

SCIEX LC-MS/MS系统同时检测人血清中更昔洛韦、万古霉素、去甲万古霉素、卡泊芬净和替考拉宁

Simultaneous Determination of Ganciclovir, Vancomycin, Norvoncomycin, Caspofungin and Teicoplanin in Serum by SCIEX LC-MS/MS

贺琳娟,赵祥龙,郭立海 He Linjuan, Zhao Xianglong, Guo Lihai

Key Words: Ganciclovir, Vancomycin, Norvoncomycin, Caspofungin, Teicoplanin, Serum

引言

更昔洛韦(Ganciclovir),属于抗病毒类药物,用于防治免疫功能缺陷病人的巨细胞病毒感染。万古霉素(Vancomycin)、盐酸去甲万古霉素(Norvoncomycin Hydrochloride)和替考拉宁(Teicoplanin),在结构上均属于糖肽类抗生素(如图 1),主要用于革兰氏阳性菌所致的严重感染,能够抑制细菌细胞壁的合成。但万古霉素和去甲万古霉素具有一定的肾毒性,临床使用时需严格控制剂量,做到精准用药[1]。卡泊芬净(Caspofungin),为棘白菌素类抗真菌药,能够抑制真菌和酵母菌细胞壁的合成,但其药代动力学过程受到多种因素影响,如器官功能、药物相互作用等会引起体内血药浓度的个体差异[2]。

对于具有潜在毒性风险且个体差异较大的抗病毒抗菌类药物,血药浓度监测能够提高疗效并减少不良反应。目前,已有多种针对上述5种抗生素的检测方法,包括免疫测定法、高效液相色谱法及液相色谱串联质谱法。免疫法对化合物的特异性不足,易与内源性蛋白质产生交叉反应,存在测定结果假阳性的情况。此外,液相色谱法则需要较大的样本量及较长的分析时间^[3]。因此,需要开发一种简单快速、高灵敏度的方法来检测临床治疗药物监测中常用抗生素。

本实验采用蛋白沉淀法提取,SCIEX液相色谱串联质谱系统分析,同时测定血清中更昔洛韦、万古霉素、盐酸去甲万古霉素、替考拉宁和卡泊芬净的浓度,为临床用药提供精准的化学信息。

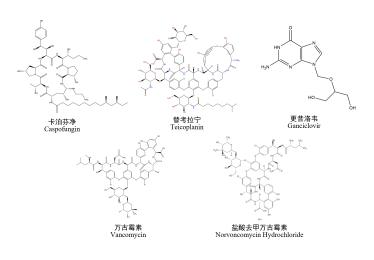


图1.5种化合物结构式。

实验部分

1. 样品前处理

将20 μ L内标工作液加入50 μ L血清样本中,然后加入150 μ L的 1%甲酸甲醇,涡旋混合30 s,10000 rpm离心10 min。取上清待测。

2. 液相条件

色谱柱为Phenomenon Kinetex C18 (2.6 μ m, 2.1 × 100 mm), 流动相采用0.1 %甲酸水溶液和0.1 %甲酸乙腈溶液,柱温设定为 40 $^{\circ}$ C,进样量1 μ L,流速为0.3 mL/min。梯度洗脱设置见表1。

RUO-MKT-02-15771-ZH-A p 1

表1. 液相梯度洗脱条件

时间 (min)	A (%)	В (%)
0.0	95	5
1.0	50	50
1.5	2	98
3.8	2	98
3.9	95	5
5.0	95	5

3. 质谱条件

采用电喷雾离子源(Electrospray Ionization,ESI)和多反应 监测(Multiple Reaction Monitoring,MRM)模式进行质谱扫描。 离子源参数:雾化气(GS1)为45 psi,辅助加热气(GS2)为 35 psi,脱溶剂温度为450 ℃,气帘气(Curtain Gas,CUR)为35 psi,碰撞气(Collision Gas,CAD)为9 psi,喷雾针(Ionspray, IS)电压为5000 V。离子对信息见表2。

表2.5种化合物及其内标物质的质谱参数

化合物	Q1	Q3	ID	DP	CE
更昔洛韦	256.1	152.1	GXLW-1*	60	20
	256.1	135.1	GXLW-2	60	46
万古霉素	724.8	144.1	WGMS-1*	75	20
	724.8	100.1	WGMS-2	75	70
十田下十頭夷	718.7	144.2	QJWGMS-1*	65	19
去甲万古霉素	718.7	100.1	QJWGMS-2	65	45
卡泊芬净	547.5	538.6	KBFJ-1*	60	19
	547.5	131.1	KBFJ-2	60	39
*****	940.9	316.3	TKLN-1*	65	20
替考拉宁	940.9	204.0	TKLN-2	65	30
更昔洛韦内标	261.1	152.1	GXLW-IS	60	20
万古霉素内标	731.0	144.0	WGMS-IS	75	20
卡泊芬净内标	549.6	549.6	KBFJ-IS	60	20

^{*}定量离子

结果与讨论

1. MRM典型色谱图

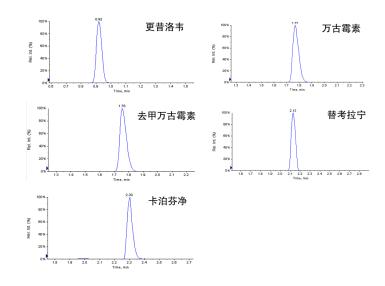


图2.5种化合物典型色谱图。

2. 线性范围

以空白血清为空白基质,配制混合标曲工作溶液,按照上述前处理步骤处理,制作标准工作曲线。各化合物均在相应的浓度范围内线性良好,回归系数r均大于0.99,结果见表3。

表3. 回归方程和线性范围

化合物	回归方程	权重	相关系数r	线性范围
更昔洛韦	Y=0.03470x+0.02748	$1/x^2$	r=0.99690	0.01~10 μg/mL
万古霉素	Y=56.07864x ± 311.55329	1/x	r=0.99662	0.01~10 μg/mL
去甲万古霉素	Y=48.65092x ± 32.88654	1/x	r = 0.99679	0.01~10 μg/mL
卡泊芬净	Y=171.44762x ± 0.02859	$1/x^2$	r=0.99252	0.1~10 μg/mL
替考拉宁	Y=26.05167x ± 144.82423	1/x	r=0.99889	0.1~10 μg/mL

3.精密度与回收率

为了考察方法的重现性及准确性,分别对各个化合物基质加标的精密度(RSD)和回收率进行方法验证。制备低(50 ng/mL)、中-1(150 ng/mL)、中-2(750 ng/mL)、高(2500 ng/mL)四个浓度的质控样本,按上述前处理步骤平行处理6个样本,从表4可以看出,各浓度水平下精密度(RSD)均在10%以内,回收率均在89%~115%之间。

RUO-MKT-02-15771-ZH-A p 2

表4. 精密度及回收率结果

化合物	理论浓度 (ng/mL)	实测值 (ng/mL)	回收率 /%	RSD /%
更昔洛韦	50	46.87	93.74	2.35
	150	142.78	95.19	1.72
	750	671.74	89.57	6.31
	2500	2412.66	96.51	2.66
万古霉素	50	55.70	111.41	7.13
	150	155.12	103.41	5.68
	750	701.69	93.56	5.77
	2500	2557.04	102.28	2.08
去甲万古霉素	50	47.47	94.95	5.91
	150	160.26	106.84	4.86
	750	723.68	96.49	5.34
	2500	2240.96	89.64	1.96
卡泊芬净	150	144.92	96.61	1.98
	750	694.63	92.62	7.26
	2500	2620.76	104.83	1.21
替考拉宁	150	161.50	107.67	3.87
	750	739.11	98.55	8.35
	2500	2681.60	107.26	7.65

总结

本方案采用蛋白沉淀法进行样品前处理,无需复杂的操作步骤,同时结合SCIEX LC-MS/MS系统,可以同时检测人体血清中5种抗病毒抗菌类药物,即更昔洛韦、万古霉素、去甲万古霉素、卡泊芬净和替考拉宁,能够很好地满足临床治疗药物监测的需要。该方法特异性好,灵敏度高,稳定性高,并且分析时间短,可极大的节约耗材和时间成本。

参考文献

- [1] Scribel L, Zavascki AP, Matos D, et al. Vancomycin and creatinine determination in dried blood spots: analytical validation and clinical assessment, J of Chromatogr B Analyt Technol Biomed Life Sci [J]. 2020, 1137:121897. doi: 10.1016/ j.jchromb.2019.121897.
- [2] Liu L, Zhang L, Zheng X, et al. LC–MS/MS-based multiplex antibacterial platform for therapeutic drug monitoring in intensive care unit patients. Front. Pharmacol [J]. 2023, 14:1116071. doi: 10.3389/fphar.2023.1116071.
- [3] Franco V, Marchiselli R, Fattore C, et al. Development and validation of an HPLC-UV assay for the therapeutic monitoring of the new antiepileptic drug perampanel in human plasma. Ther Drug Monit [J]. 2016, 38 (6), 744-750. doi:10.1097/FTD.00000000000003500.

仅限专业展会等使用、仅向专业人士提供的内部资料。

SCIEX临床诊断产品线仅用于体外诊断。仅凭处方销售。这些产品并非在所有国家地区都提供销售。获取有关具体可用信息,请联系当地销售代表或查阅https://sciex.com.cn/diagnostics。所有其他产品仅用于研究。不用于临床诊断。本文提及的商标和/或注册商标,也包括相关的标识、标志的所有权,归属于AB Sciex Pte. Ltd. 或在美国和/或某些其他国家地区的各权利所有人。

© 2023 DH Tech. Dev. Pte. Ltd. RUO-MKT-02-15771-ZH-A

北京分公司 北京市朝阳区酒仙桥中路24号院 1号楼5层 电话: 010-5808-1388

传真: 010-5808-1390

全国咨询电话: 800-820-3488,400-821-3897

上海公司及中国区应用支持中心 上海市长宁区福泉北路518号 1座502室

电话: 021-2419-7201 传真: 021-2419-7333 官网: sciex.com.cn 广州办公室 广州国际生物岛星岛环北路1号 B2栋501、502单元 电话: 020-8842-4017

官方微信: SCIEX-China