SCIEX Works with the Francis Crick Institute and the University of Cambridge to Establish the Most Comprehensive Understanding of Metabolism To-date

New proteomic study to develop advanced resource for precision medicine research by using Microflow SWATH® Acquisition for HT industrialized proteomics

June 28, 2016

Framingham, MA — SCIEX, a global leader in life science analytical technologies, has today announced that it will work with the Francis Crick Institute, a biomedical discovery institute in the UK, and the University of Cambridge to build a metabolism-centric proteomic map. This comprehensive map will focus on enzymes involved in the control of metabolism and will be developed through the use of a fast and highly accurate, high content proteomics platform using SCIEX micro-flow chromatography and data-independent SWATH® acquisition.

There is a growing demand for dramatic improvements in the speed and the robustness of large-scale proteome analysis. The SWATH® platform that will be utilized for this study allows systematic recording of semi-targeted proteomic profiles at a significantly higher throughput than with previous methods, and will be fundamental to the success of the research.

The project is supported by the Biotechnology and Biological Sciences Research Council (BBSRC) UK and will yield a unique resource for the scientific community and industry as it explores metabolic regulation and its effect on aging and age-associated diseases. Understanding the function and activity of the metabolic network is of paramount importance for the biotechnology industry. New insights into these processes will allow scientists to modify and exploit the metabolic network to alter the yield and nature of metabolites. It has particular application for medical research into the aging process, where increased understanding of enzymatic controls could provide new potential targets or candidate therapies in precision medicine and age-associated diseases.

The study will be led by internationally recognized researchers within the field of metabolic regulation and proteomics: the Francis Crick’s Dr. Markus Ralser and Professor Kathryn Lilley from the University of Cambridge. Dr. Ralser’s lab focuses on the dynamics of metabolic networks during stress situations, aging, the role of glycolysis, pentose phosphate pathway in cancer, and the early evolution of metabolic pathways. Professor Lilley leads a research group that is interested in what determines the spatial arrangement of the proteome and has developed a suite of protocols and software for quantitative proteomics data.

Dr. David Roblin, Chief Operating Officer and Director of Scientific Translation at the Francis Crick Institute, said, “We are delighted that this collaboration with SCIEX, the University of Cambridge and the Crick will go forward. The grant from the BBSRC demonstrates that the multidisciplinary nature of the Crick is creating new scientific ideas that are leading to translation and commercial opportunities. This accelerated translation of our science for health and wealth benefits is a key feature of our strategy.”

The success of precision medicine will depend on so-called industrialized proteomics, allowing faster analysis of larger sample sets than the current, widely-used omics methods. SCIEX is leading the development of industrialized proteomics workflows, including Microflow SWATH®, which delivers significantly faster proteome analysis than traditional nanoflow-based SWATH® Acquisition, while retaining comprehensive proteome coverage.

“The body of work that will result from this collaboration is highly sought after in life science research today. Gaining and sharing knowledge around the aging process has great potential for unlocking answers to the questions of precision medicine and SCIEX is proud to be part of this effort,” states Chris Radloff, Global Vice President & General Manager of the LC-MS Business at SCIEX. “This work is an excellent example of how SCIEX solutions enable the scientific community to face the most pressing analytical challenges of today.”

About SCIEX

SCIEX helps to improve the world we live in by enabling scientists and laboratory analysts to find answers to the complex analytical challenges they face. The company's global leadership and world-class service and support in the capillary electrophoresis and liquid chromatography-mass spectrometry industry have made it a trusted partner to thousands of the scientists and lab analysts worldwide who are focused on basic research, drug discovery and development, food and environmental testing, forensics and clinical research.

With over 40 years of proven innovation, SCIEX excels by listening to and understanding the ever-evolving needs of its customers to develop reliable, sensitive and intuitive solutions that continue to redefine what is achievable in routine and complex analysis. For more information, please visit sciex.com

SCIEX social: @SCIEXnewsLinkedIn, and Facebook.

Contact Information
Lulu VanZandt
Program Manager, Brand, Public Relations and Social Media, SCIEX
lulu.vanzandt@sciex.com
+1 (508) 383-7163
M: +1 (508) 782-9484

AB Sciex is operating as SCIEX.
© 2018 AB Sciex. The trademarks mentioned herein are the property of the AB Sciex Pte. Ltd. or their respective owners. AB Sciex™ is being used under license.

For research use only. Not for use in diagnostic procedures.