracy	100.23	100.55	98.57	N/A	N/A	98.25	98.64	106.08	97.82
	Accuracy Pr	recision		Mean, N=15	1.03	1.97	3.86	7.45	39.78	208.01	1017.65	5173.58	24545.35
MIN	93.14	2.23	Inter-Day	% C V	7.59	7.56	4.75	2.32	2.23	4.49	3.17	3.02	2.33
MAX	104.01	7.59		Accuracy	102.83	98.27	96.40	93.14	99.44	104.01	101.77	103.47	98.18
					*N=2,**N=12			*N=10					
						(R)-Met	hamphetai	mine Stand	ards (ng/m	il)			
					Α	В	С	D	E	F	G	н	1
	Intra-D	ay			1.00	2.00	4.00	8.00	40.00	200.00	1000.00	5000.00	25000.00
	Accuracy P	recision		Mean, N=5	1.03	1.95	3.87	7.35	39.28	204.84	1052.36	5251.72	24976.46
MIN	91.92	0.76	Batch #1	% C V	2.78	2.08	1.96	2.52	1.17	1.26	1.02	1.15	3.88
MAX	108.93	5.69		Accuracy	103.16	97.39	96.74	91.92	98.20	102.42	105.24	105.03	99.91
				Mean, N=5	1.05	1.88	3.75	7.57	39.59	217.86	1017.00	4985.53	24851.16
			Batch #2	% CV	5.69	3.03	1.29	1.28	1.89	2.34	1.52	1.82	2.39
				Accuracy	105.07	94.23	93.77	94.64	98.97	108.93	101.70	99.71	99.40
				Mean, N=5	1.03*	2.00	3.80	N/A	N/A	198.78	999.39	5272.40	247 37.89
			Batch #3	% CV	2.20	4.86	4.47	N/A	N/A	0.76	1.42	1.71	2.88
	Inter-D	ay		Accuracy	103.08	100.04	95.00	N/A	N/A	99.39	99.94	105.45	98.95
	Accuracy Pr	recision		Mean, N=15	1.04	1.94	3.81	7.46	39.44	208.42	1022.91	5169.88	24855.17
MIN	93.29	1.54	Inter-Day	%CV	3.86	4.19	3.01	2.41	1.54	4.40	2.55	3.00	2.91
MAX	104.21	4.40		Accuracy	103.92	97.23	95.18	93.29	98.59	104.21	102.29	103.40	99.42
			-		*N=2,**N=12			*N=10					

% Accuracy and % CV are shown for differing concentration amphetamine calibrators

Figure 9. Inter-day and intra-day accuracy and precision for analysis of amphetamine $\ensuremath{\mathsf{QCs}}$

				(S)-Ampheta	mine QC:	s (ng/mL)	
					QC-L	QC-M	QC-H
	Intra-D	ay			6.00	20.0	15000
	Accuracy P	recision		Mean, N=6	5.72	18.80	16161.8
MIN	90.50	1.32	Batch #1	%CV	2.04	3.20	1.32
MAX	110.00	11.81		Accuracy	95.41	93.99	107.75
				Mean, N=6	6.60	19.39	15777.2
			Batch #2	%CV	281	3.45	1.66
				Accuracy	110.00	96.95	105.18
				Mean, N=6	5.43	21.24	15640.6
			Batch #3	%CV	6.45	11.81	2.13
	Inter-D	ay		Accuracy	90.50	106.20	104.27
	Accuracy Pr	recision		Mean, N=18	5.92	19.81	15859.9
MIN	98.67	2.16	Inter-Day	%CV	9.44	9.08	2.16
MAX	105.73	9.44		Accuracy	98.67	99.04	105.73
				(R)-Ampheta	mine QC	s (ng/mL)	
					QC-L	QC-M	QC-H
	Intra-D	ay			6.00	20.0	15000
	Accuracy PI	recision	B-+	wiean, N=5	5.86	18.69	16195.7
IVITIN .	95.46	1.66	Batch #1	%CV	2.60	5.15	1.67
MAX	107.97	12.19		Accuracy	97.74	95.46	15000.7
			Patch #7	wieani, Ni=o w.cv	0.27	2.14	1.5900.7
			batch #2	76C V	207	2.14	1.00
					104 E0	07.10	1 06 00
				Accuracy	104.50	97.10	106.00
			Batch #2	Mean, N=6	104.50 5.76	97.10 21.10	106.00
	Into r D		Batch #3	Accuracy Mean, N=6 %CV	104.50 5.76 4.40	97.10 21.10 12.19	106.00 15530.2 3.16
	Inter-D	ay	Batch #3	Accuracy Mean, N=6 %CV Accuracy	104.50 5.76 4.40 95.93	97.10 21.10 12.19 105.50	106.00 15530.2 3.16 103.53
	Inter-D Accuracy Pr	ay recision	Batch #3	Accuracy Mean, N=6 %CV Accuracy Mean, N=18	104.50 5.76 4.40 95.93 5.68	97.10 21.10 12.19 105.50 19.62	106.00 15530.2 3.16 103.53 16073.0
MIN	Inter-D Accuracy Pr 94.64	ay recision 2.71	Batch #3 Inter-Day	Accuracy Mean, N=6 %CV Accuracy Mean, N=18 %CV	104.50 5.76 4.40 95.93 5.68 5.93	97.10 21.10 12.19 105.50 19.62 9.02	106.00 15530.2 3.16 103.53 16073.0 2.71

% Accuracy and % CV are shown for differing concentration amphetamine calibrators

Figure 11. Linearity statistics

	(S)-	Ampheta	amine		(S)-M	ethamph	etamine
	r	Slope	Intercept		r	Slope	Intercept
Batch #1	0.9959	0.0202	-5.91E-03	Batch #1	0.99 84	0.0836	-7.35E-03
Batch #2	0.9953	0.020 1	-1.16E-02	Batch #2	0.99 7 5	0.0826	-1.21 E-02
Batch #3	0.99 71	0.0205	5.09E-03	Batch #3	0.99 7 3	0.0849	8.71E-04
%cv		1.05		%cv		1.33	
	(R)-	Amphet	amine		(R)-M	ethamph	etamine
	(R)- r	Amphet Slope	amine Intercept		(R)-M r	ethamph Slope	etamine Intercept
Batch #1	(R)- r 0.9967	Amphet Slope 0.0204	amine Intercept -1.01E-02	Batch #1	(R)-M r 0.9985	ethamph Slope 0.0844	etamine Intercept -6.17E-03
Batch #1 Batch #2	(R)- r 0.9967 0.9965	Ampheta Slope 0.0204 0.0204	amine Intercept -1.01E-02 -1.31E-02	Batch #1 Batch #2	(R)-M r 0.9985 0.9978	ethamph Slope 0.0844 0.0837	etamine Intercept -6.17E-03 -2.76E-03
Batch #1 3atch #2 3atch #3	(R)- r 0.9967 0.9965 0.9967	Amphet: Slope 0.0204 0.0204 0.0211	amine Intercept -1.01E-02 -1.31E-02 -4.41E-03	Batch #1 Batch #2 Batch #3	(R)-M r 0.9985 0.9978 0.9988	ethamph Slope 0.0844 0.0837 0.0852	etamine Intercept -6.17E-03 -2.76E-03 2.95E-02

Figure 10. Inter-day and intra-day accuracy and precision for analysis of methamphetamine QCs

				S)-Methamph	etamine (QCs (ng/m	nL)
					QC-L	QC-M	QC-H
	Intra	-Day			6.00	20.0	15000
	Accuracy	Precision		Miean, N≕6	5.59	19.67	14985.31
MIN	93.10	1.47	Batch #1	%CV	1.47	1.85	3.49
MAX	108.81	13.24		Accuracy	93.10	98.34	99.90
				Miean, N≕6	5.90	19.86	14666.68
			Batch #2	%CV	5.00	2.42	1.59
				Accuracy	96.36	99.32	97.78
				Miean, N≕6	5.76	21.76	14597.92
			Batch #3	%CV	13.13	13.24	4.19
	Inter	-Day		Accuracy	96.05	108.81	97.32
	Accuracy	Precision		Mean, N=18	5.75	20.43	14749.97
MIN	95.84	3.30	Inter-Day	%CV	8.05	9.15	3.30
MAX	102.16	9.15		Accuracy	95.84	102.16	98.33
				D) D(a the second second	otomino i	00 10-10	-1.)
				K)-Ivie thamph	etamine	uus (ng/n	nL)
				K)-Ivie thamph	QC-L	QC-M	QC-H
	Intra	-Day		k)-we thamph	QC-L 6.00	QC-M 20.0	QC-H 15000
	Intra Accuracy	-Day Precision		Mean, N=6	QC-L 6.00 5.77	QC-M 20.0 19.60	QC-H 15000 15019.08
MIN	Intra Accuracy 96.23	-Day Precision 1. 33	Batch #1	Mean, N=6 %CV	QC-L 6.00 5.77 1.82	QC-M 20.0 19.60 1.59	QC-H 15000 15019.08 2.25
MIN MAX	Intra Accuracy 96.23 111.13	-Day Precision 1. 33 12. 53	Batch #1	Mean, N≕6 %CV Accuracy	QC-L 6.00 5.77 1.82 96.23	QC-M QC-M 19.60 1.59 98.02	QC-H 15000 15019.08 2.25 100.13
MIN MAX	Intra Accuracy 96.23 111.13	-Day Precision 1.33 12.53	Batch #1	Mean, N≓6 %CV Accuracy Mean, N≓6	QC-L 6.00 5.77 1.82 96.23 6.12	QC-M 20.0 19.60 1.59 98.02 20.33	QC-H 15000 15019.08 2.25 100.13 14470.07
MIN MAX	Intra Accuracy 96.23 111.13	-Day Precision 1. 33 12.53	Batch #1	Mean, N=6 %CV Accuracy Mean, N=6 %CV	QC-L 6.00 5.77 1.82 96.23 6.12 2.69	QC-M 20.0 19.60 1.59 98.02 20.33 1.33	QC-H 15000 15019.08 2.25 100.13 14470.07 1.66
MIN MAX	Intra Accuracy 96.23 111.13	-Day Precision 1. 33 12. 53	Batch #1 Batch #2	Mean, N=6 %CV Accuracy Mean, N=6 %CV Accuracy	QC-L 6.00 5.77 1.82 96.23 6.12 2.69 102.07	QC-M 20.0 19.60 1.59 98.02 20.33 1.33 101.63	QC-H 15000 15019.08 2.25 100.13 14470.07 1.66 96.47
MIN MAX	Intra Accuracy 96.23 111.13	-Day Precision 1. 33 12. 53	Batch #1 Batch #2	Mean, N=6 %CV Accuracy Mean, N=6 %CV Accuracy Mean, N=6	QC-L 6.00 5.77 1.82 96.23 6.12 2.69 102.07 5.87	QC-M 20.0 19.60 1.59 98.02 20.33 1.33 101.63 22.23	QC-H 15000 15019.08 2.25 100.13 14470.07 1.66 96.47 14952.38
MIN MAX	Intra Accuracy 96.23 111.13	-Day Precision 1. 33 12. 53	Batch #1 Batch #2 Batch #3	Mean, N=6 %CV Accuracy Mean, N=6 %CV Accuracy Mean, N=6 %CV	QC-L 6.00 5.77 1.82 96.23 6.12 2.69 102.07 5.87 4.25	QC-M 20.0 19.60 1.59 98.02 20.33 1.33 101.63 22.23 12.53	QC-H 15000 15019.08 2.25 100.13 14470.07 1.66 96.47 14952.38 3.72
MIN MAX	Intra Accuracy 96.23 111.13 Inter	-Day Precision 1. 33 12. 53 -Day	Batch #1 Batch #2 Batch #3	Mean, N=6 %CV Accuracy Mean, N=6 %CV <u>Accuracy</u> Mean, N=6 %CV Accuracy	QC-L 6.00 5.77 1.82 96.23 6.12 2.69 102.07 5.87 4.25 97.89	QC-M 20.0 19.60 1.59 98.02 20.33 1.33 101.63 22.23 12.53 111.13	QC-H 15000 15019.08 2.25 100.13 14470.07 1.66 96.47 14952.38 3.72 99.68
MIN MAX	Intra Accuracy 96.23 111.13 Inter Accuracy	-Day Precision 1.33 12.53 -Day Precision	Batch #1 Batch #2 Batch #3	Mean, N=6 %CV Accuracy Mean, N=6 %CV Accuracy Mean, N=6 %CV Accuracy Mean, N=18	QC-L 6.00 5.77 1.82 96.23 6.12 2.69 102.07 5.87 4.25 97.89 5.92	QC-M 20.0 19.60 1.59 98.02 20.33 1.33 101.63 22.23 12.53 111.13 20.73	QC-H 15019.08 2.25 100.13 14470.07 1.66 96.47 14952.38 3.72 99.68 14826.66
MIN MAX	Intra Accuracy 96.23 111.13 Inter Accuracy 98.65	-Day Precision 1.33 12.53 -Day Precision 3.09	Batch #1 Batch #2 Batch #3 Inter-Day	Mean, N=6 %CV Accuracy Mean, N=6 %CV Accuracy Mean, N=6 %CV Accuracy Mean, N=18 %CV	QC-L 6,00 5.77 1.82 96.23 6.12 2.69 102.07 5.87 4.25 97.89 5.92 3.89	QC-M 20.0 19.60 1.59 98.02 20.33 1.33 101.63 22.23 12.53 111.13 20.73 9.24	QC-H 15000 15019.08 2.25 100.13 14470.07 1.66 96.47 14952.38 3.72 99.68 14826.66 3.09

% Accuracy and % CV are shown for differing concentration amphetamine calibrators

Table 2. Compounds used in the evaluation of the over-the - counter drug interferences

	Concentration (µg/mL)
(-)-pseudoephedrine	125
(+)-pseudoephedrine	125
(-)-ephedrine	100
acetaminophen	10
aspirin	5
(±)-chlorpheniramine	5
caffeine	5
diphenhydramine	5
dextromethorphan	5
ibuprofen	5
(±)-MDA	10
(±)-MDMA	10
(±)-MDEA	10
phentermine	10
phenylephrine	10
norephedrine	100

Summary

An LC-MS/MS method has been developed that allows the separation of racemic amphetamine and methamphetamine to allow the accurate quantification of the individual enantiomeric forms. The linear quantifiable range is from ≤4 ng/mL to 25 000 ng/mL. Precision and accuracy were better than 5 % for most concentrations and better than 15 % for all concentration levels.

References

Edeleano, L. (1887). Chem. Ber. 20:616-622.

For Research Use Only. Not for use in diagnostic procedures.

© 2013 AB SCIEX. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX[™] is being used under license. Publication number: 7400113-01, Document number: RUO-MKT-02-0403-A

Headquarters 500 Old Connecticut Path | Framingham, MA 01701 USA Phone 508-383-7700 www.absciex.com International Sales For our office locations please call the division headquarters or refer to our website at www.absciex.com/offices