Biomarkers and Omics

利用SCIEX 液相色谱串联质谱法对细胞中的能量代谢物进行靶向 分析

Targeted Analysis of Energy Metabolites in Cells by Using SCIEX Liquid Chromatography-Tandem Mass Spectrometry

史晓媛,龙志敏,郭立海 Xiaoyuan Shi, Zhimin Long, Lihai Guo *SCIEX 应用支持中心,中国*

Key Words: Energy metabolites; Target Analysis; Cells

引言

细胞作为生物体结构和功能的基本单位,易获得、条件较为可控,不易受到外界因素的影响,如年龄、健康程度、外界环境改变等都会对实验结果的准确性产生影响,可以广泛运用于疾病机制研究、药理学、毒理学、细胞能量代谢研究等方面。细胞能量代谢研究可借助于各种细胞模型,鉴识细胞内源性能量代谢物,直接反映细胞生命活动的生物标志物信息,从而揭示有关细胞的代谢途径和过程,对于体外研究药物作用下代谢物的变化及改变机制具有重要意义。能量代谢物中包含很多高能磷酸键化合物如ATP,ADP等,在进行液相质谱分析时,容易与管路中的金属离子络合导致峰型变差,灵敏度降低。本文优化了流动相条件,通过加入亚甲基二膦酸来改善峰型,建立了300多种能量代谢物的检测方法,可以进行高通量靶向分析。

仪器设备:

SCIEX ExionLC™ AD系统和SCIEX Triple Quad™ 7500系统

图1.ExionLC™ AD系统和SCIEX Triple Quad™ 7500系统

液相条件

液相系统: SCIEX ExionLC™AD系统

色谱柱: ACQUITY BEH Amide (100 × 2.1mm, 1.7 µm)

流动相: A: 95%水(含20mM乙酸铵,5μM亚甲基二膦酸) B: 95%乙腈(含20mM乙酸铵,5μM亚甲基二膦酸)

流速: 0.3 mL/min

柱温: 40℃

液	相	梯	度	:
1 12~		10-1-		٠

B(%) 95 95
95
75
40
40
95
95

质谱条件

离子源: ESI, 正、负离子模式

扫描方式: MRM多反应监测

气帘气CUR: 40psi 喷雾电压IS: +3000V/-3000V

源温度 Tem: 500℃ 雾化气Gas1: 35psi

辅助气GAS2: 70psi 碰撞气 CAD: 10

RUO-MKT-02-14614-ZH-A p 1

MRM参数,如表1

表1. 部分能量代谢物的质谱参数

Component Name	Q1	Q3	Polarity
AMP	348.15	136	Positive
dAMP	332.1	136	Positive
Deoxyadenosine	252	136	Positive
Adenosine	268	136	Positive
Guanine	152.2	110	Positive
Guanosine	284.1	135	Positive
dGMP	348.1	135	Positive
GMP	364	152	Positive
Citrate	191.05	87	Negative
Isocitrate	191.02	117	Negative
Aconitate	173.05	85	Negative
Oxoglutarate	145	101	Negative
Succinate	117	73	Negative
Fumarate	115	71	Negative
Malate	133	115	Negative
Oxaloacetate	131	87	Negative

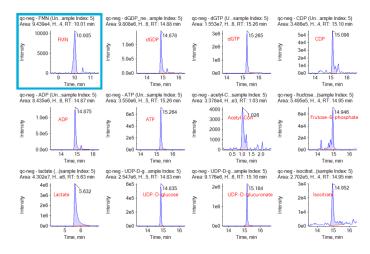


图2.部分负模式化合物提取离子色谱图

2. 数据分析

本文共检测了12个细胞样品用于差异性分析,实现该方法在靶向能量代谢组学中的应用。12个样本中6个为给药组细胞样本,另外6个为对照组样本。利用该LC-MS/MS方法对这批样本中能量代谢物进行了靶向的分析。首先,我们对这两组样品测得峰面积结果进行了PLSDA分析,从图3中可以看出这两组样品很明显的被区分开来,说明能量代谢物在给药组及对照组中有显著差异。

实验结果

1. 正离子模式下目标化合物的提取离子流图见图1, 负离子模式各目标化合物的提取离子流图见图2。

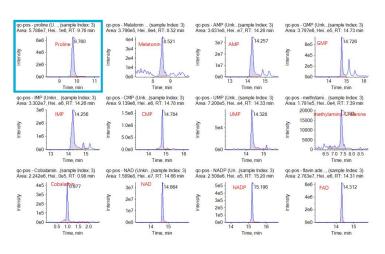


图1. 部分正模式化合物提取离子色谱图

图3. 两组细胞样本的PLSDA图(G为给药组,C为对照组)

RUO-MKT-02-14614-ZH-A p 2

为了找出变化差异明显的能量代谢物成分,我们进行了统计分析,得到每种代谢物在两组样品中的p-value和VIP值,通过p-value< 0.01和VIP>1的筛选,共有92种代谢物有显著变化(见表2)。从热图(图4)可以发现对照组与给药组有显著差异,在top25的化合物中,给药组中腺苷、鸟苷、肌苷、尿嘧啶、葡萄糖-6-磷酸等14种物质含量升高,脱氧鸟苷三磷酸、甘氨酸、肌醇、天门冬氨酸、肌氨酸等11种物质含量降低。

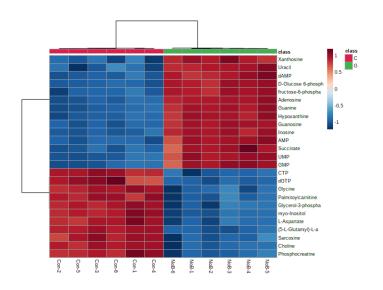


图4. 两组细胞样品的热图(top25)(G为给药组,C为对照组)

总结

本文使用SCIEX Triple Quad™ 7500系统建立了330种能量代谢物LC-MS/MS检测方法,可用于细胞中能量代谢物的靶向研究。该方法不仅能高效准确地检测出样品中的代谢物成分,而且能够提供有效地差异性分析,为高通量分析不同模型下能量代谢物的差异提供了快速可靠的方法。

表2. 部分差异化合物(top25)

No.	差异化合物名称	p.value	VIP
1	Guanosine	1.1873	1.30E-13
2	D-Glucose 6-phosphate	1.1872	1.41E-13
3	Adenosine	1.1871	2.06E-13
4	Inosine	1.187	2.23E-13
5	(5-L-Glutamyl)-L-amino acid	1.187	2.50E-13
6	Guanine	1.1864	7.75E-13
7	Hypoxanthine	1.1857	2.05E-12
8	fructose-6-phosphate	1.185	4.85E-12
9	dAMP	1.1846	8.30E-12
10	AMP	1.1841	1.35E-11
11	myo-Inositol	1.1837	1.88E-11
12	Choline	1.1833	2.57E-11
13	СТР	1.1833	2.65E-11
14	UMP	1.1825	5.01E-11
15	L-Aspartate	1.1813	1.11E-10
16	Phosphocreatine	1.1807	1.54E-10
17	Glycine	1.1806	1.64E-10
18	Xanthosine	1.1804	1.92E-10
19	Palmitoylcarnitine	1.1802	2.04E-10
20	GMP	1.1801	2.27E-10
21	Glycerol-3-phosphate	1.1795	3.02E-10
22	Uracil	1.1791	3.76E-10
23	Succinate	1.1789	4.05E-10
24	Sarcosine	1.1789	4.08E-10
25	Guanosine	1.1873	1.30E-13

SCIEX临床诊断产品线仅用于体外诊断。仅凭处方销售。这些产品并非在所有国家地区都提供销售。获取有关具体可用信息,请联系当地销售代表或查阅https://sciex.com.cn/diagnostics。所有其他产品仅用于研究。不用于临床诊断。本文提及的商标和/或注册商标,也包括相关的标识、标志的所有权,归属于AB Sciex Pte. Ltd. 或在美国和/或某些其他国家地区的各权利所有人。

© 2022 DH Tech. Dev. Pte. Ltd. RUO-MKT-02-14614-ZH-A

SCIEX中国

北京分公司 北京市朝阳区酒仙桥中路24号院 1号楼5层

电话: 010-5808-1388 传真: 010-5808-1390

全国咨询电话: 800-820-3488,400-821-3897

上海公司及中国区应用支持中心 上海市长宁区福泉北路518号 1座502室

电话: 021-2419-7200 传真: 021-2419-7333 官网: sciex.com.cn 广州分公司 广州市天河区珠江西路15号 珠江城1907室 电话: 020-8510-0200 传真: 020-3876-0835

官方微信: SCIEX-China