:true:
The Power of Precision
false
us
ZenoTOF 7600 system
X500R system
X500B system
View all
SelexION device
SCIEX 7500 system
SCIEX Triple Quad 6500+ system
SCIEX 5500+ system
QTRAP 6500+ system
QTRAP 4500 system
Citrine system
4500MD system
Jasper system
View all mass spectrometers
Intabio ZT system
Echo MS system
Biologics Quant solution
Biotransform solution
MPX 2.0 High Throughput Multiplexing system
View all integrated solutions
BioPhase 8800 system
CESI 8000 Plus system
PA 800 Plus system
P/ACE MDQ Plus system
GenomeLab GeXP system
View all capillary electrophoresis
Advance your research with front-end instruments designed to help you realize the full power of your mass spectrometer. SCIEX has the broadest portfolio of ESI-MS front-ends that can facilitate various flow rates, sample requirements and sensitivities. No one else offers the entire range of analytical flow, microflow, nanoflow LC-MS and even ultra-low flow CESI-MS.
ExionLC 2.0 series
Micro HPLC columns
M5 MicroLC system
View All
Ultra-low Flow CESI-MS
View all front-end HPLC MS
Differential mobility spectrometry (DMS) and ion mobility spectrometry are analytical techniques used to separate ions based on their gas phase mobility. Multiple types of ion mobility devices exist, such as drift tubes, traveling wave, and high-field asymmetric waveform devices. Learn how you can separate yourself with Differential Ion Mobility.
The latest ion sources from SCIEX enable enhanced sensitivity and robustness with greater desolvation range across all MS platforms, from Triple Quad to QTRAP and QTOF.
Turbo V ion source
OptiFlow Turbo V ion source
OptiFlow Interface
View all ion sources
vMethod applications are pre-configured and verified LC-MS/MS methods that reduce the need for method development – significantly cutting the time, effort and money to deploy a new assay. Every vMethod provides method conditions, recommended sample prep, LC and MS conditions, and details for applicable MS/MS library databases for key applications.
AA45/20 1.0
aTRAQ
Illicit drugs
Acrylamide
Allergens
Antiobiotics/veterinary drugs
Cannabinoids
Illegal dyes
Melamine
Mycotoxins
Pesticides
Industrial chemicals (bisphenol)
Industrial chemicals (ethanolamines)
Pesticides (herbicides)
Pesticides (Polar)
Pharmaceutical and personal care products (PPCPs)
Peptide and protein bioanalysis
Routine biologics characterization
Benzodiazepines
Blood screening
Drugs of abuse
Etg and ets
Nicotine
THC-COOH
Urine screening
Explore vMethod applications
Software navigator tool
Software downloads
Software activation
Software support policy
Software support plans
Software feature request portal
Software partners
Analyst software
Analyst TF software
SCIEX OS software
Biologics Explorer software
Cliquid software
DiscoveryQuant software
Molecule Profiler software
OneOmics suite
View all software
High resolution and QTRAP libraries can dramatically enhance the quality of your analysis, giving you much improved confidence in your data. With a comprehensive library at your fingertips, you can easily create methods and process targeted and non-targeted screening data on your complex samples, faster and easier than ever before.
All in one library
SCIEX all-in-one HR-MS/MS library with NIST 2017
Antiobiotic Llbrary
Flurochemical library
Forensic library
Mycotoxin library
Natural products
Pesticide library
Wiley Libraries
Antibiotic library
Meta library
Explore the library selector tool
Boost the performance of your mass spectrometer and improve sensitivity, productivity, and data precision. iChemistry Solutions are the world's only reagents and consumables that are custom designed with your success in mind.
RNA 9000 Purity & Integrity kit
aTRAQ kit for amino acid analysis of hydrolysates
aTRAQ kit for amino acid analysis of physiological fluids
Automated protein digestion solution
Protein CE-SDS Purity Analysis kit
MS calibration kits
CZE rapid charge variant analysis kit
BioPhase Fast Glycan Labeling and Analysis kit
iDQuant standards kit for pesticide analysis
roQ auEChERS extraction and dispersive kit
Ampliflex diene reagent
Ampliflex keto reagent
iTRAQ reagent
mTRAQ reagent
View all consumables
QTOF – Quadrupole Time of Flight
QTRAP® – Triple Quad Linear Ion Trap
SWATH® – Data Independent Acquisition
SelexION® – Differential Mobility Separation
MicroLC – Microflow Chromatography
Ultra Low-Flow CESI-MS Technology
iCIEF-MS Technology
Nominal Mass LC-MS-MS
Acoustic Ejection Mass Spectrometry
View All Technology
ADME and DMPK
Biomarker quantitation
Cell therapy
CRISPR/Cas9 analysis
Viral vector characterization
Biomarker discovery
High-throughput mass spectrometry
Metabolite identification
Targeted protein degraders and PROTACs
Extractables and leachables
Pharma impurities
Residual nucleic acid analysis
Lipid nanoparticles and non-viral carrier
Messenger RNA analysis
Plasmid and DNA analysis
Synthetic oligonucleotide analysis
ADC analysis
Cell line analysis
Charge heterogeneity analysis
Glycan analysis
Intact protein analysis
Multi-attribute methodology
Peptide mapping analysis
Subunit mass analysis and middle-down
View all Biopharma and pharma
Clinical research
Clinical diagnostics
Clinical Mass Spec Operators
Clinical Method Developers
Clinical Lab Managers
View All Clinical
PFAS
Pesticides & herbicides
PPCP
Disinfection by-products
Soil and biota
Ethanolamine
Synthetic polymers
Exposome
Suspect screening
Nanomaterials
View All Environmental Testing
How do you protect your reputation and meet today’s global food safety standards? Whether you are a commercial lab or a food manufacturer, the quality of your food testing data is vital to your business. SCIEX solutions help you meet maximum residue limits (MRLs) with high-quality data that you can genuinely count upon. With a portfolio of applications, your lab can quickly and easily react to diverse market needs.
Pesticide Testing
Mycotoxins Testing
Antibiotics Testing
Potency Testing
Mycotoxin Testing
Terpenes Profiling
Meat Speciation Testing
Food Fraud Analysis
Food Adulterant Testing
Food Dye Testing
Food Omics
Allergen Testing
Ingredient Authenticity & Profiling Analysis
Packaging & Food Contact Substance Analysis
View All Food and Beverage Testing
How do you ensure the integrity of your results in an industry that is never constant? By accurately detecting even the smallest compound angles you can deliver evidence that stands. SCIEX forensic analysis solutions deliver fast, highly accurate data across a multitude of compounds and biomarkers, from the known to the new and novel.
Forensic toxicology
Homeland security (coming soon!)
Cannabis and hemp potency testing
Doping control (coming soon!)
View All Forensic Testing
Discovery Proteomics
Next-Generation Proteomics
Targeted Proteomics
Untargeted Lipidomics
Targeted Lipidomics
Untargeted Metabolomics
Targeted Metabolomics
Metabolic Flux Analysis
Gene Expression Analysis
DNA Sequencing
Genotyping and SNP Analysis
STR Analysis
AFLPs
View All Life Science Research
The SCIEX Now Learning Hub offers the most diverse and flexible learning options available, with best-inclass content that helps you to get the most out of your instrument and take your lab to the next level. Available personalized learning paths based on the latest memory science ensure better knowledge retention, and automated onboarding and enrollment means you’ll get up and running faster.
SCIEX Now Learning Hub offers the most diverse and flexible learning options available, with best-in-class content that helps you to get the most out of your instrument and take your lab to the next level. Available personalized learning paths based on the latest memory science ensure better knowledge retention, and automated onboarding and enrollment means you’ll get up and running faster.
SCIEX Learning Manager provides you with the infrastructure to assign, monitor and report on your staff's competency through a single digital platform. Effectively manage the training process for new hires, ensure continuous staff development and access information with a single log-in to your SCIEX account.
You can browse, filter, or search our extensive list of training offerings. Choose from over 100 self-paced eLearnings or search for an instructor-led course near you. Once you select the course you want to take, you will be directed to Learning Hub for enrollment (login required).
Login to SCIEX Now Learning Hub
Success Programs at Your Site
Online Course Catalog
Clinical Knowledge Center
Application Scientist Training at Your Site
China
Europe
German CE Courses
India
Japan
Korea
North America
UK
Visit all Training
Support cases
SCIEX Now Learning Hub
Instruments
Manage my instruments
Registered software
Activate software
Resource library
My notifications
Request support
Course catalog
SCIEX Store
SCIEX Now New Feature Request
Visit your SCIEX Now™ Dashboard
Declaration of conformance
Safety data sheets
Certificates of analysis
View All regulatory documents
Customer documents
Software and IT services
Compliance services
Lab optimization
Customized training
Relocation services
LC-MS service plans
Protect Plus Suite for your new LC-MS
CE service plans
Clinical service plans
StatusScope remote monitoring
Software accelerator program
Premium access content
Academic partnership program
Academic partners
View all partnership programs
Join the SCIEX community today to interact with your peers, share and exchange ideas, develop your knowledge, stay up-to-date with the latest products, post insights and questions, comment on others and receive support. This community is designed to help you, our customers, move science forward and get the answers you need. We’re committed to engaging with and listening to you, to create the best customer experience possible and to contribute to the success of your work.
Biopharma
Clinical
Environmental / Industrial
Food and Beverage
Forensics
Life Science Research
Pharma
Technology
Knowledge Base Articles
Course Catalog
Software Downloads
Request Support
SCIEX Now Feature Requests
Software Feature Requests
Newsletter Archive
Featured Content
FAQs
View All Community
About SCIEX
About Danaher
Customer Profiles
Echo® MS Center Of Excellence
Our History
Our favorite papers
Meet our executives
Career opportunities
Contact us
Press releases
In the news
Awards
You've got questions. We've got experts who can help. Contact us to find out more, talk to a specialist, explore our solutions or get expert support.
Talk to a specialist
Request more information
Request a quote
SCIEX success network
Frequently asked questions
SCIEX community
Request hosted catalog
Request punchout
Global public relations
508-782-9484
Country/Region Canada Mexico United States
Country/Region Argentina Brazil Chile Colombia Costa Rica Ecuador El Salvador Guatemala Peru Uruguay Venezuela
Country/Region Germany Albania Austria Belgium Bosnia and Herzegovina Bulgaria Croatia Cyprus Czech Republic Denmark Estonia Finland France Germany Greece Hungary Ireland Italy Latvia Lithuania Luxembourg Macedonia Montenegro Netherlands Norway Poland Portugal Romania Serbia Slovakia Slovenia Spain Sweden Switzerland United Kingdom
Country/Region Bangladesh Brunei Darussalam Cambodia 中国 Hong Kong India Indonesia 日本 한국 Singapore Sri Lanka Taiwan Thailand Viet Nam
Country/Region Bahrain Iran Iraq Israel Jordan Kuwait Lebanon Oman Pakistan Palestine Qatar Saudi Arabia Syria Turkey United Arab Emirates Yemen
Country/Region Algeria Angola Botswana Burundi Egypt Ethiopia Kenya Liberia Libya Morocco Rwanda South Africa Tunisia Uganda United Republic of Tanzania Zambia Zimbabwe
Country/Region Armenia Azerbaijan Belarus Georgia Kazakhstan Kyrgyzstan Moldova Russia Tajikistan Turkmenistan Ukraine Uzbekistan
Country/Region Australia Micronesia New Zealand
AB Sciex is doing business as SCIEX. © 2010-2018 AB Sciex. The trademarks mentioned herein are the property of the AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Beckman Coulter® is being used under license. Product(s) may not be available in all countries. For information on availability, please contact your local representative. For research use only. Not for use in diagnostic procedures.
Download tech note (PDF)
Analyze on an LC timescale using the ZenoTOF 7600 system
Mackenzie Pearson1 , Christie Hunter1 , Takashi Baba2 1SCIEX, USA, 2SCIEX, Canada
Electron activated dissociation (EAD) on the ZenoTOF 7600 system is used for the complete structural elucidation of glycerophospholipids, sphingolipids, and acylglycerols in a single experiment. In contrast to the more commonly used collision induced dissociation, or CID, EAD provides an abundance of unique fragment ions critical for complete lipid characterization.
The field of lipid research has grown immensely in recent decades. Lipids were initially thought to simply be structural components of cellular membranes, but the ongoing study of lipids and their functions has shown these diverse molecules are very active participants in many biological processes. Recent studies have shown lipids to play direct or causal roles in many human disease states, such as Alzheimer’s, metabolic syndrome and lysosomal storage disorders.1 They have also been used as potential biomarkers. For instance, a shift in the double bond from a ∆7 to ∆9 in a phospholipid has the potential to be a biomarker for breast cancer,2 and a change in the sn-1 and sn-2 positions of an acyl chain in phosphatidylinositol has the potential to be a marker in urine for prostate cancer.3
Lipids have also garnered a lot of attention in the delivery of vaccines, genetic material and other small molecules. Lipid nanoparticles (LNPs) are a novel drug delivery system consisting of a lipid outer shell with the drug encapsulated in the center. LNPs have now been approved for several therapies as well as for the SARS-CoV-2 vaccines mRNA-1273 (Moderna) and BNT162b2 (BioNTech).4
Although lipid species generally fall into classes that share specific subgroups and configurations, the diversity of lipid molecules is enormous. Characterization of lipids must not only include the identification of molecular composition but also details about individual components such as class, head groups, lengths of different fatty acids, modifications, attachment points, numbers and positions of double bonds, and even cis/trans configurations. As a result, the complete structural elucidation of lipid molecules has generally been an arduous task composed of a series of characterization steps that use different methodologies.
Here, electron activated dissociation (EAD) on the ZenoTOF 7600 system is used for the complete structural elucidation of glycerophospholipids, sphingolipids, and acylglycerols in a single experiment. In contrast to the more commonly used collision activated dissociation, or CAD, EAD provides an abundance of unique fragment ions critical for complete lipid characterization.
Figure 1. Complete characterization of a lipid. One MS/MS spectrum identifies the lipid as PC 16:0/18:1(n-9:cis) by providing class, head group, fatty acid identification, fatty acid position (regioisomerism), double bond location and stereochemistry (cis/trans).
The LIPID MAPS consortium classifies lipids into 8 different categories: (1) fatty acyls, (2) glycerolipids, (3) glycerophospholipids, (4) sphingolipids, (5) sterol lipids, (6) prenol lipids, (7) saccharolipids and (8) polyketides. Within each category are sub-categories specifying details about the lipid structure. For example, for glycerophospholipids, the following subcategories must all be ascertained for complete structural elucidation:
When considering all of the different combinations that can be created using items from each of these sub-categories, ~10,000 unique glycerophospholipid species are possible. If fatty acid modifications are considered, the possibilities are even greater. As an example, for the lipid specified at the sum composition level of PC 34:1, there are 40 different permutations possible for this lipid species alone, as illustrated in the online animation. This requires a time-consuming and labor-intensive approach to fully characterize this species employing multiple analytical technologies and experiments such as those outlined in Figure 2.
Figure 2: The many layers of lipid structural specificity. Currently, no single commercial technology can fully characterize a lipid. Multiple different technologies, platforms, and experiments are required. Alternatively, the ZenoTOF 7600 system using EAD can obtain all the information outlined above in yellow font within a single experiment, enabling complete classification of lipids.
The ZenoTOF 7600 system is equipped with electron activated dissociation (EAD).5 Electron based fragmentation has typically suffered from relatively low sensitivity. However, working in tandem with the Zeno trap on the ZenoTOF 7600 system, highly sensitive, fast and reproducible electron-based MS/MS fragmentation on an LC timescale can be obtained. Moreover, the electron kinetic energy for fragmentation can be tuned to the compound of interest. Low-energy electron capture dissociation (ECD) is utilized for multiply-charged precursor ions such as peptides. Higher energy electrons, such as those used for electron impact excitation of ions from organics (EIEIO) are used for fragmentation of singly-charged ions such as lipids. With the ZenoTOF 7600 system, electron energies can be adjusted from <0.2 eV to over 20 eV, enabling dissociation of a vast range of compounds.
Using the ZenoTOF 7600 system and EAD fragmentation, ALL the information in yellow font from Figure 2 is obtained in one EAD experiment. As shown in Figure 1 for the same glycerophospholipid previously discussed (PC 34:1), a single Zeno EAD experiment identifies the lipid class, head group, types of fatty acids, fatty acid attachment points (regioisomerism), existence and location of a double bond. It also shows whether it is cis or trans configuration, to reveal the fully characterized lipid species as PC 16:0 / 18:1(9Z)).
Lipid head groups vary widely in their chemistries, enabling them to influence different structural features such as cell membrane flexibility and permeability as well as to mediate various biological functions such as substrate transport and cell signaling. Identification of a lipid head group is one of the more straightforward tasks performed for lipid characterization as a unique fragment ion is still observed in Zeno EAD.
Phosphatidylcholines (a type of glycerophospholipid) and sphingomyelins are similar in structure and molecular weights and share a common head group, phosphatidylcholine (PC). Figure 3 shows the clear identification of the PC head group for a sphingomyelin (top) and a phosphatidylcholine (bottom) through the diagnostic PC fragment ion with m/z 184.
In order to differentiate these two lipid classes, fragment ions corresponding to the attachment point of the choline head group to the lipid backbone are examined. With glycerophospholipids, a glycerol unit resides at the center of the molecule and head groups are attached to one end. EAD produces two diagnostic fragment ions: m/z 224 containing a carbon atom and m/z 226 with an oxygen atom for the glycerol backbone (Figure 3, bottom). This doublet is a unique identifier for phosphatidylcholines. With sphingomyelins, however, instead of a glycerol backbone, the long-chain amino alcohol sphingosine resides at the center of the molecule. EAD breaks the amide bond producing a fragment ion with m/z 225 containing the amide nitrogen atom (Figure 3, top). Additional unique diagnostic fragment ions as outlined in several recent publications serve to further differentiate and characterize lipid species within these classes.6,7
Figure 3. EAD MS/MS of sphingomyelins and phosphatidylcholines. Diagnostic fragment ions at the low mass end identify the PC head group at m/z 184 and differentiate sphingomyelins (top) from phosphatidylcholines (bottom) with fragment ions containing either nitrogen (m/z 225) or carbon and oxygen (m/z 224 and 226). Color coding shows the origin of each fragment ion from the backbone.
Glycerolipids and glycerophospholipids can have their fatty acid chains connected at several different attachment points designated as sn-1, sn-2, and sn-3 (“sn” for stereospecific numbering). While these structures can seem very similar, in recent years it has become increasingly apparent that different regioisomers can have very different physical and biological properties. Thus identification of attachment points is now a vital part of lipid characterization.
Figure 4 shows the Zeno EAD spectrum for a triglyceride standard where two of the three fatty acids are identical (18:1(N12Z)) and the third contains a shift in a double-bond position (18:1(N-9Z)). The sn-1, sn-2, or sn-3 attachment point for each of the fatty acids can be differentiated by examining the dual chain loss fragment which still contains the remaining fatty acid itself and its attachment point. Two different fragmentation patterns are observed for each regioisomer as described in a recent publication.8 In the case of an sn-2 attachment, the dual cleavage points for both patterns result in identical products with the same mass. Thus only a single fragment peak is observed. However, in the case of an sn-1 or sn-3 attachment, the dual cleavage points occur after carbon (for one pattern), and after a carbon and an oxygen (for the other pattern). Thus, a pair of peaks is observed with the lower-mass ion more intense. Additionally, the 1.98 Da difference between the paired peaks indicates that the lighter fragment contains a CH2 group and the heavier fragment contains oxygen instead of the CH2 group.
Figure 4. Differentiation of regioisomers. The sn-2 attachment point can be differentiated from the sn-1/sn-3 position through examination of the dual chain loss fragment ions. For sn-2, a single fragment ion is observed because all fragmentation patterns result in the same molecular formula for the product ion. In contrast, for attachment through the sn-1 or sn-3 position, a pair of fragment peaks are observed with one cleavage pattern terminating in a methylene group (-CH2-) and the other pattern terminating in oxygen.
The fatty acid residues attached to lipid molecules are one of the fundamental components that drive biological activity. These long carbon chains can vary greatly in length and can be fully saturated or contain areas of unsaturation with single or multiple double bonds. Since the chain length as well as the presence and location of any unsaturation can greatly affect both the lipid structure and function, full characterization of the fatty acid portion is essential for understanding biological activity.
The difference in mass between the dual chain loss fragments (discussed in the previous section) and the intact precursor ion provides information regarding the number of carbons within each chain, and whether or not there are any double bonds. In addition, EAD also produces a rich set of chain fragments originating from the intact precursor ion with sequential loss of CH2 from the fatty acid backbone. These fragments generally span the entire length of the fatty acid chains and help to confirm the lengths of the chains themselves. Inspection of the peak pattern observed at each sequential carbon loss can reveal the location of a double bond.
Figure 5 shows the two-dimensional elution profile of a complex lipid mixture extracted from C2C12 myotubes. Data were generated using information dependent acquisition (Zeno IDA) to collect EAD MS/MS on the fly, coupled with normal phase chromatography for lipid class based separation. This sample contains a rich mixture of many different lipid species that can be visualized simultaneously using IDA Explorer. Here the C2 ladder that is common when looking at lipid elongation (addition of 2 carbons) is clearly observed. Each blue box encloses sets of lipids differing by 2 carbons. Within each set (blue box) different lipid species with varying degrees of unsaturation are shown eluting at different time points. This study provided near total lipid characterization from this complex mixture via LC-MS/MS with the identification and characterization of many common and less common lipid species including plasmalogens and ether linkages of phosphatidylcholines and multiple adducts.
As an example of the complete information provided by EAD, even on a fast LC-MS/MS time scale, Figure 6 shows the lipid from Figure 5 circled in red. The higher mass region is expanded in order to show the details for the fatty acid chain fragments. Sequential loss of carbon from the precursor ion is clearly observed as tight groups of peaks separated by 14 Da (-CH2-). When a double bond is observed in the chain length the characteristic 12 Da (-C=) difference is observed.
Figure 5. Zeno EAD IDA of lipids extracted from C2C12 myotubes. Lipids with different chain lengths appear as ladders increasing in mass. Different unsaturated lipids for each chain length elute over time (blue boxes). Red circle indicates the lipid shown in Figure 6. Red star indicates a lipid with potassium adduct.
Perhaps one of the most difficult structural entities to elucidate for an unsaturated fatty acid is whether cis or trans stereochemistry exists around the double bond. Cis configurations, also referred to as “Z” (from the German zusammen) will have important structural components aligned along the same side of the double bond whereas trans configurations or “E” (from the German entgegen) will have them on opposite sides. Using EAD, the peak ratios generated by the fragmentation of the C-C single bonds next to the double bond can be used to determine cis or trans configuration. Specifically, on the methyl terminal side of the carbon chain, the radical fragment and the hydrogen loss non-radical fragment have different intensities between cis and trans isomers. These peak intensity ratios at a fixed kinetic energy can graphically illustrate the stereochemistry of these double bonds (data not shown) and are described in more detail in Baba et al. (2017).9
Figure 6. EAD MS/MS spectrum for an unsaturated lipid. The higher mass region is expanded to show fragmentation of the alkyl chain. The location of the double bond can be found by examining the set of peaks generated for each carbon loss. In addition, the intensities of these fragments will typically be lower for the peaks corresponding to the double bond position.
A new methodology for the complete characterization of lipids is described that uses electron activated dissociation (EAD) on a ZenoTOF 7600 system. The rich MS/MS data produced with EAD contains unique fragment ions with patterns and intensities that can be used for complete structure elucidation. Additionally, the EAD experiment when combined with the Zeno trap is sensitive, reproducible and fast, enabling on-the-fly characterization of lipids from complex mixtures during LC separation.