

基于SCIEX Triple Quad™ 6500+系统直接进样法测定水体中痕量全氟及多氟化合物

Rapid quantification of perfluoroalkyl and polyfluoroalkyl substances in water by direct injection method using the SCIEX Triple Quad™ 6500+ System

陈慧敏,杨总,刘冰洁 Chen Huimin, Yang Zong, Liu Bingjie

SCIEX China

Key words: Triple Quad™ 6500+; Perfluoroalkyl and polyfluoroalkyl substances; Direct injection

引言

全氟及多氟化合物(Perfluoroalkyl and polyfluoroalkyl substances, PFAS)是一类人工合成的含氟有机化合物,广泛应用于工业制造(如防水涂层、不粘锅、消防泡沫等)和消费品领域。由于PFAS具有毒性、不易降解和生物蓄积性,对生态系统和人类健康构成潜在威胁,因此已被列入《斯德哥尔摩公约》管控清单。国内外多个标准法规进行相关化合物监测,如国内相关标准如 HJ-1334-2023、DB32/T 4004-2021、GB/T 5750-2023和T/GAIA 022-2023,国外标准如EPA 537、EPA 537.1、EPA 533和EPA 8327等,为饮用水、地表水、地下水等不同水体中PFAS的监测提供了参考依据。

水质标准中PFAS检测限浓度要求极为严格,通常为ng/L甚至pg/L级,一般需要将样品浓缩几十至上千倍后才能进样检测,前处理工作量较大。为在满足国内外标准对PFAS检测灵敏度要求的同时,避免浓缩步骤、实现直接进样以提高工作效率,本方案采用SCIEX Triple Quad™ 6500+ System建立了环境水体中全氟及多氟化合物的快速定量方法。

该方法具有以下特点:

1. 覆盖全面:覆盖目前国内标准关注的所有全氟化合物,以及国外标准中大部分化合物。

2. 灵敏度高: 直接进样即可满足现行水质相关标准的检测要求。

3. 分析高效: 仅需14分钟, 就可同时测定36种全氟及多氟化合物。

1. 实验部分

1.1. 样品前处理:

取环境水样,加入内标混匀后,经高速离心取0.5 mL上清液,再加入0.5 mL甲醇混匀,以供液相色谱-串联质谱仪测定。

1.2. 色谱方法:

分析柱: Poroshell 120 EC-C18 (2.1×100 mm, 2.7 μm)

捕集柱: Phenomenex Luna Omega PS C18(2.1×100 mm, 3 μm)

流动相: A: 水(2 mM乙酸铵); B: 乙腈

柱温: 40℃

洗脱程序:梯度洗脱(表1)

表1. 液相洗脱梯度

Time (min)	Flow(mL/min)	B (%)
0	0.35	15
8.5	0.35	98
10.5	0.35	98
10.6	0.35	15
14	0.35	15

MKT-36440-A p 1

1.3. 质谱方法:

扫描方式: 电喷雾电离 (electrospray ionization, ESI), 负离子模式

离子源参数:

气帘气(CUR): 30 psi; 碰撞气(CAD): 10;

喷雾电压(IS): -4500V; 离子源温度(TEM): 400℃;

雾化气(GAS1): 60 psi; 辅助加热气(GAS2): 60 psi;

MRM离子对见附表

2. 实验结果与讨论:

2.1. 色谱图

36种全氟及多氟化合物的典型色谱图(如图1),各化合物灵 敏度满足水质各标准中的检测要求。

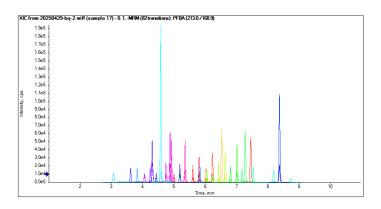


图1.36种全氟及多氟化合物的提取离子流色谱图

2.2. 标准曲线考察

针对36种全氟及多氟化合物,采用内标法,在线性范围内线性关系良好,线性相关性系数r均达到0.996以上(如图2)。

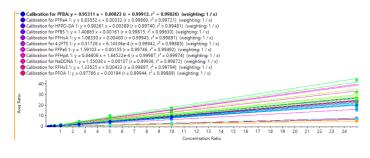


图2.36种全氟及多氟化合物的标准曲线

2.3.重复性和回收率考察

以实际地表水样为基质,在1、5、10 ng/L三个添加浓度水平下(n=3),所有目标化合物的平均加标回收率在87%~105%之间,满足准确定量要求。对1 ng/L的标准溶液连续进样6针,各化合物色谱峰响应的相对标准偏差(RSD)均小于3%。具体色谱图参见图3。方法学验证结果表明,本方法具有良好的准确度与重现性。

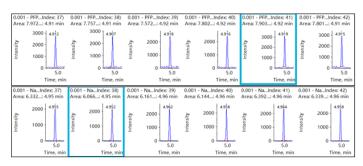


图3. PFPeS色谱图(上)和NADONA色谱图(下)

3. 小结

本方案基于SCIEX Triple Quad™ 6500+ 系统,建立了水样中36种全氟及多氟化合物(PFAS)的快速液质联用检测方法。该方法覆盖范围广、灵敏度高、分析速度快、结果准确,可直接进样,满足现行水质标准对PFAS的检测限要求,显著提升了水体中PFAS的分析检测效率。

附表1 36种全氟化合物质谱离子对列表

母离子 (Q1)	子离子 (Q3)	保留时间 (min)	ID	DP (V)	CE (V)
213	168.9	2.03	PFBA	-19	-13
263	218.9	3.4	PFPeA-1	-26	-11
284.9	169	4.29	HFPO-DA-1	-5	-11
284.9	185	4.29	HFPO-DA-2	-5	-23
298.9	80	4.14	PFBS-1	-70	-65
298.9	99	4.14	PFBS-2	-70	-36
312.9	268.9	4.09	PFHxA-1	-11	-11
312.9	119	4.09	PFHxA-2	-11	-26

MKT-36440-A p 2

附表1 36种全氟化合物质谱离子对列表(续)

母离子 (Q1)	子离子 (Q3)	保留时间 (min)	ID	DP (V)	CE (V)	母离子 (Q1)	子离子 (Q3)	保留时间 (min)	ID	DP (V)	CE (V)
326.9	306.8	3.89	4:2FTS-1	-50	-29	562.9	268.9	6.37	PFUdA-2	-29	-26
326.9	81.1	3.89	4:2FTS-2	-50	-52	570	419	5.99	N-MeFOSAA-1	-40	-27
349	80	4.75	PFPeS-1	-80	-83	570	218.9	5.99	N-MeFOSAA-2	-40	-34
349	99	4.75	PFPeS-2	-80	-37	584	419	6.17	N-EtFOSAA-1	-40	-27
362.9	318.9	4.62	PFHpA-1	-20	-14	584	219	6.17	N-EtFOSAA-2	-40	-35
362.9	168.9	4.62	PFHpA-2	-20	-24	598.8	79.9	6.95	PFDS-1	-100	-137
376.9	251	4.8	NaDONA-1	-10	-14	598.8	98.9	6.95	PFDS-2	-100	-118
376.9	84.9	4.8	NaDONA-2	-10	-34	612.8	569	6.75	PFDoA-1	-20	-19
398.9	80	5.25	PFHxS-1	-70	-75	612.8	168.9	6.74	PFDoA-2	-20	-33
398.9	99	5.25	PFHxS-2	-70	-79	630.9	450.8	7.21	11Cl-PF3OUdS-1	-50	-41
412.9	368.9	5.09	PFOA-1	-30	-15	630.9	83	7.22	11Cl-PF3OUdS-2	-50	-84
412.9	168.9	5.08	PFOA-2	-30	-25	662.8	618.8	7.12	PFTrDA-1	-40	-17
426.8	407	4.88	6:2FTS-1	-40	-34	662.8	168.9	7.12	PFTrDA-2	-40	-34
426.8	80.9	4.9	6:2FTS-2	-40	-74	712.8	668.8	7.48	PFTeDA-1	-40	-17
448.7	79.9	5.71	PFHpS-1	-100	-104	712.8	168.9	7.49	PFTeDA-2	-40	-39
448.7	98.9	5.71	PFHpS-2	-100	-88	813	768.9	8.14	PFHxDA-1	-70	-20
462.9	418.9	5.51	PFNA-1	-19	-14	813	168.9	8.13	PFHxDA-2	-70	-35
462.9	218.9	5.52	PFNA-2	-19	-23	913	868.9	8.69	PFODA-1	-70	-25
498	78	7.38	PFOSA-1	-40	-88	913	168.9	8.69	PFODA-2	-70	-38
498	169	7.39	PFOSA-2	-40	-38	314.9	134.9	4.43	PFEESA-1	-30	-30
498.9	80	6.16	PFOS-1	-60	-96	314.9	83	4.43	PFEESA-2	-30	-23
498.9	99	6.15	PFOS-2	-60	-99	228.9	84.9	2.74	PFMPA-1	-5	-13
512.9	218.9	5.95	PFDA-1	-33	-24	228.9	184.9	2.78	PFMPA-2	-5	-9
512.9	468.9	5.95	PFDA-2	-33	-16	278.9	85	3.64	PFMBA-1	-5	-13
526.9	506.8	5.74	8:2FTS-1	-50	-37	278.9	235	3.61	PFMBA-2	-5	-9
526.9	80.9	5.75	8:2FTS-2	-50	-84	368.9	169	5.07	11H-PFDA-1	-30	-30
530.9	351	6.45	9Cl-PF3ONS-1	-50	-36	368.9	219	5.08	11H-PFDA-2	-30	-20
530.9	83	6.45	9Cl-PF3ONS-2	-50	-70	545	481	5.75	1H-PFHpA-1	-20	-18
549	80	6.56	PFNS-1	-6	-120	545	169	5.75	1H-PFHpA-2	-20	-28
549	99	6.57	PFNS-2	-6	-107	980	806	8.31	HPFPP-1	-20	-36
562.9	518.9	6.36	PFUdA-1	-29	-15	980	544	8.31	HPFPP-2	-20	-81

MKT-36440-A p 3

附表2 36种全氟化合物质谱离子对列表

母离子 (Q1)	子离子 (Q3)	保留时间 (min)	ID	DP (V)	CE (V)
217	172	2.03	PFBA-13C4	-19	-13
314.9	269.9	4.09	PFHxA-13C2	-11	-11
417	372	5.08	PFOA-13C4	-40	-15
502.9	80	6.15	PFOS-13C4	-60	-96
467.9	422.9	5.51	PFNA-13C5	-19	-14
402.9	83.9	5.25	PFHxS-1802	-70	-75
514.9	469.9	5.95	PFDA-13C2	-33	-16
564.9	519.9	6.37	PFUnDA-13C2	-29	-15
286.9	169	4.3	HFPO-DA-13C3	-5	-11
589	419	6.17	NEtFOSAA-D5	-40	-27
615	570	6.74	PFDoDA-13C2	-20	-19
414.9	370	5.08	PFOA-13C2	-40	-15

SCIEX临床诊断产品线仅用于体外诊断。仅凭处方销售。这些产品并非在所有国家地区都提供销售。获取有关具体可用信息,请联系当地销售代表或查阅https://sciex.com.cn/diagnostics。所有其他产品仅用于研究。不用于临床诊断。本文提及的商标和/或注册商标,也包括相关的标识、标志的所有权,归属于AB Sciex Pte. Ltd. 或在美国和/或某些其他国家地区的各权利所有人。

© 2025 DH Tech. Dev. Pte. Ltd. MKT-36440-A

SCIEX中国

北京分公司 北京市昌平区生命科学园科学园路 18号院A座一层 电话: 010-5808-1388 传真: 010-5808-1390 全国咨询电话: 800-820-3488,400-821-3897 上海公司及中国区应用支持中心 上海市长宁区福泉北路518号 1座502室 电话: 021-2419-7201

电话: 021-2419-7201 传真: 021-2419-7333 官网: sciex.com.cn 广州办公室 广州国际生物岛星岛环北路1号 B2栋501、502单元 电话: 020-8842-4017

官方微信: SCIEX-China