
SCIEX Anion Analysis Kit

For P/ACE[™] MDQ and P/ACE[™] MDQ *plus* Capillary Electrophoresis Systems

Instruction Guide

A49108AE May 2015 AB Sciex Pte. Ltd and its affiliates disclaims all warranties with respect to this document, expressed or implied, including but not limited to those of merchantability or fitness for a particular purpose. In no event shall AB Sciex Pte. Ltd. and its affiliates be liable, whether in contract, tort, warranty, or under any statute or on any other basis for special, incidental, indirect, punitive, multiple or consequential damages in connection with or arising from this document, including but not limited to the use thereof.

For research use only. Not for use in diagnostic procedures.

The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners.

AB SCIEX[™] is being used under license and SCIEX Separations is a part of AB Sciex.

© 2015 AB Sciex

Find us on the World Wide Web at www.sciex.com.

AB Sciex 500 Old Connecticut Path Framingham, MA 01701 USA

SCIEX Anion Analysis Kit

Chapter 1 Using the Anion Analysis Kit 5
Introduction
Safety
Materials and Reagents
Storing Kit Components
Cleaning Vial Caps
Turning on the UV Lamp
Cleaning the Capillary Interface
Installing the Capillary
Conditioning a New Capillary8
Storing the Capillary
Preparing the Buffer Trays8
Preparing the Sample
PCR Vial Setup–P/ACE MDQ System10
Universal Vial Setup–P/ACE MDQ plus System
Running Methods
Initial Conditions for All Methods12
Time Programs for Anion Separation Methods
Time Program for Anion Shutdown Method
Checking System Performance
Using the Anion Organic Test Mix
Using the Anion Inorganic Test Mix15
Integration Parameters
Troubleshooting
Appendix A Filter Installation
Installing the 230 nm Filter17
Appendix B System Configuration19
Configuring the P/ACE [™] MDQ or P/ACE [™] MDQ <i>plus</i> System
Activating Caesar Integration

Introduction

The SCIEX Anion Analysis Kit contains the supplies necessary for the separation and quantitation of anions, using the SCIEX P/ACE MDQ and P/ACE MDQ *plus* Capillary Electrophoresis Systems. Each anion kit yields approximately 500 tests.

Note: The system must be equipped with a UV detector and a 230 nm filter to perform this assay.

This kit permits the analysis of small inorganic anions and organic acids, which are often UV transparent. For this reason, the separation buffer contains a chromophore, and detection is achieved in indirect mode.

The separation method is performed under reverse polarity so that the negatively charged ions migrate toward the anode (the positively-charged electrode). In addition, the capillary is dynamically coated with a polycation, which reverses the electro-osmotic flow (EOF) toward the anode, thus reducing the separation time while maximizing migration time reproducibility.

IMPORTANT: The main focus of this application is in the biopharmaceutical market. This product can also be used for environmental testing and food and beverage markets. This product is **for research use only.** It is not for use in diagnostic procedures. No clinical decision or patient notification may be made based on results using this research assay.

Safety

Refer to the Safety Data Sheets (SDS) information, available at sciex.com/safety-data-sheets, regarding the proper handling of materials and reagents. Always follow standard laboratory safety guidelines.

Materials and Reagents

Table 1-1Kit Contents (PN A53537)

Component	Quantity
Anion Coating	1
Anion Separation Buffer	1
Conditioner — Na	1
Anion Acid Rinse	1
Anion Internal Standard	1
Anion Organic Test Mix	1
Anion Inorganic Test Mix	1
Capillary, 50 cm, 75 µm I.D.	3 pieces
Rinse Solution	1
Ion Analysis Insert	1

Table 1-2 Materials Required but Not Included in This Kit

Description	Part	P/ACE	System
Description	Number	MDQ	MDQ plus
230 nm filter (see note below)	144433	✓	✓
Adequate pipettes and pipette tips		✓	✓
PCR vials (100-pack)	144709	✓	✓
2 mL glass vials (100-pack)	144980	✓	
Red caps for 2 mL glass vials (100-pack)	144648	✓	
PCR vial holders (50-pack)	144657	✓	
PCR vial springs (10-pack)	358821	✓	
Gray caps for PCR vials (50-pack)	144656	✓	
Universal plastic vials (100-pack)	A62251		✓
Blue rubber caps for universal vials (100-pack)	A62250		✓

Note: A 230 nm filter is required for the analysis. This filter is included with the P/ACE MDQ *plus* system and is installed at position 4. However, it is not provided for the P/ACE MDQ system and must be purchased separately.

Storing Kit Components

Upon receipt, store all components at room temperature and away from direct sunlight.

Cleaning Vial Caps

Note: The vial caps may contain impurities that can be detected with the Anion Analysis Kit, therefore wash the caps before use.

- 1. Using a clean beaker, rinse the vial caps twice with double-deionized (DDI) water. Do not use soap.
- 2. Let the caps soak in DDI water for at least one hour, making sure the caps are completely submerged.
- 3. Remove the caps from the water.
- 4. To dry the caps, either place them in an oven set at 55°C for two hours, or allow them to dry overnight at room temperature covered by clean, lint-free laboratory tissue.

The vial caps become compressed and lose elasticity during use, which can lead to pressure failures and current leakage errors. Therefore, reusing caps is not recommended.

Turning on the UV Lamp

Turn on the UV lamp and allow the system to warm up for at least 30 minutes prior to experimentation.

Cleaning the Capillary Interface

Carefully clean the system electrodes and interface block as described in the "Maintenance Procedure" section of the instrument manual. Repeat this procedure after every 24 hours of operation.

Installing the Capillary

- Install a 75 μm I.D., 60.2 cm long (50 cm from injection site to detector) fused-silica capillary into a capillary cartridge using the *Capillary Cartridge Rebuild Instructions* (PN 144655).
- 2. Use an 800 µm aperture in the cartridge. This aperture is labeled with an "8."
- 3. After the capillary has been installed in the cartridge, insert the cartridge in the instrument.
- 4. Close the cartridge cover and tray cover.

Conditioning a New Capillary

After installing a new capillary, rinse the capillary for one minute with Conditioner — Na. Wait four minutes, then rinse for 30 seconds with Conditioner — Na. Rinse for one minute with Rinse Solution. Use 20 psi of pressure for all rinses.

Storing the Capillary

After use, store the capillary on the instrument or in the original capillary storage box, with both ends submerged in Rinse Solution. Do not allow the capillary ends to dry, because the capillary may become plugged.

After a long storage period, or at the start of each day, condition the capillary using the Capillary Conditioning method described in Running Methods on page 11.

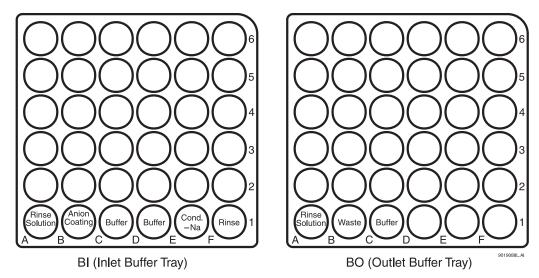
Caution: Do not share capillaries between applications. If the capillary has been used for cation analysis, do not use it for anion analysis.

Preparing the Buffer Trays

Use the correct vials and caps for your system:

- For the P/ACE MDQ system–use glass vials and red caps
- For the P/ACE MDQ plus system—use universal vials and blue caps

Replace all vials after twenty runs or after 24 hours inside the instrument. The increment option in the method can be used to automatically increment the vials every twenty runs on both buffer trays.


1. Fill the vials with equal volumes of each reagent in Table 1-1 and position them in the buffer trays (refer to Figure 1.1).

Use the correct volume for your system:

- For the P/ACE MDQ system–1.4 mL
- For the P/ACE MDQ *plus* system–1.5 mL
- 2. In the **Waste** position, place a vial partially filled with Rinse Solution.

Use the correct volume for your system:

- For the P/ACE MDQ system-700 μL
- For the P/ACE MDQ plus system-600 μL
- 3. Close each vial with a clean cap.

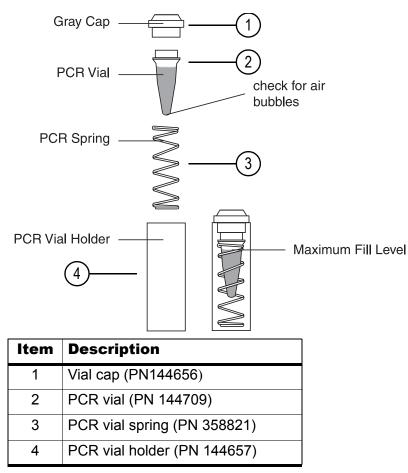
Figure 1.1 Buffer Tray Configuration for Anion Analysis

4. Load the Inlet Buffer and Outlet Buffer trays in the instrument.

Note: When analyzing fluoride and/or phosphate ions, fill a vial with Anion Acid Rinse and place it in position F1 of the Inlet Buffer Tray. The use of the Anion Acid Rinse is required when running the Anion Inorganic Test Mix to avoid peak tailing.

Preparing the Sample

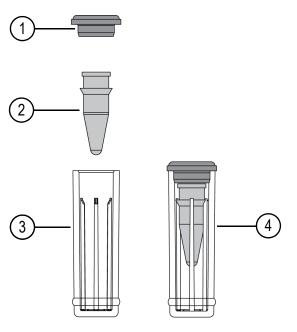
Depending on the concentration of the analytes, the sample should be injected as is or diluted. Dilution should be done so that the final concentration of the sample anions is between 5 ppm and 200 ppm. Special care should be taken to verify the pH of the sample, which should be above pH 5. A 50 mM NaOH solution can be used to dilute the sample and adjust its pH value.


The Anion Internal Standard (I.S.) consists of 30 mM sodium octanoate (sodium caprylate), which is equivalent to 4296 ppm of octanoate ion. The I.S. can be used in the quantitation of the sample anions. To use it, dilute the I.S. by a factor of 50 with the sample. For example, mix 4 μ L of I.S. with 200 μ L of sample to yield 86 ppm of octanoate ion.

Note: The rinse solution used in this kit is ultra-purified water specifically for capillary electrophoresis analysis of ions.

PCR Vial Setup–P/ACE MDQ System

Fill a PCR vial with 200 μ L of test or sample mix. Make sure there are no air bubbles at the bottom of the PCR vial. Air bubbles can affect the sample injection. If bubbles exist, centrifuge the vials for 2 minutes at 1000 x g and repeat if necessary. Place the PCR vial in a PCR holder equipped with a vial spring (Figure 1.2). Seal the PCR vial with a clean gray cap and place it in the inlet sample tray.



Universal Vial Setup-P/ACE MDQ plus System

Fill a PCR vial or micro vial with 200 μ L of test or sample mix. Make sure there are no air bubbles at the bottom of the vial. Air bubbles can affect the sample injection. If bubbles exist, centrifuge the vials for 2 minutes at 1000 x g and repeat if necessary. Place the vial into the universal vial and seal with a blue cap (Figure 1.3).

Figure 1.3 Universal Vial Setup–P/ACE MDQ plus System

901927L.AI

Item	Description
1	Universal vial cap (PNA62250)
2	PCR vial (PN 144709)
3	Universal vial (PN A62251)
4	Micro vial inside of universal vial

Running Methods

Three methods are required for performing anion analysis:

- Anion Capillary Conditioning
- Anion Separation
- Anion Shutdown

Save all three methods, with their respective names, in the 32 Karat folder.

Note: These methods can be downloaded from sciex.com/products/capillaryelectrophoresis-instruments/p/ace-mdq-plus (click **Resources**).

Instruction Guide

Initial Conditions for All Methods

All three methods utilize the same **Initial Conditions** (Figure 1.4) and **UV Detector Settings** (Figure 1.5).

Note: When analyzing samples containing inorganic anions or organic acids that absorb in the low UV (such as nitrate and azide), the detection wavelength (Figure 1.5) should be set at 254 nm for optimal detection. Save this method with a different name, such as "Anion Separation Method at 254 nm".

Figure 1.4 Initial Conditions for Anion Capillary Conditioning, Anion Separation, and Anion Shutdown Methods

👙 Initial Conditions 😵 UV Detect	tor Initial Conditions 🛛 🕥 Time Program 🛛
Auxiliary data channels ✓ Moltage max: 30.0 kV ✓ Current max: 300.0 μA ✓ Power Pressure Mobility Mobility ✓ Apparent Mobility	Temperature Peak detect parameters Cartridge: 25.0 *C Sample storage: 25.0 *C Trigger settings Peak width: 9 Wait for external trigger Wait until cartridge coolant temperature is reached Wait until sample storage temperature is reached
Plot trace after voltage ramp Analog output scaling Factor: 1	Inlet trays Outlet trays Buffer: 36 vials Sample: 48 vials Sample: No tray

Figure 1.5 UV Detector Initial Conditions for Anion Capillary Conditioning, Anion Separation, and Anion Shutdown Methods

👙 Initial Conditions 🚳 UV Dete	ector Initial Conditions
Electropherogram channel Acquisition enabled Wavelength: 230 • nm Data rate: 4 • Hz	Filter C High sensitivity G Normal C High resolution Peak width (points): 16-25
Relay 1 Relay 2	Absorbance signal
© Off 🖉 Off	C Direct
C On C On	Indirect

🎒 Ini	tial Condit	tions 🛛 😨 UV Detecti	or Initial Co	nditions	🕑 Time Pi	ogram		
	Time (min)	Event	Value	Duration	Inlet vial	Outlet vial	Summary	Comments
1		Rinse - Pressure	20.0 psi	1.00 min	BI:E1	BO:B1	forward	Rinse with Conditioner-Na.
2		Rinse - Pressure	20.0 psi	1.00 min	BI:F1	BO:B1	forward	Rinse with Rinse Solution.
3		Rinse - Pressure	20.0 psi	0.50 min	BI:B1	BO:B1	forward	Rinse with Anion Coating.
4		Rinse - Pressure	20.0 psi	0.50 min	BI:C1	BO:B1	forward	Rinse with Anion Separation Buffer.
5	0.00	Separate - Voltage	30.0 KV	10.00 min	BI:D1	BO:C1	1.00 Min ramp, reverse polarity	Separation with Anion Separation Buffer
6	10.00	Stop data			••••••	•		
7	10.10	Rinse - Pressure	20.0 psi	0.50 min	BI:E1	BO:B1	forward	Rinse with Conditioner-Na.
8	10.60	Rinse - Pressure	20.0 psi	0.50 min	BI:F1	BO:B1	forward	Rinse with Rinse Solution.
9	11.10	End			•	•		
10					•	••••••		

Figure 1.6 Time Program for Anion Capillary Conditioning Method

Time Programs for Anion Separation Methods

There are two Anion Separation methods: one for the P/ACE MDQ system and the other for the P/ACE MDQ *plus* system. The difference between the two methods is the duration of the Anion Coating rinse (step 1 in the Time Program):

- For the P/ACE MDQ system–0.5 min (Figure 1.7)
- For the P/ACE MDQ *plus* system–1.0 min (Figure 1.8)

Figure 1.7 Time Program for Anion Separation Method–P/ACE MDQ System

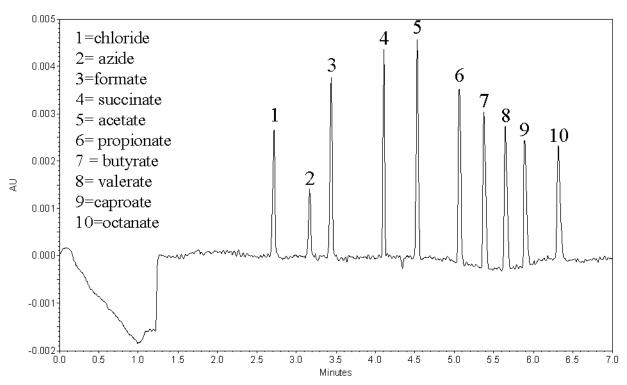
	Time (min)	Event	Value	Duration	Inlet vial	Outlet vial	Summary	Comments
1		Rinse - Pressure	20.0 psi	0.50 min	BI:B1	BO:B1	forward	Rinse with Anion Coating .
2		Rinse - Pressure	20.0 psi	0.50 min	BI:C1	BO:B1	forward	Rinse with Anion Separation Buffer.
3		Inject - Pressure	0.5 psi	8.0 sec	SI:A1	BO:A1	Override, forward	Sample Injection
4		Inject - Pressure	0.1 psi	10.0 sec	BI:A1	BO:A1	No override, forward	Water Injection
5	0.00	Separate - Voltage	30.0 KV	8.00 min	BI:D1	BO:C1	1.00 Min ramp, reverse polarity	Separation
6	1.25	Autozero		•				
7	8.00	Stop data		•				
8	8.10	Rinse - Pressure	20.0 psi	0.50 min	BI:E1	BO:B1	forward	Rinse with Conditioner - Na.
9	8.60	Rinse - Pressure	20.0 psi	0.50 min	BI:F1	BO:B1	forward	Rinse with Rinse Solution or Anion Acid Rinse.
10	9.10	End						1
10 11	9.10	End						

Figure 1.8 Time Program for Anion Separation Method-P/ACE MDQ plus System

	Time (min)	Event	Value	Duration	Inlet vial	Outlet vial	Summary	Comments
1		Rinse - Pressure	20.0 psi	1.00 min	BI:B1	BO:B1	forward	Rinse with Anion Coating.
2		Rinse - Pressure	20.0 psi	0.50 min	BI:C1	BO:B1	forward	Rinse with Anion Separation Buffer
3		Inject - Pressure	0.5 psi	8.0 sec	SI:A1	BO:A1	Override, forward	Sample Injection
4		Inject - Pressure	0.1 psi	10.0 sec	BI:A1	BO:A1	No override, forward	Water Injection
5	0.00	Separate - Voltage	30.0 KV	8.00 min	BI:D1	BO:C1	1.00 Min ramp, reverse polarity	Separation with Anion Separation Buffe
6	1.25	Autozero				1		
7	8.00	Stop data				1		
8	8.10	Rinse - Pressure	20.0 psi	0.50 min	BI:E1	BO:B1	forward	Rinse with Conditioner-Na.
9	8.60	Rinse - Pressure	20.0 psi	0.50 min	BI:F2	BO:B1	forward	Rinse with Rinse Solution.
10	9.10	End				1		

Time Program for Anion Shutdown Method

Figure 1.9 Time Program for Anion Shutdown Metho
--

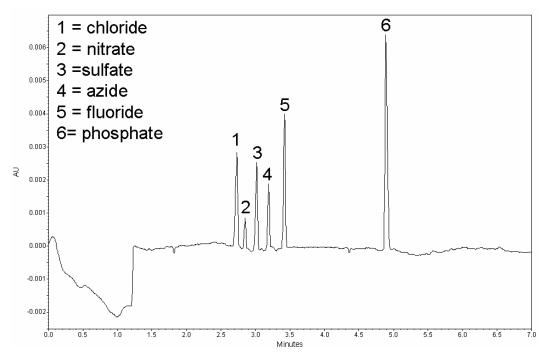

👙 Initia	🔅 Initial Conditions 🛛 🥸 UV Detector Initial Conditions 🛛 🕥 Time Program 🛛								
	Time (min)	Event	Value	Duration	Inlet vial	Outlet vial	Summary	Comments	
1		Rinse - Pressure	20.0 psi	1.00 min	BI:A1	BO:A1	forward	Rinse with Rinse Solution.	
2	0.00	Separate - Pressure	0.1 psi	1.00 min	BI:A1	BO:A1	forward	Rinse with Rinse Solution.	
3	1.00	Lamp - Off		•		•			
4	1.20	End				•			
5				•		•			

Checking System Performance

Using the Anion Organic Test Mix

To check system performance, run the Anion Organic Test Mix after performing the Capillary Conditioning method. Compare the electropherogram obtained with the one shown in Figure 1.10. The electrical current during the separation should be stable around -53 μ A. A negative value indicates that reverse polarity was used in the separation.

Figure 1.10 Anion Organic Test Mix–Typical Electropherogram


In Figure 1.10, the concentration of each ion in the test mix is approximately 20 ppm, with the exception of azide, which is about 10 ppm.

```
SCIEX Anion Analysis Kit
```

Using the Anion Inorganic Test Mix

To check system performance, run the Anion Inorganic Test Mix after performing the Capillary Conditioning method. Compare the electropherogram obtained with the one shown in Figure 1.11. The electrical current during the separation should be stable around -53 μ A. A negative electrical value indicates that reverse polarity was used in the separation. Make sure to use the Anion Acid Rinse in the separation to prevent the tailing of the fluoride and phosphate peaks.

In Figure 1.11, the concentration of each ion in the test mix is approximately 20 ppm, with the exception of azide, which is about 10 ppm.

Integration Parameters

The integration parameters in the analysis method should be optimized for each sample. As a starting point, use the values in Figure 1.12. These values will successfully integrate both Anion Test Mixes.

Figure 1.12	Recommended In	ntegration	Parameters a	nd Initial Values
-------------	----------------	------------	--------------	-------------------

#		Event		Start Time	Stop Time	Value
1	V	Integration Off	•	0.000	2.000	0
2	V	Width		0.000	8.000	0.05
3	V	Threshold		0.000	8.000	350
4	V	Shoulder Sensitiv	/ity 👘	0.000	0.000	500
5	V					

The parameters have the following effects on the integration:

- Integration off sets time intervals in the electropherogram that are not integrated.
- Width sets the sensitivity of the peak detection regarding changes in the baseline.
- **Threshold** determines how high a peak must rise above the baseline noise before it is recognized as a peak.
- **Shoulder sensitivity** enables the detection of shoulders in large peaks. Its value specifies the slope value for splitting a peak.
- (Optional, not shown) **Minimum Cluster Distance** can be used to split peaks when shoulder sensitivity does not provide proper integration. It specifies the distance between non-baseline separated peaks so that they are not identified as one peak.

Additional help is available from the 32 Karat Software Online Help.

Troubleshooting

Problem	Possible Cause	Corrective Action		
Unstable current	Problem with capillary	Replace capillary with new one		
No peaks	Wrong polarity in method	Use reverse polarity in method		
	No sample vial or sample at wrong location	Check sample vial position		
No stable migration time	Buffer depletion	Replace all buffer vials after every 20 runs		
Presence of ghost peaks	Contaminated buffer vials	Replace all buffer vials after every 20 runs		
	Vial caps are wet	Replace caps with clean, dry caps		
	Vial caps are dirty	Always use clean caps		
Fluoride and phosphate peaks are tailing	Using Rinse Solution instead of Anion Acid Rinse.	Make sure that a vial filled with Anion Acid Rinse is placed at position F1 and successive incremental positions in the Inlet Buffer Tray		
Anion peaks have longer migration times.	Rinse time with Anion Coating is too short.	Increase Anion Coating rinse time from 0.5 min to 1.0 min in the separation method when using the P/ACE MDQ <i>plus</i> system.		

Installing the 230 nm Filter

Note: A 230 nm filter is required for the analysis. This filter is included in the P/ACE MDQ *plus* system and is installed at position 4. However, it is not provided for the P/ACE MDQ system and must be purchased separately.

- 1. Before installing the 230 nm filter, check the condition of the filter as instructed in the appropriate guide for your system.
 - For the P/ACE MDQ system–"Installation UV detector wavelength filters" in the P/ACE MDQ Installation and Maintenance Guide (PN A36419).
 - For the P/ACE MDQ *plus* system—"Install Wavelength Filters for the UV Detector" in the *P/ACE MDQ plus System Maintenance Guide* (PN B54955).
- 2. Set the buffer trays to the load position in the Direct Control window.
- 3. Lift the cartridge cover door and allow the coolant to drain from the capillary cartridge.
- 4. Turn off the instrument.
- 5. Loosen the two thumb screws and lift the insertion bar.
- 6. Remove the capillary cartridge.
- 7. Loosen the thumb screws and remove the optics source assembly.
- 8. Wearing clean gloves, remove the filter wheel access cover and rotate the filter wheel to the correct position for your system:
 - For the P/ACE MDQ system–position 6
 - For the P/ACE MDQ plus system-position 4
- 9. Place the 230 nm filter at the appropriate position with the reflective side facing inward (toward the back of the instrument). Do not touch the filter with your hands.
- 10. Reinstall the filter wheel cover on the optics source assembly.
- 11. Replace the optics source assembly and tighten the two thumb screws.
- 12. Place the cartridge inside the instrument, lower the insertion bar, and tighten the two thumb screws.
- 13. Close the cartridge cover door.
- 14. Turn on the instrument.
- 15. Follow the instructions in Configuring the P/ACE[™] MDQ or P/ACE[™] MDQ *plus* System on page 19 to configure the 32 Karat software for performing anion analysis.

Configuring the P/ACE[™] MDQ or P/ACE[™] MDQ *plus* System

IMPORTANT: Make sure that the system is turned on, and that the UV detector has been installed.

- 1. Open the 32 Karat software.
- 2. Right-click in the right pane of the Enterprise window.
- 3. Select **New > Instrument**.

A new icon that looks like a question mark appears.

- 4. Right-click the question mark icon and select Rename.
- 5. Rename this icon Anion.
- 6. Right-click the Anion icon and select Configure.
- 7. Select P/ACE MDQ CE as the instrument type and click Configure.

A new window opens.

- 8. Click the UV detector icon on the left.
- 9. Click the **Green arrow**. The UV detector icon should now be on the right side under **Configured Modules**.

Figure B.1 P/ACE MDQ CE Configuration for Anion Analysis

P/ACE MDQ CE Configuration	in and the second s	×
Available modules:	Configured modules:	
UV Detector PDA Detector	UV Detector	
LIF Detector Stand-Alone (No Detector)		
Detector Event Modules Configuration		
Options Auto Configu	guration OK Cancel H	Help

10. Double-click the **UV Detector** icon to display the configuration settings.

If necessary, edit the settings to match the appropriate figure.

- For the P/ACE MDQ system-refer to Figure B.2.
- For the P/ACE MDQ *plus* system–refer to Figure B.3.

Figure B.2 Anion Analysis Settings–P/ACE MDQ System

P/ACE MDQ Instrument Configuration		×
GPIB Communication Board: GPIB0 Device ID: 1	Set Bus Address	OK Cancel
Inlet trays Buffer: 36 vials Sample: 48 vials Home position: BI:A1	LIF Calibration Wizard Filter (190nm - 600nm) 2: 200 nm 6: 230 3: 214 nm 7: 0	Help nm nm
Outlet trays Buffer: 36 vials Sample: No tray Home position: B0:A1 Trays	4: 254 nm 8: 0 5: 280 nm Units Pressure units: psi	nm
Sample Trays Enable Tray Definition Height: 1 mm Depth: 1 mm	Temperature Control	•

Figure B.3 Anion Analysis Settings–P/ACE MDQ plus System

P/ACE MDQ plus System Instrument Configuration			
mber: A746031135 OK			
Set Bus Address Help			
	nm nm		
5: 254 nm	m		
Pressure units: psi Temperature Control Available			
	Mber: A746031135 OK Set Bus Address Cance LIF Calibration Wizard Help 2: 200 nm 6: 0 r 3: 214 nm 7: 0 r 4: 230 nm 8: 0 r 5: 254 nm 7: 0 r Temperature Control Temperature Control 0 0 0		

11. Click **OK** to accept the detector configuration.

12. Follow the instructions in Activating Caesar Integration.

Activating Caesar Integration

The Caesar Integration must be activated in the anion configuration to perform peak integration and quantitation.

1. In the **CE Configuration** dialog, click **Options** (Figure B.4)

Figure B.4 P/ACE MDQ CE Configuration for Anion Analysis

P/ACE MDQ CE Configuration				
Available modules:		Configured modules	:	
UV Detector PDA Detector		UV Detector		
LIF Detector Stand-Alone (No Detector)				
Detector Event Modules Configuration				
Options Auto Configu	ration	ОК	Cancel	Help

2. Under General, make sure that only Qualitative Analysis and Caesar Integration are selected (Figure B.5).

Configuration Options	×
General Instrument Options	
□PDA □System Suitability Qualitative Analysis Caesar Integration	
ОК	Cancel Help

Figure B.5 Configuration Options Dialog

3. Click **OK** in the next three windows to accept the changes.