GEN-MKT-18-7897-A
Feb 6, 2019 | Blogs, Forensic | 0 comments
Drug testing is a moving target. As novel psychoactive substances (NPS) rapidly emerge as a new class of designer stimulants (DS), global use has reached an all-time high over the last decade. Supposedly ‘legal’ alternatives to internationally controlled drugs, these compounds are typically manufactured ‘underground’ in unregulated laboratories by teams that are a step ahead of regulators. By simply altering the concoction of chemicals, the drugs slide under permissible legal radars.
With NPS-related deaths on the rise, the time it takes to detect these metabolites in forensic samples is critical. Clearly, there is a greater need for new technologies and methodologies to detect new substances and take an appropriate course of action to save lives.
I Don’t Know What I’m Looking for (But I’ll Know When I Have Found It)Trying to look for that “unknown” in a complex biological sample can be harder than finding a disguised fugitive in Grand Central Station at rush hour! It seems like an impossible task. The fast-paced nature of the market combined with widespread availability of an increasing number of substances is frightening. In fact, at the dawn of the millennium, the UN Office on Drugs and Crime (UNODC) listed only a handful of NPS. By 2008 the number was up to 26. Now more than 560 NPS are currently being monitored by the European Monitoring Centre for Drugs and Drug Addiction, with 100 new agents identified in 2015 alone.
Traditional drug screening tends to take a two-prong approach:
Where Unknown Compounds Can Hide, We Can FindIt seems that identifying the unknown in the evolving designer drug market, knowns are not that simple. Fret not! High-Resolution Accurate Mass Spectrometry (HRMS) innovation such as the SCIEX X500R QTOF system coupled with a detailed toxicology screening method for 664 forensic compounds can do the job.
The good news? There’s a concise and comprehensive way to screen for unknown substances in your forensic evidence. This technote shows how our HRMS system powered by SCIEX OS Software work together. Discover a single-injection method for screening 664 most up-to-date forensic compounds, with library searching to automate and confidently establish the identification of unknowns in an efficient, all-in-one workflow.
Read the tech note today by filling out the form on your right and downloading our Forensics Compendium.
In a recent webinar, available on demand, scientists Luiza Chrojan and Ryan Hylands from Pharmaron, provided insights into the deployment of capillary gel electrophoresis (CGE) within cell and gene therapy. Luiza and Ryan shared purity data on plasmids used for adeno-associated virus (AAV) manufacturing and data on AAV genome integrity, viral protein (VP) purity and VP ratios using the BioPhase 8800 system.
Last year, Technology Networks hosted two webinars that featured groundbreaking research utilizing SWATH DIA (data-independent acquisition) for exposomics and metabolomics. Researchers Dr. Vinicius Verri Hernandes from the University of Vienna and Dr. Cristina Balcells from Imperial College London (ICL) demonstrated how a DIA approach can be successfully implemented in small molecule analysis using the ZenoTOF 7600 system. Their innovative approaches highlight the potential of SWATH DIA to enhance the detection and analysis of chemical exposures and metabolites, paving the way for new insights into environmental health and disease mechanisms.
For as long as PFAS persist in the environment, there is no doubt they will persist in our conversations as environmental scientists. Globally, PFAS contamination has been detected in water supplies, soil and even in the blood of people and wildlife. Different countries are at various stages of addressing PFAS contamination and many governments have set regulatory limits and are working on assessing the extent of contamination, cleaning up affected sites and researching safer alternatives.
Posted by
You must be logged in to post a comment.
Share this post with your network