饮用水中23种塑化剂的液质快速检测方法

Determination of 23 Phthalate Esters in Drinking Water By LC-MS/MS

张景然, 刘冰洁, 李立军, 郭立海
Zhang Jingran, Liu Bingjie, Li Lijun, Guo Lihai

SCIEX 中国应用支持中心，上海
SCIEX China, Shanghai

Key Words: Phthalate esters; Drinking water; LC-MS/MS;

邻苯二甲酸酯（Phthalate esters，PAEs）是邻苯二甲酸形成的酯的统称，又称酞酸酯，是常见的增塑剂。因其加工性能良好且成本低，被广泛的应用到化妆品、包装材料、农药、玩具等生产过程中。近年来随着塑料垃圾的大量增加，邻苯二甲酸酯不断的进入环境，目前已成为全球性的污染物之一。邻苯二甲酸酯为生物内分泌干扰素，可干扰人体激素分泌，在体内长期积累会导致畸形、癌变和致突变。

近几年，PAEs 在各种饮用水环境及水产品中的检出引起了广泛的关注，许多国家和地区已经制定了饮用水中邻苯二甲酸酯类物质的相关标准。美国环境保护署对邻苯二甲酸酯控制质量浓度为 6 μg/L。我国《生活饮用水卫生标准》（GB 5749-2006）规定了生活饮用水中邻苯二甲酸二(2-乙基己基)酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯的控制浓度分别为 8 μg/L、300 μg/L、3 μg/L。本方法基于SCIEX Triple Quad™仪器，建立了饮用水中23种邻苯二甲酸酯的LC-MS/MS分析方法。

实验方法特点

1. 饮用水经高速离心后可直接进样分析，无需富集或溶剂转换，方法简单快速灵敏度高。
2. 采用Kinetex Biphenyl色谱柱，10 min即可完成23种的液相色谱分离，且同分异构体分离良好。
3. 通过在液相系统中增加捕集柱，可以有效降低流动相和管路中的本底干扰。

图1. 23种邻苯二甲酸酯类化合物MRM提取离子流色谱图。
仪器设备

质谱方法:
- 扫描方式：多反应监测（MRM）
- 离子源：ESI+
- IS电压：3000 V
- 源温度 TEM：450 ℃
- 气帘气 CUR：40 psi
- 碰撞气 CAD：7
- 雾化气 GS1：45 psi
- 辅助气 GS2：40 psi

结果与讨论

实验本底

邻苯二甲酸酯作为常见塑化剂，广泛的存在于有机溶剂及塑
料制品中。实验过程中应避免使用塑料制品，并对实验中所使用
的试剂、实验材料进行本底考察验证。本方法前处理方法简单,
可有效避免实验过程中的污染和本底干扰等问题。并通过捕集柱
的使用，最大限度的降低了液相系统的本底问题（详见图2）。

标准曲线及检出限

本方法中23种塑化剂的线性关系良好，相关系数均大于
0.995，定量限满足相关标准的要求，详见表1。

方法重现性

使用阴性饮用水样品进行添加回收实验，添加浓度为5 μg/L，
平行6份。实验结果表明（见表2）23种邻苯二甲酸酯的重现性RSD
均小于3%。

总结

1. 本文运用SCIEX Triple Quad™系统，建立了饮用水中23种邻苯二
甲酸酯的定量检测方法。一针进样仅需10 min，且同分异构体
分离情况良好，省时省力。
2. SCIEX 专利技术的Turbo V™离子源，专利的离子源温度设计和
主动排空功能带来高离子化效率和极强的抗污染能力。在日常
大批量样本检测过程中仍保证的稳定的高灵敏度和重现性。
3. 该方法能快速准确的对饮用水中的邻苯二甲酸酯进行定量分
析，化合物灵敏度远高于标准要求。
Table 1. Linear Equations and Detection Limits for 23 Plasticizers.

<table>
<thead>
<tr>
<th>#</th>
<th>Number</th>
<th>Code</th>
<th>Linear Range, μg/L</th>
<th>Linear Equation</th>
<th>Correlation Coefficient, r</th>
<th>Detection Limit, μg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>DMP</td>
<td>1-100</td>
<td>(y = 2.10918e5 x + 2.76634e5)</td>
<td>0.9990</td>
<td>0.50</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>DEP</td>
<td>1-100</td>
<td>(y = 2.36484e5 x + 4.64645e5)</td>
<td>0.9996</td>
<td>0.20</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>DAP</td>
<td>0.1-100</td>
<td>(y = 1.48601e5 x + 10569.54408)</td>
<td>0.9997</td>
<td>0.02</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>DPPr</td>
<td>0.1-100</td>
<td>(y = 3.26333e5 x + 4.03621e5)</td>
<td>0.9985</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>DBP</td>
<td>0.1-100</td>
<td>(y = 2.16464e5 x + 9.57886e4)</td>
<td>0.9992</td>
<td>0.01</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>DMP</td>
<td>1-100</td>
<td>(y = 1.53209e5 x + 1.51001e5)</td>
<td>0.9973</td>
<td>1.00</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>DEP</td>
<td>1-100</td>
<td>(y = 1.85440e5 x + 1.40197e6)</td>
<td>0.9991</td>
<td>0.80</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>DAP</td>
<td>0.1-100</td>
<td>(y = 1.44607e5 x + -7.24808e4)</td>
<td>0.9996</td>
<td>0.01</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>DPPr</td>
<td>0.1-100</td>
<td>(y = 6.02576e4 x + -5.74517e4)</td>
<td>0.9985</td>
<td>0.10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>DPP</td>
<td>0.1-100</td>
<td>(y = 1.39511e5 x + -6.80252e4)</td>
<td>0.9991</td>
<td>0.03</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>DEEP</td>
<td>0.1-100</td>
<td>(y = 1.00124e5 x + -6.72314e4)</td>
<td>0.9994</td>
<td>0.01</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>BBP</td>
<td>0.1-100</td>
<td>(y = 5.36560e4 x + -11628.18777)</td>
<td>0.9993</td>
<td>0.04</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>DPhP</td>
<td>0.1-100</td>
<td>(y = 4.94897e4 x + -16148.92318)</td>
<td>0.9998</td>
<td>0.02</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>DCHP</td>
<td>0.1-100</td>
<td>(y = 1.04890e5 x + -9.71292e4)</td>
<td>0.9999</td>
<td>0.01</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>BMPP</td>
<td>0.1-100</td>
<td>(y = 1.51165e5 x + -9.22654e4)</td>
<td>0.9995</td>
<td>0.02</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>DHXP</td>
<td>0.1-100</td>
<td>(y = 1.47388e5 x + -8.83857e4)</td>
<td>0.9990</td>
<td>0.01</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>DHP</td>
<td>0.1-100</td>
<td>(y = 7.57822e4 x + -6.70860e4)</td>
<td>0.9982</td>
<td>0.01</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>DBEP</td>
<td>0.1-100</td>
<td>(y = 9.55361e4 x + -4.64194e4)</td>
<td>0.9992</td>
<td>0.03</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>DEHP</td>
<td>1-100</td>
<td>(y = 28863.58580 x + 1.00282e5)</td>
<td>0.9974</td>
<td>0.20</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>DNOP</td>
<td>1-100</td>
<td>(y = 6.17214e4 x + -7.76060e4)</td>
<td>0.9986</td>
<td>0.30</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>DINP</td>
<td>1-100</td>
<td>(y = 7.56735e4 x + 3.11357e5)</td>
<td>0.9985</td>
<td>0.20</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>DNPr</td>
<td>1-100</td>
<td>(y = 1.28049e4 x + -2/58158e4)</td>
<td>0.9977</td>
<td>1.00</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>DDP</td>
<td>1-100</td>
<td>(y = 16036.92458 x + 2753.24917)</td>
<td>0.9985</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Table 2. Reproducibility Results for 23 Phthalates (n=6).

<table>
<thead>
<tr>
<th>#</th>
<th>Number</th>
<th>Code</th>
<th>RSD, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>DMP</td>
<td>1.52</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>DEP</td>
<td>2.28</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>DAP</td>
<td>2.80</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>DPPr</td>
<td>1.17</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>DBP</td>
<td>2.45</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>DMP</td>
<td>2.40</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>DEP</td>
<td>2.03</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>DAP</td>
<td>2.64</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>DPPr</td>
<td>2.34</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>DBP</td>
<td>1.87</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>DEEP</td>
<td>2.64</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>BBP</td>
<td>1.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Number</th>
<th>Code</th>
<th>RSD, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>13</td>
<td>DMP</td>
<td>1.79</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>DEP</td>
<td>1.25</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>DAP</td>
<td>1.50</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>DPPr</td>
<td>2.02</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>DBP</td>
<td>1.70</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>DEEP</td>
<td>0.92</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>DNOP</td>
<td>2.40</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>DINP</td>
<td>2.21</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>DNP</td>
<td>1.30</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>DNPr</td>
<td>2.90</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>DDP</td>
<td>2.01</td>
</tr>
</tbody>
</table>
参考文献

1. GB 5749-2006 生活饮用水卫生标准 [S]. 北京: 中国标准出版社, 2006

附录 23种邻苯二甲酸酯的 MRM列表。

<table>
<thead>
<tr>
<th>中文名</th>
<th>简写</th>
<th>Q1</th>
<th>Q3</th>
<th>DP</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>邻苯二甲酸二甲酯</td>
<td>DMP</td>
<td>195</td>
<td>163</td>
<td>50</td>
<td>17</td>
</tr>
<tr>
<td>邻苯二甲酸二乙酯</td>
<td>DEP</td>
<td>223</td>
<td>149</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>邻苯二甲酸二丙酯</td>
<td>DAP</td>
<td>247</td>
<td>189</td>
<td>55</td>
<td>11</td>
</tr>
<tr>
<td>邻苯二甲酸二丁酯</td>
<td>DBP</td>
<td>279</td>
<td>149</td>
<td>60</td>
<td>19</td>
</tr>
<tr>
<td>对苯二甲酸二丙酯</td>
<td>DPPr</td>
<td>251</td>
<td>191</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>邻苯二甲酸二丁酯</td>
<td>DBP</td>
<td>279</td>
<td>149</td>
<td>60</td>
<td>19</td>
</tr>
<tr>
<td>邻苯二甲酸二丙酯</td>
<td>DBP</td>
<td>279</td>
<td>149</td>
<td>60</td>
<td>19</td>
</tr>
<tr>
<td>邻苯二甲酸二甲氧乙酯</td>
<td>DMEP</td>
<td>283</td>
<td>207</td>
<td>60</td>
<td>11</td>
</tr>
<tr>
<td>邻苯二甲酸二乙酯</td>
<td>DEP</td>
<td>223</td>
<td>177</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>邻苯二甲酸二乙酯</td>
<td>DEP</td>
<td>223</td>
<td>177</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>邻苯二甲酸二丙酯</td>
<td>DAP</td>
<td>247</td>
<td>189</td>
<td>55</td>
<td>11</td>
</tr>
<tr>
<td>邻苯二甲酸二乙酯</td>
<td>DEP</td>
<td>223</td>
<td>177</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>对苯二甲酸二丙酯</td>
<td>DPPr</td>
<td>251</td>
<td>191</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>邻苯二甲酸二丁酯</td>
<td>DBP</td>
<td>279</td>
<td>149</td>
<td>60</td>
<td>19</td>
</tr>
</tbody>
</table>

SCIEX临床诊断产品线仅用于体外诊断。仅凭处方销售。这些产品并非在所有国家地区都提供销售。
获取有关具体可用信息，请联系当地销售代表或查阅 https://sciex.com.cn/diagnostics。所有其他产品仅用于研究，不用于临床诊断。

本文提及的商标和/或注册商标的所有权，归属于AB Sciex Pte. Ltd.或在其美国或某些其他国家地区的各权利所有人。AB SCIEX™商标经许可使用。

© 2019 DH Tech. Dev. Pte. Ltd. RUO-MKT-02-10732-ZH-A