
LC-MS/MS solution for national quality standards for drinking water, surface water and groundwater

Meets the national standard and limit requirements without the enrichment and with large volume injections

Zhai Nannan, Jia Yanbo, Jin Wenhai
SCIEX, Beijing, China

The standards for surface water environmental quality (GB3838-2002), the national standards for drinking water (GB5749-2006) and groundwater quality standards (GB14848-2017) issued by China currently stipulate the limit values of several compounds determined by the LC-MS/MS method.

Here, the SCIEX Triple Quad™ 3500 LC-MS/MS System was used to develop a workflow for quantifying 22 compounds in water (including 2 additional microcystin compounds), which

provides a simple and rapid solution to address these regulations in such aqueous environments.

Key features of the LC-MS/MS method

- This method covers the 20 compounds in the Chinese national standards GB 3838-2002, GB 5749-2006, and GB 14848-2017 and two additional microcystin compounds of concern
- The determination limits of the 22 compounds fully meet the sensitivity requirements of the above standards
- Direct injection of water samples without enrichment or extraction
- A fast and simple method which improves laboratory efficiency

Figure 1. Chromatograms of 22 compounds in water. ESI + (upper) ESI - (middle) and APCI - (lower).

Methods

Sample preparation: The water sample was analyzed by direct injection, with no sample treatment.

Chromatography: Separation was achieved using the SCIEX ExionLC™ System with a Phenomenex Kinetex Biphenyl (50 x 3.0 mm, 2.6 µm). The flow rate was 0.4 mL/min with an injection volume of 100 µL. Gradient information is provided in Table 1.

Table 1. Chromatography.

Time (mins)	% A	% B
0	95	5
0.5	95	5
2.0	5	95
5.0	5	95
5.1	95	5
7.0	95	5

Mobile phase A: water (5 mM ammonium formate)

Mobile phase B: methanol

Mass spectrometry: Samples were analyzed using the SCIEX Triple Quad 3500 LC-MS/MS System. The method was divided into ESI positive, ESI negative and APCI negative ion modes of detection. Method parameters are described in Tables 2 - 4.

Data processing: The data was processed using SCIEX OS Software (version 1.4).

Table 2. MS parameters.

Parameter	ESI +	ESI -	APCI -
Collision gas CAD	Medium	Medium	Medium
Nebulizing gas GS1	60	60	60
Auxiliary gas GS2	70	70	--
Corona needle current NC	--	--	3 µA
Air current gas CUR	25	25	25
Source temperature TEM (°C)	600	600	250
IS voltage	5500	-4500	--

Table 3. MS parameters for 16 compounds in positive ion ESI.

Detection mode	Compound	Q1	Q3	DP	CE
ESI +	Acrylamide	72	55.1	30	15
		72	43.9	30	22
Carbofuran	Carbofuran	222.1	165	70	17
		222.1	123.1	70	29
Aldicarb	Aldicarb	116.1	89	47	10
		116.1	70	47	10
Dichlorvos	Dichlorvos	221	109	70	23
		221	127	70	25
Parathion-methyl	Parathion-methyl	264	124.9	40	26
		264	231.9	40	24
Malathion	Malathion	331	127	64	17
		331	285	64	13
Dimethoate	Dimethoate	230	125	56	29
		230	199	56	13
Chlorpyrifos	Chlorpyrifos	350	198	82	29
		350	97	82	49
Atrazine	Atrazine	216.1	174	71	23
		216.1	104	71	39
Parathion	Parathion	292	236	80	20
		292	264	80	15
Bentazone	Bentazone	241	199	20	15
		241	107	20	35
Carbaryl	Carbaryl	202.1	145	54	15
		202.1	127	54	40
Deltamethrin	Deltamethrin	523.1	281	40	21
		523.1	506	40	13
Microcystin-LR	Microcystin-LR	498.4	135.1	40	16
		498.4	103.1	40	75
Microcystin-RR	Microcystin-RR	519.9	135.1	70	45
		519.9	103.1	70	90
Microcystin-YR	Microcystin-YR	523.4	135.1	65	20
		523.4	103.1	65	75

Table 4. MS parameters of 6 compounds in negative ion ESI and APCI.

Detection mode	Compound	Q1	Q3	DP	CE
ESI -	2,4-D	219	161	-40	-19
		221	163	-40	-19
	Chlorothalonil	244.8	181.8	-60	-39
		244.8	244.8	-60	-10
	2-Chlorophenol	126.9	35	-39	-40
	2,4-Dichlorophenol	160.9	35	-70	-40
	2,4,6-Trichlorophenol	194.9	35	-100	-50
		194.9	159	-100	-30
	Pentachlorophenol	264.7	35	-70	-61
		264.7	36.9	-70	-56

Results

The chromatographic separation achieved on the Kinetex Biphenyl is shown in Figure 1. Peaks are well defined and resolution is sufficient for accurate and reliable quantification.

Calibration curves were generated for all 22 compounds in the method. Results are summarized in Table 5 and compared to the requirements for the Chinese national standards. The lower limits of quantification achieved with this method meet or surpass the current requirements.

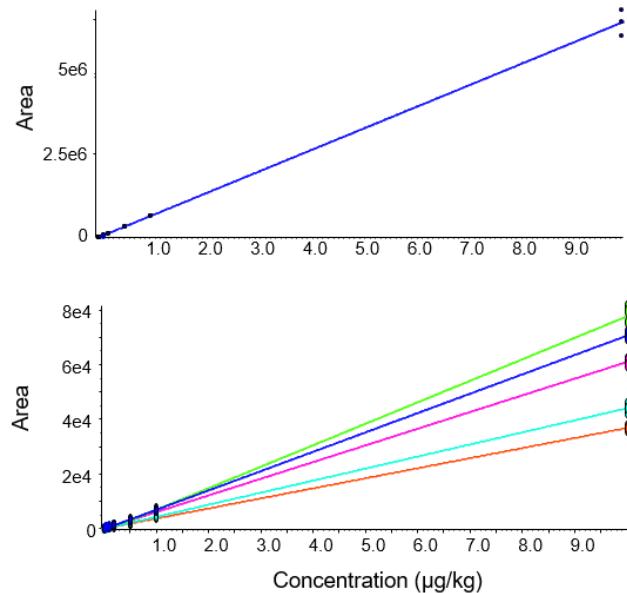

Very good linearity was achieved for each compound in water with $r > 0.99$, as shown in Figure 2. These calibration curves can be applied to the detection of analytes in actual samples.

Table 5. Lower limit of determination of this method and GB 3838-2002, GB 5749-2006, and GB 14848-2017.

Compound	GB3838-2002	GB5749-2006	GB14848-2017	This method
2,4-D		30	0.1	0.025
Carbofuran		7	0.05	0.005
Aldicarb			0.05	0.005
Dichlorvos	50	1	0.05	0.025
Parathion-methyl	2	20	0.05	0.05
Malathion	50	250	0.05	0.01
Dimethoate	80	80	0.05	0.005
Chlorpyrifos		30	0.05	0.01
Chlorothalonil	10	10	0.05	0.05
Atrazine	3	2	0.05	0.005
2-Chlorophenol				0.5
2,4-Dichlorophenol	93			0.5
2,4,6-Trichlorophenol	200	200		0.1
Pentachlorophenol	9	9		0.02
Parathion	3	3		0.1
Bentazone		300		0.025
Carbaryl	50			0.025
Acrylamide	0.5	0.5		0.025
Deltamethrin		20		1.0
Microcystin-LR	1	1		0.05
Microcystin-RR				0.05
Microcystin-YR				0.05

Conclusions

A workflow comprising LC-MS/MS methods on the SCIEX Triple Quad 3500 System was developed which can completely cover the current Chinese national standards for surface water environmental quality standards (GB3838-2002), national drinking water standards (GB5749-2006) and groundwater quality standards (GB14848-2017). The lower limit of the method was better than the current standard, providing an accurate quantitative LC-MS/MS detection method.

Figure 2. Typical curves of selected compounds in water. (Top) Calibration curve for compound analyzed in ESI – mode. (Bottom) Calibration curve for compound analyzed in APCI – mode.

The SCIEX clinical diagnostic portfolio is For In Vitro Diagnostic Use. Rx Only. Product(s) not available in all countries. For information on availability, please contact your local sales representative or refer to <https://sciex.com/diagnostics>. All other products are For Research Use Only. Not for use in Diagnostic Procedures.

Trademarks and/or registered trademarks mentioned herein, including associated logos, are the property of AB Sciex Pte. Ltd. or their respective owners in the United States and/or certain other countries.

© 2020 DH Tech. Dev. Pte. Ltd. RUO-MKT-02-12396-A. AB SCIEX™ is being used under license.

Headquarters

500 Old Connecticut Path | Framingham, MA 01701 USA
Phone 508-383-7700
sciex.com

International Sales

For our office locations please call the division headquarters or refer to our website at sciex.com/offices