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Characterization of human cellular proteomes enables the
identification of disease biomarkers and new therapeutic targets.
Mass spectrometry-based techniques, such as bottom-up
proteomics, are widely used to analyze cellular proteomes.
During bottom-up proteomics experiments, intact proteins are
cleaved by enzymes to yield peptides and the resulting peptide
sequences are determined by liquid chromatography-mass
spectrometry (LC-MS/MS).

fragments. CID and EAD result in different fragments for the
same peptide, with CID yielding b and y ions and EAD yielding
additional ¢’ and z* ions. EAD fragmentation provides
complementary sequence information to CID and often
preserves post-translational modifications (PTMs) that undergo
neutral loss in a CID experiment.*® Many different modifications
can be labile during MS analysis, including phosphorylation,
sulfation and O-GIcNAc modifications. This work focuses on
DDA method development and analysis of HeLa digest using
EAD, with an emphasis on site-specific localization of
phosphorylation sites. In addition to phosphorylated peptides,
glycated human peptides were also investigated using EAD.

Several factors influence peptide MS/MS spectral data quality
and depth of sequence coverage, including the data acquisition
speed and fragmentation mode implemented. Data-dependent
acquisition (DDA) is often used to analyze protein digests for
protein identification. MS/MS sensitivity is a crucial performance
attribute in DDA workflows. The ZenoTOF 7600 system uses the
Zeno trap to increase the duty cycle to 290% across the entire
fragment ion mass range, resulting in average signal gains of 5-
to 6-fold in MS/MS mode for peptides.? These gains enable
significant improvements in proteins identified using DDA
workflows.3

For proteomics experiments, 2 fragmentation options are
available on the ZenoTOF 7600 system: collision-induced Key features of the ZenoTOF 7600 system for
dissociation (CID) and electron-activated dissociation (EAD). Zeno EAD DDA analysis

Unlike CID, which relies on the collision of ions with nitrogen gas
to fragment molecules at their weakest bonds, EAD involves the

capture of electrons by molecular ions to form a radical state that

e The ZenoTOF 7600 system supports collision-induced
dissociation (CID) and electron-activated dissociation (EAD),
which can provide complementary peptide sequence

A B information for routine proteomic analysis

e The use of the Zeno trap yields a 5- to 6-fold gain in MS/MS
Peptide Identifications

@ 1% FDR b o e b e oo sensitivity for peptides, enabling the identification of more
N AN high-confidence proteins and peptides.?-3
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EAD  HN —d 8Ly [l ! o8N on e Zeno EAD DDA methods using microflow chromatography
jo148 A b | By | B[R, were developed for sensitive analysis of HeLa digest
e EAD complements CID by providing a fast, orthogonal

fragmentation strategy that can identify additional peptides
Figure 1. Comparison of peptide identifications at 1% FDR as a . . .
function of fragmentation mode on the ZenoTOF 7600 system. A) e EAD is easy to implement for DDA workflows in SCIEX OS

Due to the higher frequency of sampling with CID, peptide identifications software with automated EAD tuning and streamlined
were approximately 2-fold higher than EAD with this fragmentation mode -

but EAD provided over 10,000 new peptide identifications. B) lllustration method building
of typical fragment ions produced by CID (marked with red lines) and

EAD (marked with green lines).
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Methods

Sample preparation: A 100 pg sample of digested HelLa cell
lysate was fractionated into 44 samples using high pH RP-HPLC,
as previously described.® Then, 10% of each fraction was
injected for LC-MS/MS analysis. For analysis of glycated
peptides, human serum albumin was used from human plasma.

Chromatography: Peptide digests were separated using a
Waters ACQUITY UPLC M-class system with a flow rate of 6
pL/min in direct-inject mode. A Phenomenex Kinetex 2.6 um XB-
C18 LC column (100 A, 150 x 0.3 mm) was used. A rapid linear
gradient from 5-30% B over 21 minutes was used to interrogate
the fractions. Mobile phase A was water with 0.1% formic acid
and mobile phase B was acetonitrile with 0.1% formic acid.

Mass spectrometry: A ZenoTOF 7600 system that was
equipped with the OptiFlow Turbo V source” using a low
microflow probe and electrode was used for all data acquisition.
DDA parameters that were implemented for all experiments
included a TOF MS accumulation time of 250 ms and an
exclusion time of 6 seconds. Only precursors with charge states
in the range of 2-5 with intensities greater than 100 cps were
selected for fragmentation. For CID acquisition, the maximum
number of candidate ions per cycle was 45 and the accumulation
time was 20 ms. For EAD analysis of HelLa digest, the maximum
number of candidate ions was 10 per cycle and an accumulation
time of 50 ms was used. The reaction time for EAD was 20 ms
with an electron beam current of 3000 nA with a KE of 0 eV. For
analysis of glycated peptides, 20 candidate ions were used per
cycle with a 20 ms reaction time and 25 ms total acquisition time.

Data processing: Mascot software (Matrix Science, version 2.6)
was used for all data processing. Data files were searched
against the Swissprot_Human database using the SCIEX EAD
algorithm for EAD and the ESI-QUAD-TOF algorithm for CID.
For analysis of phosphorylated peptides in HeLa digest, the
following modifications were searched in Mascot software: fixed:
carbamidomethyl; variable: phosphorylation (on serine, threonine
and tyrosine); methionine oxidation and n-terminal acetylation.
Scaffold software (Proteome Software Inc., version 4.8.5) was
used to confirm MS/MS-based peptide and protein
identifications. For analysis of glycation sites, hexose variable
modifications were searched in Mascot software with a fixed
carboxymethyl modification. For both phosphorylated and
glycated peptides, figures were generated using Bio Tool Kit in
SCIEX OS software.”

Determining Zeno EAD DDA parameters for
proteomic analysis of labile PTMs

In order to select the acquisition settings for Zeno EAD DDA
analysis of HelLa digest, a variety of parameters were tested,
including electron beam current, electron kinetic energy, reaction
time and accumulation time. For peptides, it was determined that
using an electron KE of 0 eV and a beam current of 3000 nA
promoted fragmentation and yielded high fragment ion
intensities.
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Figure 2. Comparing CID and EAD fragmentation of a non-
phosphorylated peptide. (Top) CID fragmentation of the peptide,
DSYVGDEAQSKR, yields y and b ions for peptide sequencing, with
detected fragment ion masses (+1 charge state) shown in bold red in
the table beneath the spectrum. Red italics indicate a charge state other
than +1. (Bottom) Nearly complete ze (z+1 in table) and ¢’ ion series
were detected for the same peptide when fragmented by EAD.
Together, CID and EAD provide complementary information for
sequencing peptides.
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A reaction time of 20 ms coupled with an accumulation time of
50 ms enabled 2 EAD reactions to be performed for each
MS/MS spectrum and these parameters were employed for all
experiments. The Zeno trap was turned on to improve fragment
ion sensitivity, as Zeno trap activation results in a restoration of
duty cycle to 290% across the entire mass range of the MS/MS
spectrum.!

For analysis of glycated peptides, further optimization was
performed and it was determined that using a method with 20
MS/MS candidates and a 20 ms EAD reaction time yielded
accurate identification of challenging modifications.

Proteomic coverage of HeLa digest obtained
using EAD

Forty-four fractions of HelLa digest were separated using a fast
21-minute gradient and analyzed with DDA. Both CID and EAD
MS/MS fragmentation were evaluated and results were
processed and visualized using Mascot software and Scaffold
software. In the CID experiment, 93,866 peptides were identified
at 1% FDR using Mascot software as the database search
engine (Figure 1). This search was performed using the standard
settings for CID fragmentation and included 1 fixed and 5
variable modifications in the search space.

When the fragmentation mode was switched to EAD, 52,905
peptides were identified at 1% FDR (Figure 1). Fewer total
numbers of peptides were identified using EAD due to the
slightly slower acquisition speed (2.5x slower). However, the
orthogonal fragmentation mode provided complementary
sequence information (Figure 2) and identifications of peptides
not found using CID, yielding 11% more peptides. This highlights
that EAD is able to run at a frequency compatible with the LC
timescale and with DDA.

Phosphorylation site localization using Zeno
EAD MS/MS spectra

Although the HeLa cell digest was not specifically prepared to
preserve PTMs, 157 phosphopeptides were identified at 1% FDR
with EAD fragmentation. The raw phosphopeptide MS/MS
spectra were evaluated in Explorer in SCIEX OS software. Using
the Bio Tool Kit, the peptide sequences could be overlaid on the
spectra to evaluate the specific fragments and the fragmentation
coverage (Figures 3-5).7

EAD spectra can be used to identify the sequence and
phosphorylation site in peptides, including peptides with multiple
serines (Figure 3). Other phosphorylation sites were located
using EAD spectra, including a site on a 1889.88 Da peptide with
17 amino acids (Figure 4) and a site on a threonine residue near
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Figure 3. Localization of phosphorylation site in a peptide with
multiple serines. An EAD spectrum for peptide sequence
ISSSS[Pho]FSR contains a nearly complete ze (z+1) ion series. The
associated fragment ion masses are shown in the table below the
spectrum for reference.The modification site was localized with 97.42%
probability in Mascot software. Bold red indicates the fragments found
with +1 charge state and red italics indicate fragments found with a
different charge state.

the peptide N-terminus (Figure 5). The associated ¢’ and z¢ (z+1)
ion series clearly detailed the location of the phosphorylation
sites on the peptides.
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Figure 4. Identification of phosphorylation site in a 17-residue
peptide. The presence of ¢’ and z¢ (z+1) fragment ions enable the
identification of a phosphorylated serine in the sequence of a 1889.88
Da peptide. The modification site was located with 100% probability in
Mascot software. Detected fragment ions (+1 charge state) are
tabulated in bold red, with red italics indicating a charge state other
than +1.
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Figure 5. Localization of a phosphorylation site near the N-terminus
of a peptide with tyrosine and threonine. The ¢’ fragment ion series
enables localization of a phosphorylated threonine adjacent to a tyrosine.
The ¢’ ion series is shown in the spectrum and the modification site was
located with 99.98% probability in Mascot software. Both ¢’ and ze (z+1)
ion series are highlighted in the table below the EAD spectrum and the
detected fragments (+1 charge state) are highlighted in bold red.

Glycation site localization using Zeno EAD
MS/MS

A panel of human peptides was analyzed to evaluate hexose
and modifications using Zeno EAD DDA. While a hexose
modification could not be localized using CID, EAD enabled
unambiguous localization of a hexose modification on a lysine
residue on a long, 24 amino acid peptide (Figure 6).

Conclusions

The Zeno EAD DDA workflow developed in this work enabled
the robust identification of thousands of unique peptides in HeLa
digest. High pH fractionation of HeLa digest followed by LC-
MS/MS analysis with the ZenoTOF 7600 system generated a
large-scale Zeno EAD DDA dataset for interrogation. Microflow
chromatography was used to improve sensitivity and the Zeno
trap was activated to both improve MS/MS sensitivity and yield
high fragment ion intensities. This work highlights that Zeno EAD
is fast and compatible with DDA experiments.

EAD provides an alternative fragmentation option for the study of
proteomic samples and enables better characterization of some
types of peptides, such as long tryptic peptides and peptides
containing labile PTMs, compared to CID. In the EAD spectra
evaluated here, intact z¢ (z+1) and ¢’ ion series were readily
detectable for sequencing and localization of phosphorylation
and glycation sites.
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Figure 6. EAD fragmentation of a glycated peptide from human
serum albumin protein. A hexose modification was localized on a
lysine using a nearly complete ¢’ ion series. Detected fragment ion
masses are shown in red in the table below the EAD spectrum. The
hexose modification was located with 100% probability in Mascot
software. Bold red indicates the fragments found with +1 charge state,
while the red italics indicate fragments found with a different charge

state.
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