:true:
The Power of Precision
false
us
ZenoTOF 7600 system
X500R system
X500B system
View all
SelexION device
SCIEX 7500 system
SCIEX Triple Quad 6500+ system
SCIEX 5500+ system
QTRAP 6500+ system
QTRAP 4500 system
Citrine system
4500MD system
Jasper system
View all mass spectrometers
Intabio ZT system
Echo MS system
Biologics Quant solution
Biotransform solution
MPX 2.0 High Throughput Multiplexing system
View all integrated solutions
BioPhase 8800 system
CESI 8000 Plus system
PA 800 Plus system
P/ACE MDQ Plus system
GenomeLab GeXP system
View all capillary electrophoresis
Advance your research with front-end instruments designed to help you realize the full power of your mass spectrometer. SCIEX has the broadest portfolio of ESI-MS front-ends that can facilitate various flow rates, sample requirements and sensitivities. No one else offers the entire range of analytical flow, microflow, nanoflow LC-MS and even ultra-low flow CESI-MS.
ExionLC 2.0 series
Micro HPLC columns
M5 MicroLC system
View All
Ultra-low Flow CESI-MS
View all front-end HPLC MS
Differential mobility spectrometry (DMS) and ion mobility spectrometry are analytical techniques used to separate ions based on their gas phase mobility. Multiple types of ion mobility devices exist, such as drift tubes, traveling wave, and high-field asymmetric waveform devices. Learn how you can separate yourself with Differential Ion Mobility.
The latest ion sources from SCIEX enable enhanced sensitivity and robustness with greater desolvation range across all MS platforms, from Triple Quad to QTRAP and QTOF.
Turbo V ion source
OptiFlow Turbo V ion source
OptiFlow Interface
View all ion sources
vMethod applications are pre-configured and verified LC-MS/MS methods that reduce the need for method development – significantly cutting the time, effort and money to deploy a new assay. Every vMethod provides method conditions, recommended sample prep, LC and MS conditions, and details for applicable MS/MS library databases for key applications.
AA45/20 1.0
aTRAQ
Illicit drugs
Acrylamide
Allergens
Antiobiotics/veterinary drugs
Cannabinoids
Illegal dyes
Melamine
Mycotoxins
Pesticides
Industrial chemicals (bisphenol)
Industrial chemicals (ethanolamines)
Pesticides (herbicides)
Pesticides (Polar)
Pharmaceutical and personal care products (PPCPs)
Peptide and protein bioanalysis
Routine biologics characterization
Benzodiazepines
Blood screening
Drugs of abuse
Etg and ets
Nicotine
THC-COOH
Urine screening
Explore vMethod applications
Software downloads
Software activation
Software support policy
Software support plans
Software feature request portal
Software partners
SCIEX OS software
Biologics Explorer software
Cliquid software
DiscoveryQuant software
Molecule Profiler software
OneOmics suite
View all software
High resolution and QTRAP libraries can dramatically enhance the quality of your analysis, giving you much improved confidence in your data. With a comprehensive library at your fingertips, you can easily create methods and process targeted and non-targeted screening data on your complex samples, faster and easier than ever before.
All in one library
SCIEX all-in-one HR-MS/MS library with NIST 2017
Antiobiotic Llbrary
Flurochemical library
Forensic library
Mycotoxin library
Natural products
Pesticide library
Wiley Libraries
Antibiotic library
Meta library
Explore the library selector tool
Boost the performance of your mass spectrometer and improve sensitivity, productivity, and data precision. iChemistry Solutions are the world's only reagents and consumables that are custom designed with your success in mind.
RNA 9000 Purity & Integrity kit
aTRAQ kit for amino acid analysis of hydrolysates
aTRAQ kit for amino acid analysis of physiological fluids
Protein CE-SDS Purity Analysis kit
MS calibration kits
CZE rapid charge variant analysis kit
BioPhase Fast Glycan Labeling and Analysis kit
iTRAQ reagent
mTRAQ reagent
View all consumables
QTOF – Quadrupole Time of Flight
QTRAP® – Triple Quad Linear Ion Trap
SWATH® – Data Independent Acquisition
SelexION® – Differential Mobility Separation
MicroLC – Microflow Chromatography
Ultra Low-Flow CESI-MS Technology
iCIEF-MS Technology
Nominal Mass LC-MS-MS
Acoustic Ejection Mass Spectrometry
View All Technology
ADME and DMPK
Biomarker quantitation
Cell therapy
CRISPR/Cas9 analysis
Viral vector characterization
Biomarker discovery
High-throughput mass spectrometry
Metabolite identification
Targeted protein degraders and PROTACs
Extractables and leachables
Pharma impurities
Residual nucleic acid analysis
Lipid nanoparticles and non-viral carrier
Messenger RNA analysis
Plasmid and DNA analysis
Synthetic oligonucleotide analysis
ADC analysis
Cell line analysis
Charge heterogeneity analysis
Glycan analysis
Intact protein analysis
Multi-attribute methodology
Peptide mapping analysis
Subunit mass analysis and middle-down
View all Biopharma and pharma
Clinical research
Clinical diagnostics
Clinical Mass Spec Operators
Clinical Method Developers
Clinical Lab Managers
View All Clinical
PFAS
Pesticides & herbicides
PPCP
Disinfection by-products
Soil and biota
Ethanolamine
Synthetic polymers
Exposome
Suspect screening
Nanomaterials
View All Environmental Testing
How do you protect your reputation and meet today’s global food safety standards? Whether you are a commercial lab or a food manufacturer, the quality of your food testing data is vital to your business. SCIEX solutions help you meet maximum residue limits (MRLs) with high-quality data that you can genuinely count upon. With a portfolio of applications, your lab can quickly and easily react to diverse market needs.
Pesticide Testing
Mycotoxins Testing
Antibiotics Testing
Potency Testing
Mycotoxin Testing
Terpenes Profiling
Meat Speciation Testing
Food Fraud Analysis
Food Adulterant Testing
Food Dye Testing
Food Omics
Allergen Testing
Ingredient Authenticity & Profiling Analysis
Packaging & Food Contact Substance Analysis
View All Food and Beverage Testing
How do you ensure the integrity of your results in an industry that is never constant? By accurately detecting even the smallest compound angles you can deliver evidence that stands. SCIEX forensic analysis solutions deliver fast, highly accurate data across a multitude of compounds and biomarkers, from the known to the new and novel.
Forensic toxicology
Homeland security (coming soon!)
Cannabis and hemp potency testing
Doping control
View All Forensic Testing
Discovery Proteomics
Next-Generation Proteomics
Targeted Proteomics
Untargeted Lipidomics
Targeted Lipidomics
Untargeted Metabolomics
Targeted Metabolomics
Metabolic Flux Analysis
Gene Expression Analysis
DNA Sequencing
Genotyping and SNP Analysis
STR Analysis
AFLPs
View All Life Science Research
The SCIEX Now Learning Hub offers the most diverse and flexible learning options available, with best-inclass content that helps you to get the most out of your instrument and take your lab to the next level. Available personalized learning paths based on the latest memory science ensure better knowledge retention, and automated onboarding and enrollment means you’ll get up and running faster.
SCIEX Now Learning Hub offers the most diverse and flexible learning options available, with best-in-class content that helps you to get the most out of your instrument and take your lab to the next level. Available personalized learning paths based on the latest memory science ensure better knowledge retention, and automated onboarding and enrollment means you’ll get up and running faster.
SCIEX Learning Manager provides you with the infrastructure to assign, monitor and report on your staff's competency through a single digital platform. Effectively manage the training process for new hires, ensure continuous staff development and access information with a single log-in to your SCIEX account.
You can browse, filter, or search our extensive list of training offerings. Choose from over 100 self-paced eLearnings or search for an instructor-led course near you. Once you select the course you want to take, you will be directed to Learning Hub for enrollment (login required).
Login to SCIEX Now Learning Hub
Success Programs at Your Site
Online Course Catalog
Clinical Knowledge Center
Application Scientist Training at Your Site
China
Europe
German CE Courses
India
Japan
Korea
North America
UK
Visit all Training
Support cases
SCIEX Now Learning Hub
Instruments
Manage my instruments
Registered software
Activate software
Resource library
My notifications
Request support
Course catalog
SCIEX Store
SCIEX Now New Feature Request
Visit your SCIEX Now™ Dashboard
Declaration of conformance
Safety data sheets
Certificates of analysis
View All regulatory documents
Customer documents
Software and IT services
Compliance services
Lab optimization
Customized training
Relocation services
LC-MS service plans
Protect Plus Suite for your new LC-MS
CE service plans
Clinical service plans
StatusScope remote monitoring
Software accelerator program
Premium access content
Academic partnership program
Academic partners
View all partnership programs
Join the SCIEX community today to interact with your peers, share and exchange ideas, develop your knowledge, stay up-to-date with the latest products, post insights and questions, comment on others and receive support. This community is designed to help you, our customers, move science forward and get the answers you need. We’re committed to engaging with and listening to you, to create the best customer experience possible and to contribute to the success of your work.
Biopharma
Clinical
Environmental / Industrial
Food and Beverage
Forensics
Life Science Research
Pharma
Technology
Knowledge Base Articles
Course Catalog
Software Downloads
Request Support
SCIEX Now Feature Requests
Software Feature Requests
Newsletter Archive
Featured Content
FAQs
View All Community
About SCIEX
About Danaher
Customer Profiles
Echo® MS Center Of Excellence
Our History
Our favorite papers
Meet our executives
Career opportunities
Contact us
Press releases
In the news
Awards
Sustainability
You've got questions. We've got experts who can help. Contact us to find out more, talk to a specialist, explore our solutions or get expert support.
Talk to a specialist
Request more information
Request a quote
SCIEX success network
Frequently asked questions
SCIEX community
Request hosted catalog
Request punchout
Global public relations
508-782-9484
Country/Region Canada Mexico United States
Country/Region Argentina Brazil Chile Colombia Costa Rica Ecuador El Salvador Guatemala Peru Uruguay Venezuela
Country/Region Germany Albania Austria Belgium Bosnia and Herzegovina Bulgaria Croatia Cyprus Czech Republic Denmark Estonia Finland France Germany Greece Hungary Ireland Italy Latvia Lithuania Luxembourg Macedonia Montenegro Netherlands Norway Poland Portugal Romania Serbia Slovakia Slovenia Spain Sweden Switzerland United Kingdom
Country/Region Bangladesh Brunei Darussalam Cambodia 中国 Hong Kong India Indonesia 日本 한국 Singapore Sri Lanka Taiwan Thailand Viet Nam
Country/Region Bahrain Iran Iraq Israel Jordan Kuwait Lebanon Oman Pakistan Palestine Qatar Saudi Arabia Syria Turkey United Arab Emirates Yemen
Country/Region Algeria Angola Botswana Burundi Egypt Ethiopia Kenya Liberia Libya Morocco Rwanda South Africa Tunisia Uganda United Republic of Tanzania Zambia Zimbabwe
Country/Region Armenia Azerbaijan Belarus Georgia Kazakhstan Kyrgyzstan Moldova Russia Tajikistan Turkmenistan Ukraine Uzbekistan
Country/Region Australia Micronesia New Zealand
AB Sciex is doing business as SCIEX. © 2010-2018 AB Sciex. The trademarks mentioned herein are the property of the AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Beckman Coulter® is being used under license. Product(s) may not be available in all countries. For information on availability, please contact your local representative. For research use only. Not for use in diagnostic procedures.
Download tech note (PDF)
Using the SCIEX ZenoTOF 7600 system, powered by SCIEX OS software
Robert A. Di Lorenzo1, Lukasz Rajski2, Jianru Stahl-Zeng3, Jason Causon1 1SCIEX, Canada; 2EURL-FV, Universidad de Almeria, Spain; 3SCIEX, Germany
Using the sensitivity enhancements of the Zeno trap, Zeno MRMHR is used to quantify low levels of pesticides in oilve oil and various fruits and vegetables to meet global regulations for pesticide residues. Over the mass range analyzed, the Zeno trap allowed for signal gains of 5-15x, with negligible increase in noise due to the selectivity of MRMHR analysis, hence gains were directly related to improved LLOQs. The selectivity and specificity afforeded by the accurate mass MS/MS quantitation on the ZenoTOF 7600 system allowed for highly confident identifications of pesiticdes in real food samples (MS and MS/MS mass accuracy, library matching, isotope ratio matching), while still maintaining triple quad-like ability to perfom ion ratios for confirmations.
In order to ensure safety in the global food supply, testing for adherence to federal and international requirements is necessary. The tests monitor for chemical residues, including pesticides, microbial and fungal toxins, and microbiological hazards. Considering the ever-growing demand on the food supply, farmers and producers are tasked with optimizing yields, which means employing the use of pesticides to deter pests from harming their crops. For this reason, it is important to be aware of adherence to pesticide maximum residue limits set by the appropriate governing bodies.
Traditionally, pesticide residue analysis has been performed by triple quadrupole mass spectrometers, due to their sensitivity and quantitative power. Accurate mass instruments can afford additional levels of confirmation, however they have traditionally suffered from a lack of sensitivity and precision, especially when performing MS/MS experiments to meet the testing requirements for the regulatory guidelines. The technological enhancements afforded by the ZenoTOF 7600 system, however, bring QTOF systems into a new era of sensitivity and precision.
Figure 1. MS/MS peak area gains as a result of enabling the Zeno trap on the ZenoTOF 7600 system. Sensitivity improvements during MS/MS experiments using the Zeno trap are a result of regaining >90% of duty cycle related losses. For this reason, the improvements are dependent on the upper limit of scan range and the measured mass of the MS/MS fragment. The theoretical gain curve is constructed based the scan parameters acquired in this experiment.
Sample preparation: All samples were extracted according to the standard QuEChERS citrate protocol using a Phenomenex roQ QuEChERS EN Method kit. Briefly, 10 g of homogenized food product and 10 mL of LC-MS grade acetonitrile were combined in a 50 mL centrifuge tube and shaken for one minute. To separate aqueous and acetonitrile layers, 4 g MgSO4, 1 g NaCl, 1 g trisodium citrate dihydrate and 0.5 g disodium hydrogencitrate sesquihydrate was added. The sample was shaken for an additional 1 minute and centrifuged for 5 min at 4000 rpm. A 5 mL aliquot of the acetonitrile layer was combined with 750 mg MgSO4 and 125 mg PSA in a 15 mL centrifuge tube for clean-up. The extract was shaken for 30 seconds and centrifuged for 5 min at 4000 rpm. A 200 µL aliquot of cleaned‑up extract was added to an LC vial diluted with 800 µL of mobile phase A for sample analysis for an overall 5x dilution factor.
Chromatography: Analytes were separated on a polar-embedded reverse phase C8 column (2.1 x 150 mm, 1.8 µm) using a SCIEX ExionLC AD system. Separation was performed at a flow rate of 300 µL/min with a column temperature of 35ºC and an autosampler sample storage temperature of 5ºC. Mobile phase solvents were (A) 98:2 water/methanol and (B) 2:98 water/methanol, both with 0.1% formic acid and 5 mM ammonium formate. The gradient program can be seen in Table 1. Total runtime was 17 minutes.
Table 1. LC gradient conditions.
Mass spectrometry: All compounds were analyzed using a SCIEX ZenoTOF 7600 system with scheduled Zeno MRMHR for optimal sensitivity. Source conditions can be observed in Table 2. Accurate mass precursor ions were scanned from 100-950 Da with an accumulation time of 100 ms, a declustering potential (DP) of 80 V and a collision energy (CE) of 10 V. Zeno MRMHR acquisition was retention time scheduled with a tolerance of ± 20 seconds. MS/MS data were acquired with DP = 80 V and compound optimized CE. Accumulation times for each compound were varied (minimum 10 ms) to maintain a total cycle time of 600 ms across the acquisition. Each MS/MS was acquired down to 50 Da to ensure all fragments were captured for identification.
Data processing: All data were processed with SCIEX OS software 2.0.1 using the Analytics module and MQ4 integration algorithm. The monoisotopic mass and two accurate mass fragments were extracted for each analyte with a 20 mDa window, with 1-point gaussian smoothing applied. Retention time thresholds for peak identification were set to ± 15 s. Quantitative and qualitative thresholds were set according to SANTE/12682/2019. Briefly, positive identifications were determined such that two fully overlapping extracted ion chromatograms had mass error < 5 ppm (< 1 mDa for masses below 200 Da) and S/N > 3 (or 5 points of consecutive signal in the absence of noise). Additionally, ion ratio thresholds were set according to the nominal mass requirement of ± 30% relative deviation from standards. Quantitatively, LOQs were set at the lowest standard giving average accuracy and precision within ± 20% across the n=6 replicates. Along with the SANTE guidelines, flagging rules were set for library match and theoretical isotope ratio match for easy filtering in SCIEX OS software using the conditions in Figure 2.
Table 2. MS source conditions.
Figure 2. Settings for applied Qualitative Rules. (Top) Built-in flagging rules for mass error, retention time, isotope ratio and library score applied for easy filtering during data analysis. (Bottom) Ion ratio threshold settings. Expected ion ratios are automatically calculated from standards in data set.
The use of the Zeno trap on the ZenoTOF 7600 system allows for >90% of duty cycle related losses to be recovered during MS/MS experiments across the entire mass range. With traditional orthogonal injection QTOF mass spectrometers, ion losses occur as a result of mating a continuous ion beam coming from the quadrupole ion guides with the pulsed nature of the TOF accelerator. To overcome this on the ZenoTOF 7600 system, a Zeno trap was added at the end of the Q2 collision cell assembly, where an ordered release of ions based on their potential energy allows for all ions to arrive at the TOF accelerator at the same time and location. For this reason, the sensitivity enhancements are both dependent on the upper limit of the MS/MS scan range and the mass of the fragment ion. Figure 1 shows the experimental gains experienced during this analysis overlaid with the theoretical gains based on the fragment masses and scan parameters used in this experiment. Here we can see that enabling the Zeno trap yields a minimum of 5x intensity gain, with gains up to 13x as fragment masses decrease.
With Zeno MS/MS, it is frequently the case that extracted ion chromatograms (XICs) show greater intensity compared to XICs from the precursor ion traces, as observed in Figure 3. This is a result of comparing an MS/MS spectrum with >90% duty cycle to an MS spectrum with a typical duty cycle of 5-25%. Improvements can also be observed in MS/MS spectral quality for greater confidence during library confirmation. Since duty cycle improvements are only a function of scan range and fragment mass, these gains are observed across all molecule types, independent of chemistry and ionization efficiency. Further, since the selectivity afforded by accurate mass MS/MS analysis often results in little to no chemical noise, the gains in signal-to-noise approach the gains observed in raw signal (Figure 4).
Figure 3: Example comparison between (top) normal MRMHR acquisition and (bottom) Zeno MRMHR acquisition for trifloyxystrobin at 1 ng/mL. Between the two acquisitions, the TOF MS information remains constant: the TOF MS XICs (left, filled blue traces) have the same intensity, and the MS spectrum (middle) remains the same. However, the MS/MS XIC (left, pink trace) gains approximately 11x intensity and the MS/MS spectral quality (right) improves significantly.
Figure 4. Example MS/MS sensitivity gains with Zeno MS/MS. A 9.3x area gain can be observed for thiacloprid between MS/MS acquired with (A) and without (B) the Zeno trap enabled, with negligible change to the noise regions (C, D, respectively). This results in a 9.1x gain in S/N.
To assess the in-matrix quantitative performance of the ZenoTOF 7600 system, n=6 replicates of a matrix matched curve was constructed in QuEChERS extracted olive oil ranging from 0.10 µg/kg to 0.10 mg/kg. Incorporating the 5x dilution during sample preparation, in-vial concentrations ranged from 0.02 to 20 ng/mL. The curve was assessed for linearity, accuracy and precision, mass accuracy and ion ratios according to SANTE/12862/2019 guidelines. Figure 5 shows the distribution of in-matrix LLOQs determined for the quantified pesticides. It can be observed that nearly all quantified pesticides have an LLOQ below 0.001 mg/kg, with the majority with LLOQs falling between 0.0002 and 0.0005 mg/kg. Also, all quantified pesticides showed LLOQs at or below 0.005 mg/kg, meaning that the ZenoTOF 7600 system has enough sensitivity to meet nearly any global pesticide residue regulation, as most maximum residue limits are set as low as 0.010 mg/kg. Additionally, the use of accurate mass fragment ions for quantification cuts through nearly all noise and interferences, simplifying peak detection and integration to eliminate the need for manual peak review.
At the calculated LLOQs, the quality of qualitative information acquired remains consistent. Figure 6 highlights three example pesticides at their respective LLOQs. In each case, the fragment XICs (left, filled blue traces) show ample S/N for detection and improved S/N over the precursor XICs (pink traces). The ion ratio thresholds, adopted from the SANTE nominal mass requirement of ± 30%, are maintained at these low concentrations. With the additional sensitivity, mass error on fragments can also be maintained due to the improved ion statistics during detection, as well as the generation of clear and unambiguous MS/MS spectra for library confirmations, even in dirty matrices.
Figure 5. In-matrix LLOQ distribution for the ZenoTOF 7600 system. Calculated from n=6 replicate injections of the olive oil matrix-matched curve using quantifier ion and processed according to SANTE/12862/219 guidelines. >90% of analytes meet two ion criteria below 10 ppb.
Figure 6: Zeno MRMHR acquisition for three pesticides. The TOF MS data XICs (left, pink trace), the MRMHR XIC (left, blue filled trace), the TOF MS spectrum (middle) and the MS/MS spectrum (right) is shown for three of the detected pesticides. Library matches are also shown for trifloxystrobin (top), Pirimicarb (middle) and Metalaxyl (bottom).
The developed quantitative method was also applied to a variety of fruits and vegetables in order to compare the relative pesticide burden between produce that was traditionally farmed and produce purchased from an organic grocer. The twelve fruits and vegetables chosen were from the Environmental Working Group’s “Dirty Dozen” list, an annual list of produce on which pesticides are most frequently detected.
Comparing the sum total of pesticides detected for each specific food, traditionally farmed produce showed a larger total pesticide burden, with the exception of celery, grapes and potatoes. For these exceptions, the organic produce showed a larger total pesticide concentration (Figure 7). For the non-organic produce, pears, peaches and nectarines showed the largest total concentration, whereas potatoes showed the largest sum concentration for the organic produce and for produce overall. Sum total concentrations ranged from less than 0.001 mg/kg to greater than 7 mg/kg. Comparing the aggregate concentration distribution for each pesticide hit between all organic and non-organic produce, the organic produce showed a slightly lower average concentration, as seen in Figure 8.
Figure 7: Comparison of sum total concentration of pesticides detected in non-organic and organic produce.
Figure 8. Aggregate concentration distribution of pesticides quantified in (blue) non-organic and (green) organic produce.
Looking at the individual pesticide hits in Figure 9, a few key observations can be made. First, the most contaminated food, organic potatoes, was a result of a single hit: chlorpropham, a germination inhibitor commonly applied to potato crops. Second, when the same pesticide was detected in both organic and non-organic produce, the concentration was higher in the organic produce, with the exception of pyrimethanil in pears. Third, although concentrations were detected as high as mg/kg levels, each hit was below the maximum residue levels set by Health Canada, as all produce was purchased in Canada. Overall, the differences between the organic and non-organic produce were not as delineated as most advertisements and product packaging for organic products claim. The levels detected are far below any concentration that may trigger acute or chronic health effects.
Figure 9: Individual pesticide hits in each food commodity. Inset numbers represent individual pesticide concentrations in µg/kg. Generally, non-organic produce contained a greater number of pesticide hits than organic produce, but organic produce still contained pesticide residues. All pesticide hits were quantified below Health Canada maximum residue limits for their respective commodity. The right panel shows the number of times each pesticide was detected, where pyrimethanil, fluopyram, pyraclostrobin and fludioxonil were detected most 9.