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Comprehensive characterlzatlon of a cysteine-linked antibody-drug
conjugate using electron-activated dissociation [EAD]

Haichuan Liu and Zoe Zhang
SCIEX USA

Electron-activated dissociation (EAD] is a fast and sensitive MS/MS
approach for biotherapeutic sequence characterization, payload and
post-translation modification (PTM] localization, disulfide bond
mapping and amino acid isomer differentiation. In this work, the
reduced and non-reduced EAD-based peptide mapping workflows were
leveraged to comprehensively characterize a Cys-linked antibody-drug
conjugate [ADC). The high-guality EAD data provided high sequence
coverage, accurate drug-antibody ratio (DAR] determination, precise
payload and PTM localizations, confident disulfide bond mapping and
clear differentiation of amino acid isomers.

Comprehensive characterization of antibody sequence, drug payload
and PTMs is essential to ensuring the guality, safety and efficacy of ADC
products.*? Peptide mapping is a common approach for the
comprehensive characterization of antibody-based therapeutics in
addition to intact mass analysis.®*? Callision-based MS/MS technigues
employed by traditional peptide mapping approaches cause extensive
fragmentation of the payload and cleavage of labile PTMs, leading to
the loss of site-specific information about these important moieties. By
comparison, EAD can preserve labile modifications for their accurate
localization.®® EAD can also generate signature fragments for
unambiguous differentiation of amino acid isomers, such as Asp vs.
isoAsp and 3- vs. 4-hydroxyproline.t® Additionally, EAD provides

superior results for disulfide bond mapping compared to collision-
based MS/MS approaches.’

Key features of EAD for comprehensive

characterization of ADCs

High sensitivity and sequence coverage: Zeno EAD is highly
sensitive and can be used as a single-injection DDA method to
abtain complete protein sequence coverage.

Accurate localization: EAD preserves labile PTMs and ADC
payloads for their accurate localizations.

Disulfide bond mapping: EAD cleaves the peptide backbone and
S-S bond in disulfide-linked peptides, leading to extensive
sequence fragmentation far increase confidence in identification.

Amino acid isomer differentiation: EAD generates signature
fragments for clear differentiation of amino acid isomers, such as
as Asp vs. isoAsp and Leu vs. lle.

Minimal optimization: EAD methods require minimal development
and optimization and are easy to implement by users with
different MS experience.
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Figure 1. Comprehensive characterization of Cys-linked ADCs using the ZenoTOF 7600 system equipped with EAD. EAD-based reduced and non-reduced
peptide mapping workflows enable comprehensive characterization of Cys-linked ADCs such as trastuzumab deruxtecan (Enhertu, T-DXd]. These powerful
approaches provide high sequence coverage, DAR determination, accurate PTM and payload localizations, confident disulfide bond mapping and clear isamer

differentiation.



Introduction

ADCs are highly complex biotherapeutics consisting of mAbs
conjugated with cytotoxic payloads through chemical linkers. New-

generation ADCs mostly employ site-specific conjugation chemistry.
The 4 pairs of cysteine residues invalved in inter-chain disulfide bond
linkages are often the target of site-specific conjugation, producing
ADCs with a fixed drug-antibody ratio [DAR] of 8, such as trastuzumab
deruxtecan (Enhertu, T-DXd)* characterized in this work.

Comprehensive ADC characterization can involve antibody sequence
analysis, DAR determination, payload localization, disulfide bond
mapping, isomer differentiation and PTM analysis. The characterization
of these product guality attributes (PQAs) poses an analytical challenge
to the traditional peptide mapping approach using callision-based
MS/MS. EAD provides a viable solution to address all these analytical
challenges. In this work, an EAD-based peptide mapping waorkflow was
employed to characterize T-DXd digests prepared under reduced or
nan-reduced canditions.

Sample preparation: Lyophilized T-DXd powder was dissolved in a
50mM Tris buffer, followed by denaturation using 7.6M guanidine
hydrochloride in 50 mM Tris. The denatured solution was treated with
or without dithiothreitol (DTT] far the reduced or non-reduced peptide
mapping experiment. The reduced and non-reduced samples were
diluted prior to enzymatic digestion overnight using the trypsin/Lys-C
mix [Promega). 5-10 pg of the final digests was injected for LC-MS
analyses.

Liquid chromatography: Tryptic peptides were separated with the
gradient displayed in Tahle 1 using an ACQUITY BEH C18 column (2.1 x
150 mm, 1.7 um, 130 A, Waters]. A flow rate of 0.25 mL/min was used
for the chromatographic separation. The column was kept at 60°C in
the column oven of an ExionLC AD system [SCIEX]. Mohile phase A was

Table 1. LC gradient for peptide separation.

Time [min) Mobile phase A Mohile phase B
(%] (%]
Initial 98 2
2 98 2
B2 B0 35
B5 50 50
67 10 90
70 10 90
71 98 2
75 98 2

0.1% formic acid [FA] in water and mobile phase B was 0.1% FA in
acetonitrile.

Mass spectrometry: Reduced and non-reduced peptide mapping data
were acquired using a data-dependent acquisition [BDA] method with
CID or EAD on the ZenaTOF 7600 systemn [SCIEX]. The key DDA
parameters are shown in Table 2.

Data analysis: LC-MS data were interpreted using a peptide mapping
template within Biclogics Explorer software (SCIEX]. A custom
madification of DXd (+1033 Da, CseHssF1Ns013) was created for the Cys
residue in Madification Editar and selected as a variable madification
during peptide mapping analysis. For the analysis of the non-reduced
data, 4 and 2 intra-chain disulfide linkages were defined for heavy
chain (HC] and light chain [LC), respectively.

Table 2. EAD and CID DDA parameters.

Parameter CID EAD
Start mass 100 m/z

Stop mass 2000 m/z

Q1 resolution Unit

Zeno trap ON

Zeno threshold 100,000 cps
Maximum candidate ions 12 8
Charge state 1-8 2-10
Accumulation time 0.06s 0l1s
CE Dynamic v
Electron beam current - 5500 nA
Electron KE - 7eV
ETC - Dynamic
EAD RF - 120 Da
Reaction time - 20 ms
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Figure 2 shows high sequence coverage of HC and LC (>99%) from the
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reduced T-DXd digest obtained using the EAD-based peptide mapping vvrieppsrieelTkNevsLTELvKGFYPspraveEwEsHlooPENNYKTTPPY
workflow in a single injection. Similar results were also obtained for the LospasrrLyskiTvEKsSRWQQGNYFsEsvmueA EEMYTOKSLSLSPGK
T-DXd digest prepared under the non-reduced condition [data not LC, 100%

shown). In addition to obtaining high sequence coverage of T-DXd, the b1oMrasrssiLsasveprvrITERASQDVEITAVAWYQQKPGKAPKLLIYS
EAD DDA methaod identified peptides carrying the DXd payload, intra- RS FLYSGVPSRIFSGSRSGTDFTLTIISSLQPEDEATY YEQQMYTTPPTFGQ
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injection method for comprehensive biotherapeutic characterization®®
or combined with CID DDA in a single method™ to leverage the

complementary capabilities of these 2 MS/MS approaches. Figure 2. High sequence coverage of T-DXd using the EAD-based peptide

mapping workflow. A nearly complete sequence coverage (239%) of HC and LC
was abtained for T-DXd using the EAD DDA method in a single injectian.
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Figure 3. Deisotoped EAD MS/MS spectra of payload [DXd]-containing peptides from T-DXd. EAD provided extensive fragmentation of DXd-containing
peptides while preserving the payload in the sequence fragments (a, ¢ or z), leading to confident peptide identification and accurate payload localization. The
high-quality EAD data confirmed Cys conjugations of 3 DXd on the peptide HC[222-251] (A) and 1 DXd at the C-terminus of LC (B). EAD of the doubly charged
LC[208-214] led to an interesting fragmentation pattern where hath sides of the -S- moiety were cleaved, producing the DXd or DXd-S peak (B). 2 of 3 DXd
conjugation sites on the HC were further confirmed by excellent EAD data of the peptide HC[226-251] (C). In addition, EAD identified low-abundant T-DXd
peptides without or with partial Cys conjugation, such as the peptide HC[222-251] containing 2 instead of 3 DXd (D). Detailed results of these interesting species
will be described separately. Not all fragments were labeled for spectral clarity.



IDAR determination and payload localization

DAR determination is critical to ensuring the product quality of ADCs.2
T-DXd consists of 3 and 1 DXd payloads on each HC and LC,
respectively, leading to a fixed DAR of 8. The identification of DXd-
containing peptides will allow the accurate DAR determination of T-
DXd. Figure 3 shows representative EAD spectra of the DXd-containing
HC and LC peptides. EAD led to extensive fragmentation of these
peptides for confident sequence confirmatian while preserving the
payloads in the fragments for their accurate localization. The
identification of the peptide HC[222-251] carrying 3 DXd (Figure 3A]
and LC[208-214] with 1 DXd (Figure 3B] confirmed a DAR of 8 for the
T-DXd. The ability of EAD to preserve intact payloads in the fragments
of these 2 peptides enabled accurate localization of all 4 BXd in HC and
LC. The identification of sharter HC[222-225] (data not shown] and
HC[226-251] (Figure 3C) peptides carrying 1 and 2 DXd, respectively,
further confirmed the 3 payload sites an the HC. EAD spectrum of the
doubly charged LC[208-214] revealed an interesting fragmentation
pattern where both sides of the -S- moiety were cleaved to produce
the payload-specific peaks (BXd or DXd-S, Figure 3B]. Further wark will
be performed to study the mechanism of this fragmentatian pattern.

Compared to other electron-base MS/MS fragmentation technigues,
EAD is highly sensitive due to the use of the Zeno trap, which increases
the detection of MS/MS fragments by 5-fold.® The high sensitivity of
EAD allowed the confident identification of low-abundant T-0Xd
peptides with partial or incomplete conjugation. Figure 30 shaws the
EAD spectrum of the peptide HC[222-251] conjugated with 2 DXd.
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Figure 4. Disulfide bond mapping using CID and EAD. CID (A]) and EAD (B)
provide complementary results for a disulfide-linked peptide from the HC of T-
DXd. Compared to CID (A, EAD led to more extensive fragmentation of 2
peptides due to its ability to cleave the disulfide bond for increased confidence
in sequence identification (B). Additionally, the detection of 2 full-length
peptides (M1 and M2] in the EAD spectrum (B] pravided accurate mass
information for sequence confirmation. The upper left numbers in fragment
annotations correspand to the peptide number given by the sequence. The
scissors icons indicate the peptide backbone or S-S bond cleavages. Not all
fragments were labeled for spectral clarity.
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Figure 5. Deisotoped EAD MS/MS spectra of disulfide-linked peptides from T-DXd. The ability of EAD to cleave both peptide backbone and disulfide bond led to
confident confirmation of all 6 intra-chain disulfide linkages (4 on HC and 2 on LC) in T-DXd. In addition to the example shown in Figure 4B, 3 disulfide-linked

peptides from HC [A-C) and 1 from LC (D] are shown in this figure.



High-quality EAD data led to the localization of 2 DXd to Cys®®® and
Cys®®, The peptide HC[222-251] conjugated with 1 DXd and LC[208-
214] without DXd were also identified [data not shown]. A detailed
study of these ADC impurities will be described separately.

Disulfide bond mapping

EAD provides complementary and superior fragmentation to CID far
disulfide bond mapping. EAD can simultaneously cleave the peptide
backbone and the disulfide bond, leading to maore extensive
fragmentation and increased confidence in sequence identification.® In
this work, CID and EAD DDA were employed to analyze the T-DXd digest
prepared under the non-reduced conditian.

Figure 4 shows the CID and EAD spectra of a disulfide-linked peptide
from the HC. While both MS/MS techniques produced high-quality data
for confident identification of this peptide, EAD generated more
sequence fragments for higher peptide coverage by cleaving the
disulfide bond (Figure 4B). The cleavage of the disulfide bond also led
to the detection of two intact peptides (M1 and M2 in Figure 4B),
providing additional mass confirmation of 2 disulfide-linked peptides.

High-quality CID and EAD data allowed the confirmation of all the 6
intra-chain disulfide linkages an the T-DXd (4 an HC and 2 on LC).
Figure 5 shows EAD spectra of 3 disulfide-linked peptides from HC and
1 from LC. Similar to the example described above [Figure 4B],
excellent EAD fragmentation allowed confident identification of these
disulfide-linked peptides with various lengths.

PTM analysis and isomer differentiation

In addition to payload analysis and disulfide bond mapping, EAD offers
unique capabilities far the localization of lahile PTMs and differentiation
of amino acid isomers.®®

Figure 6 shows an example of glycopeptide characterization and
isomer differentiation using EAD. The ahility of EAD to preserve lahile
PTMs in the fragments led to precise localization of the glycan G1F in
the glycapeptide TKPREEQYNSTYR (Figure BA) and the glycation moiety
(Hex] in the glycated peptide LSCAASGFNIKDTYIHWVR [Figure 6B].

The high-sensitive EAD DDA method provided excellent fragmentation
of deamidated peptide NTAYLQMNSLR despite its low abundance
(~0.6%, Figure 6B]. The detection of a diagnostic z4 - 57 fragment
allowed the confident assignment of the deamidated Asn as an isoAsp
residue instead of an Asp. EAD also generated signature z - 29 and z -
43 fragments for the caonfirmation of lle and Leu residues, respectively
(Figures 6B and BC). Additionally, EAD cleaved the side chains of the z
fragments to produce characteristic neutral-loss peaks for certain
amino acid residues. For example, the zs - 61 and zs - 58 fragments are
indicative of Met and QIn residues, respectively [Figure 6C]J.
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Figure 6. PTM localization and isomer differentiation using EAD. EAD is
powerful for accurate localization of labile PTMs, such as glycasylation and
glycation (Hex]. The detection of G1F-containing a/c/z fragments (e.g. cs) from
the peptide HC[292-304] pinpaointed the location of this glycan ta N300 [A).
Extensive fragmentation of a glycated peptide HC[20-38] (~1%) allowed its
confident identification and accurate localization of glycation (B). Highly
sensitive EAD offers a viahle solution for clear differentiation of amino acid
isomers. EAD generated a signature z4 - 57 fragment for the deamidated
peptide HC[77-87] despite its low abundance (~0.6%). confirming the
conversion of Asn to isoAsp (C). EAD alsa led to the detection of diagnastic ze -
43 and z7 - 43 fragments for the confirmation of 2 Leu residues in the
sequence. In addition, EAD resulted in side-chain losses of z fragments
diagnostic to certain amino acid residues, such as the loss of 61 for Met (zs -
61 in C) and 58 for GIn (zs - 58 in C).

In summary, the high-guality data presented in this technical note
demanstrate the powerful capahilities of the EAD-based peptide
mapping workflow for comprehensive ADC characterization. This
workflow offers high sequence coverage of the antibody, confident
identification of payload-containing peptides far accurate DAR
determination, precise localization of the payloads and labile PTMs,
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