

在进行PFAS分析时,降低对系统污染的影响

使用ExionLC[™] 2.0系统

Reducing the effects of system contamination in PFAS analysis

Simon Roberts,¹ Adrian M. Taylor² ¹ SCIEX, USA;² SCIEX, Canada

全氟化合物(PFAS)是一类人造化学物质,主要用于抗润滑 油、油、水和热。有了这些特点,PFAS被广泛用于消耗品和工业 产品中,包括燃料、防水纤维、地毯、清洁产品、涂料、以及防 火泡沫。目前某些PFAS被FDA限制使用于厨具、食品包装和食品处 理设备。

PFAS的C-F键强度使自然降解及其困难。随过去到现在时间积 累,PFAS广泛的使用和它们的保持难降减的能力已引起严重的环 境污染。这具有警示意义的积累速度导致PFAS对环境和健康的潜 在影响的研究数量逐渐增加。这类化合物的不易降解,也能使它 们成为分析工作的一个挑战,因为它们也是分析仪器的一个普遍 存在的污染物。随着要求PFAS浓度持续降低限度的指南,控制所 使用分析仪器的背景水平具有越来越高的需求。这将使PFAS在环 境样本中的含量精确检测成为可能。

这里研究了配备可选的清洗系统的ExionLC™ 2.0系统的灵活性,当分析包含PFAS的样本时使LC-MS/MS分析背景污染的PFAS降

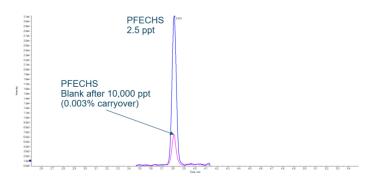


图1 残留分析。PFECHS的空白提取离子色谱图显示了进样10,000 pg/mL最 高浓度校正标准样本后,立即进样空白样本进样后极低的污染(粉标),残 留浓度为2.5 pg/mL的最低定量限(蓝标)。

到可接受的水平。一个连接ExionLC 2.0系统的SCIEX Triple Quad™ 7500系统被选择为高灵敏性测试平台,来观测1ppb标准品和空白 污染<2.5ppt的52个PFAS化合物进样后满足<0.05%的残留效能。

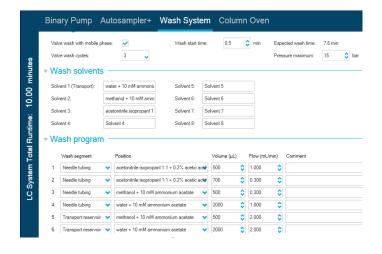
ExionLC[™] 2.0系统的关键特点

- 洗脱溶剂选择以及流速选择的灵活性,延长的洗针能力可以使 残留降到可忽略不计,这也能降低假阳性率和重复提取和再次 检测的需要
- 用户自定义能力和所有自动进样器溶剂清洗的优化,使系统污染很小,可实现PFAS的精确检测,即使在很低的浓度
- 准确和精确的定量结果,检测线性系数(r²)>0.99,精确度
 <10%的变异系数,以及对称因子在0.8和1.5之间

 灵敏的限低至2.5 pg/mL,校准范围在2.5-10,000 pg/mL之间(4 个数量级的动态范围)。

方法

材料:所有实验采用 U.S. EPA 537 和 533 方法,分析物初始 稀释标准溶液/混合物 (Wellington Laboratories Cat.#)。带Verex 聚 四氟乙烯/硅瓶盖的Verex玻璃管和聚丙烯自动进样管,从飞诺美采 购。


样本制备:标准品偹备液配置成2.5-10,000 pg/mL的校准浓度。

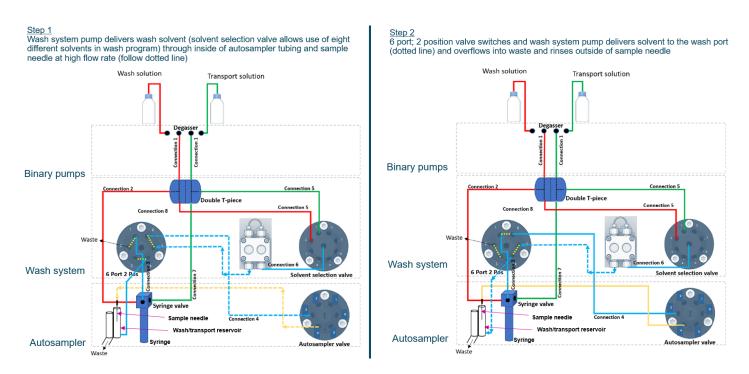
色谱条件: 使用SCIEX ExionLC 2.0系统和飞诺美 Gemini C18色 谱柱 (3 μm, 3.0 x 50 mm, P/N 00B-4439-Y0)进行液相分离。飞诺美 Gemini C18 5 μm, 4.6 x 30 mm柱安装在50 μL混合器之后,作为延时 柱从分析物峰中分离二相泵溶剂PFAS污染峰¹。采用一个9.5 min的 洗脱梯度,流动相是含10mM乙酸铵缓冲液的水和的甲醇,流速是 0.6mL/min,柱温为40度。

SCIEX ExionLC[™] 2.0系统自动进样器模块包含250 µL的注射 器,250 µL缓冲液管路,100 µL 定量环和15 µL的针管。为了优化 样本消耗和进样循环时间,用的注射模式是微升 pick-up plus模 式,进样量设为10.0 µL,应用两个35 µL的传输部分(含10mM乙酸 铵的水)。注射器速度设为low,速度因子设0.8。所有多聚物管路 均替换为PEEK,包括溶剂瓶和溶剂选择器阀门之间的管路(使用 1/8"外径,或 O.D.和一个 0.08" 内径,或 I.D.),溶剂选择阀门到脱 气机的管路(1/8" O.D.×0.08" I.D.),脱气机到泵头的管路(1/8" O.D.x 0.08" I.D)以及自动进样器中的缓冲液管(1/16" O.D.×0.03" I.D.)。

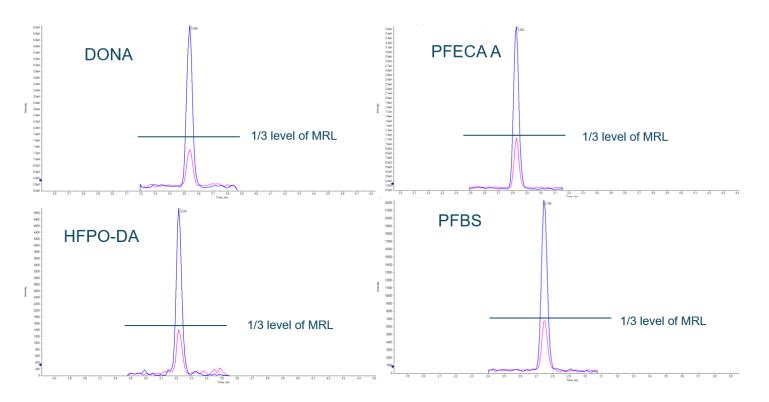
自动进样器清洗系统: 使用清洗系统运输各种体积的多种不同组成的溶剂,在不同流速下提供灵活性和控制残留的能力。使用的清洗程序的溶剂、流速、以及体积见图2。所有管路均使用 PEEK替换(1/16 in × 0.03 in)。使用一根Phenomenex Gemini C18 5 µm, 4.6 × 30 mm柱(P/N 00A- 4435-E0)作为延迟柱从分析物峰区分 自动进样期清洗液和运载溶剂PFAS污染峰。

质谱条件:使用SCIEX 7500 系统进行质谱分析,采取负模式电 喷雾离子化(ESI)。监测各个分析物的一个MRM离子对。当预期 的保留时间窗口使循环时间和处理时间最大化时,使用 Scheduled MRM算法检测化合物。本方法所有的色谱峰扫描点多于12。

图2. 灵活的自动进样器清洗系统组成。多于8个不同的溶剂可以用于最有效的清洗程序。这里,用三个不同的溶剂采用在不同步骤:乙腈/异丙醇 (1:1, v/v)含 0.1%乙酸,甲醇使用 10mM乙酸铵清洗,以及水使用 10mM乙酸 铵清洗。


数据获取由SCIEX OS软件 2.1.6和ExionLC[™] 2.0 系统组件来实现。

数据处理: 质谱数据的处理使用 SCIEX OS 软件 2.1.6操作,其中对校准曲线、精密度和准确度进行评价。


使用自动进样器清洗系统管理PFAS残留

ExionLC[™] 2.0 系统的清洗系统具有自动进样器管路内部清洗 的灵活性,以及实现一个强大的进样针外部清洗能力,使用多至8 种不同流速的溶剂(图3)。也可以选择自动进样器阀门清洗,使 用多至3个自动进样器注射器阀门切换,并在使用清洗系统溶剂实 施清洗程序前使用梯度泵溶剂清洗。清洗步骤可以按程序在注射 后的任意时间点开始,因此阀门清洗可以在梯度的高有机溶剂比 例时进行。阀门的清洗不在清洗程序进行,因此不存在梯度中引 入不同溶剂成分的风险,从而影响色谱分离。为了优化样品消耗 以及将注射循环时间最小化,使用微升增强进样注射模式。运载溶 剂部分使用于该注射模式,保证所有样本运输到色谱柱上。出于 ExionLC[™] 2.0系统对PFAS分析的需求,清洗系统的使用允许在自动 进样阀之前引入额外的延迟柱,从样本和标准品中的PFAS分析物 中分离存于自动进样器溶剂中的任何PFAS污染。

图3. 两步序列清洗系统。首先描述了进样针的内部清洗。其次描述了进样针的外部清晰。在清洗程序中多至8中溶剂可以在不同的流速选择和使用,提供 了更大程度的灵活性和高效率。

图4. 空白样本。选择PFAS的空白提取离子色谱图显示空表样本(粉标)中极低的污染。这些在进样10,000 pg/mL最高校准浓度标准品后被立即分析,只有 2.5 pg/mL(蓝标)LLOQ标准品残留。特别要求空白样本必须低于1/3的最高残留限量(MRL)水平。

评价残留

空白样本显示极低的相应并低于要求的1/3的最大残留限 (MRL)。图4显示10000 pg/mL最高浓度校准标准品进样后立即进 样一个空白样品(粉标)中所选PFAS化合物的残留峰,只有2.5 pg/ mLLLOQ标准品(蓝标)残留。最高浓度样本(10000pg/mL)之 后的第一个空白样品的峰面积比所有化合物的最低校准浓度样品 的32%还低。例如,10000 pg/mL校准标准品之后分析的第一个空 白样品的峰面积为PFECHS的2.5 pg/mL标准品峰面积的19%。所有 残留峰面积低于最高标准品(10,000 pg/mL)峰面积的0.01%。"

清洗系统程序允许选择清洗溶剂的体积以及流速。与使用延迟柱清洗自动进样器溶剂的能力相结合,这使ExionLC™2.0系统对残留的控制满足<0.05%残留效应要求。这在10,000 pg/mL标准品进样分析后被一个<2.5ppt的52种PFAS化合物的空白污染所显示出来。选定PFAS化合物的残留效的举例请见表1。

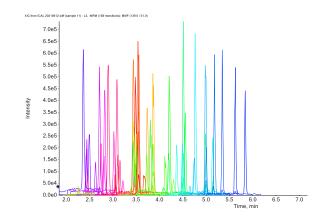
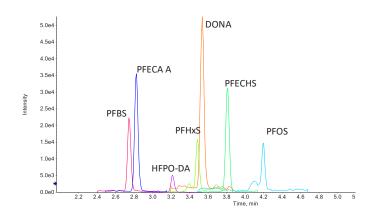
表1. 残留分析

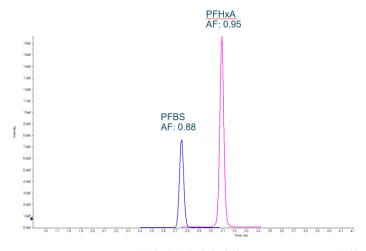
Compound	% Carryover (after 10,000 ppt standard)
PFHxA	0.003
PFOA	0.001
PFBA	0.013
DONA	not detected
PFOS	0.007
PFBS	0.007
HFPO DA	0.005
PFNA	0.006
PFECHS	0.003
PFHxS	not detected
PFDoA	0.003
PFECA A	0.009

残留-10,000 pg/mL校准标准品之后的第一个空白峰面积, 10,000 pg/mL标准品峰 面积的%

方法效果

52 个PFAS化合物的色谱分离见图5。得到非常好分离,峰宽很 窄,峰对称性良好,这对实施定量尤为重要。


图5. 色谱分离。提取离子色谱图显示25 pg/mL标准品的PFAS洗脱特点。

使用对称因子测量峰对称--从色谱峰中线到峰后沿的距离除以 色谱峰中线到峰前沿的距离,该因子在最大峰的10%--普遍在1.0左 右,并期望能>0.8和<1.5之间。图6显示选定的化合物在2.5 pg/mL 时的提取离子色谱图。图中显示的化合物,平均对称因子为1.01。 在2.5到1000 pg/mL浓度范围,PFBS的平均对称因子为1.21,PFECA A为1.03,HFPO DA为1.17,PFHxS为1.05,DONA为0.94,PFECHS为 1.02,PFOS 为1.14。两个早期洗脱峰的分离和对称因子见图7。

图6. LLOQ信号。2.5 pg/mL标准品中PFAS的提取离子色谱图。观测到非常 好的峰对称。

图7. 对称因子(AF)。AF由先洗脱的峰来计算, PFBS和PFHxA, 在其 100 pg/mL的标准品浓度进行。

7点校准曲线显示了良好的准确性,所有点均在在+/-10%期望 值以内(表2)且R²系数>0.990,如图9所示。面积重复性也从7次 重复进样2.5 pg/mL标准样品计算,然后是25 pg/mL的7个标准品 重复进样。典型变异结果使用所选化合物显示在表3中。此外,优 异的峰面积重复性如多于30次进样的内参峰面积重复性的metric plot所示(图8)。计算平均内参标准峰面积,所有获取的数据 点均落在 \pm 10%平均回归偏差范围内(虚线)。¹³C₄-PFBA, ¹⁸O₂-PFHxS, ¹³C₈-PFOS和 ¹³C₂-PFHxDA的峰面积%CV分别为3.7, 3.2, 2.7 和4.0%。

$u_{u} = \frac{13C_4 - PFBA}{13C_4 - PFBA}$

图8 数据重复性。对30次分析的内参峰面积重复性的算法作图。含±10%的平均回归偏差的平均回归(虚线)。

表2. 校正曲线统计。在受审校准范围内的校准曲线标准品的%准确度。

Concentration (ppt)	PFHxA	PFOA	PFBA	DONA	PFOS	PFBS	HFPO DA	PFNA	PFECHS	PFHxS	PFDoA	PFECA A
2.50	89.8	97.5	99.5	79.4	99.0	104.9	97.1	108.0	107.7	81.2	80.6	99.4
5.00	94.1	88.9	92.9	101.1	97.8	102.2	94.6	88.2	101.7	90.6	99.3	104.5
25.00	108.2	106.0	103.6	114.1	104.2	98.6	98.8	107.7	96.4	104.5	118.7	99.0
100.00	105.6	109.0	101.9	111.4	101.7	98.2	104.3	91.3	92.7	122.6	106.0	100.0
250.00	101.4	97.4	103.4	93.8	99.1	98.3	107.1	99.1	92.3	102.2	94.7	97.1
500.00	103.7	103.0	99.6	100.2	96.6	94.2	100.4	109.6	113.1	103.4	101.0	98.6
1000.00	97.1	98.2	99.1	116.9	101.7	103.5	97.7	96.2	96.2	95.5	99.8	101.4

表3 QC峰面积精确度,展示了两个浓度样本的%变异系数(n=7)。

Concentration (ppt)	PFHxA	PFOA	PFBA	DONA	PFOS	PFBS	HFPO DA	PFNA	PFECHS	PFHxS	PFDoA	PFECA A
2.5	5.3	9.0	4.0	4.3	6.7	4.9	6.8	6.2	4.1	7.8	7.8	3.5
25	4.7	1.0	3.6	2.5	1.7	4.8	4.3	2.9	5.6	5.0	3.4	3.3

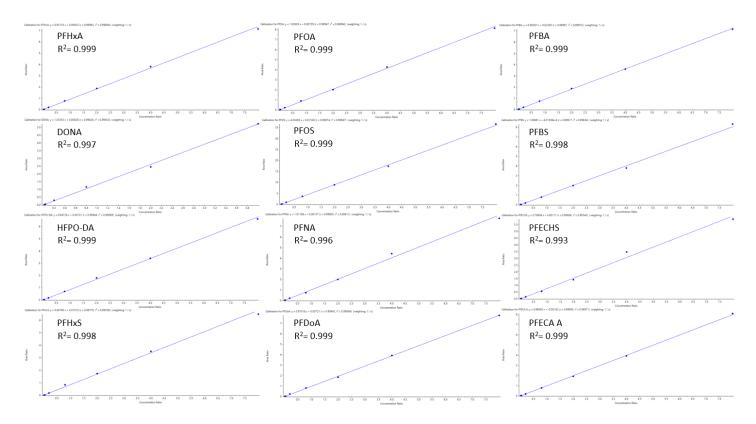
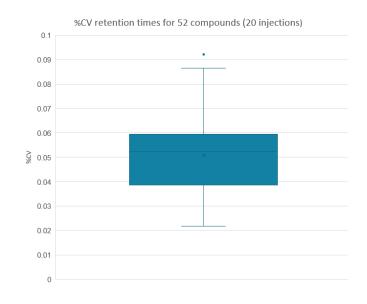



图9. PFAS化合物的校准曲线。浓度线从PDFAS混合物产生,浓度潆范围从2.5 pg/mL到1000 pg/mL。获得良好的线性,r²高于0.99。

保留时间重复性

与scheduled MRM数据采集相结合时,保留时间稳定性在使用 窄保留时间窗口时至关重要,为了保证色谱峰能够保留在检测时 间窗口内。为了在分析多批次样本时满足不变的保留时间,确保 液相色谱系统随时间的稳定性也很重要。这能够减少再调整方法 的时间花费,以适应保留时间的漂移,这样可以避免由色谱峰漂 移到目标时间窗之外引起的数据丢失。

如图10所示,在保留时间范围内,各个分析物的保留时间精 确度均小于0.1%CV,52个化合物的平均0.05%CV。对于大多数检测 化合物而言,20次进样的最大保留时间差异<1秒。

结论

在SCIEX Triple Quad[™] 7500系统进行单次LC-MS/MS 10分钟梯度 分析,就可获得PFAS浓度的可靠可重复的结果和线性,以及定量准 确度和精密度。这使应用ExionLC[™] 2.0系统获得高质量分离得到实 现,正如保留时间精密度和尖峰质量所显示的那样。

环境样本中PFAS的定量检测的一个重要方面是控制LC/MS/MS 的析仪器的背景水平。

这可以在SCIEX ExionLC[™] 2.0系统中,通过使用可选配的清洗 系统和额外的延迟柱轻易地实现,使残留降的很低,降低假阳性 率以及重复提取和再检测。

- 在液相泵后安装延迟柱,其目的是分离溶剂中的PFAS污染;自 动进样器延迟柱的安装,目的是用于分离自动进样器溶剂中的 PFAS污染
- 清洗溶剂选择和流速选择的灵活性,增强了针清洗能力
- 在整个系统中安装PEEK管路取替FEP管路,以及安装延迟柱, 结合清洗系统的使用,可以使背景污染降到很低,为本工作研 究的整套52个化合物获得很好的检出限(MDLs)。

参考文献

1. Quantitation of PFASs in water samples using LC-MS/MS largevolume direct injection and solid phase extraction. SCIEX technical note, RUO-MKT-02-4707-A.

SCIEX临床诊断产品线仅用于体外诊断。仅凭处方销售。这些产品并非在所有国家地区都提供销售。获取有关具体可用信息,请联系当地销售代表或查阅https://sciex.com.cn/diagnostics。 所有其他产品仅用于研究。不用于临床诊断。本文提及的商标和/或注册商标,也包括相关的标识、标志的所有权,归属于AB Sciex Pte. Ltd. 或在美国和/或某些其他国家地区的各权利 所有人。

© 2021 DH Tech. Dev. Pte. Ltd. RUO-MKT-02-13564-ZH-A

 SCIEX中国

 北京分公司

 北京市朝阳区酒仙桥中路24号院

 1号楼5层

 电话:010-5808-1388

 传真:010-5808-1390

 全国咨询电话:800-820-3488,400-821-3897

上海公司及中国区应用支持中心 上海市长宁区福泉北路518号 1座502室 电话:021-2419-7200 传真:021-2419-7333 官网:sciex.com.cn 广州分公司 广州市天河区珠江西路15号 珠江城1907室 电话:020-8510-0200 传真:020-3876-0835 官方微信:SCIEX-China