:true:
The Power of Precision
false
us
ZenoTOF 7600 system
X500R system
X500B system
View all
SelexION device
SCIEX 7500 system
SCIEX Triple Quad 6500+ system
SCIEX 5500+ system
QTRAP 6500+ system
QTRAP 4500 system
Citrine system
4500MD system
Jasper system
View all mass spectrometers
Intabio ZT system
Echo MS system
Biologics Quant solution
Biotransform solution
MPX 2.0 High Throughput Multiplexing system
View all integrated solutions
BioPhase 8800 system
CESI 8000 Plus system
PA 800 Plus system
P/ACE MDQ Plus system
GenomeLab GeXP system
View all capillary electrophoresis
Advance your research with front-end instruments designed to help you realize the full power of your mass spectrometer. SCIEX has the broadest portfolio of ESI-MS front-ends that can facilitate various flow rates, sample requirements and sensitivities. No one else offers the entire range of analytical flow, microflow, nanoflow LC-MS and even ultra-low flow CESI-MS.
ExionLC 2.0 series
Micro HPLC columns
M5 MicroLC system
View All
Ultra-low Flow CESI-MS
View all front-end HPLC MS
Differential mobility spectrometry (DMS) and ion mobility spectrometry are analytical techniques used to separate ions based on their gas phase mobility. Multiple types of ion mobility devices exist, such as drift tubes, traveling wave, and high-field asymmetric waveform devices. Learn how you can separate yourself with Differential Ion Mobility.
The latest ion sources from SCIEX enable enhanced sensitivity and robustness with greater desolvation range across all MS platforms, from Triple Quad to QTRAP and QTOF.
Turbo V ion source
OptiFlow Turbo V ion source
OptiFlow Interface
View all ion sources
vMethod applications are pre-configured and verified LC-MS/MS methods that reduce the need for method development – significantly cutting the time, effort and money to deploy a new assay. Every vMethod provides method conditions, recommended sample prep, LC and MS conditions, and details for applicable MS/MS library databases for key applications.
AA45/20 1.0
aTRAQ
Illicit drugs
Acrylamide
Allergens
Antiobiotics/veterinary drugs
Cannabinoids
Illegal dyes
Melamine
Mycotoxins
Pesticides
Industrial chemicals (bisphenol)
Industrial chemicals (ethanolamines)
Pesticides (herbicides)
Pesticides (Polar)
Pharmaceutical and personal care products (PPCPs)
Peptide and protein bioanalysis
Routine biologics characterization
Benzodiazepines
Blood screening
Drugs of abuse
Etg and ets
Nicotine
THC-COOH
Urine screening
Explore vMethod applications
Software downloads
Software activation
Software support policy
Software support plans
Software feature request portal
Software partners
SCIEX OS software
Biologics Explorer software
Cliquid software
DiscoveryQuant software
Molecule Profiler software
OneOmics suite
View all software
High resolution and QTRAP libraries can dramatically enhance the quality of your analysis, giving you much improved confidence in your data. With a comprehensive library at your fingertips, you can easily create methods and process targeted and non-targeted screening data on your complex samples, faster and easier than ever before.
All in one library
SCIEX all-in-one HR-MS/MS library with NIST 2017
Antiobiotic Llbrary
Flurochemical library
Forensic library
Mycotoxin library
Natural products
Pesticide library
Wiley Libraries
Antibiotic library
Meta library
Explore the library selector tool
Boost the performance of your mass spectrometer and improve sensitivity, productivity, and data precision. iChemistry Solutions are the world's only reagents and consumables that are custom designed with your success in mind.
RNA 9000 Purity & Integrity kit
aTRAQ kit for amino acid analysis of hydrolysates
aTRAQ kit for amino acid analysis of physiological fluids
Protein CE-SDS Purity Analysis kit
MS calibration kits
CZE rapid charge variant analysis kit
BioPhase Fast Glycan Labeling and Analysis kit
iTRAQ reagent
mTRAQ reagent
View all consumables
QTOF – Quadrupole Time of Flight
QTRAP® – Triple Quad Linear Ion Trap
SWATH® – Data Independent Acquisition
SelexION® – Differential Mobility Separation
MicroLC – Microflow Chromatography
Ultra Low-Flow CESI-MS Technology
iCIEF-MS Technology
Nominal Mass LC-MS-MS
Acoustic Ejection Mass Spectrometry
View All Technology
ADME and DMPK
Biomarker quantitation
Cell therapy
CRISPR/Cas9 analysis
Viral vector characterization
Biomarker discovery
High-throughput mass spectrometry
Metabolite identification
Targeted protein degraders and PROTACs
Extractables and leachables
Pharma impurities
Residual nucleic acid analysis
Lipid nanoparticles and non-viral carrier
Messenger RNA analysis
Plasmid and DNA analysis
Synthetic oligonucleotide analysis
ADC analysis
Cell line analysis
Charge heterogeneity analysis
Glycan analysis
Intact protein analysis
Multi-attribute methodology
Peptide mapping analysis
Subunit mass analysis and middle-down
View all Biopharma and pharma
Clinical research
Clinical diagnostics
Clinical Mass Spec Operators
Clinical Method Developers
Clinical Lab Managers
View All Clinical
PFAS
Pesticides & herbicides
PPCP
Disinfection by-products
Soil and biota
Ethanolamine
Synthetic polymers
Exposome
Suspect screening
Nanomaterials
View All Environmental Testing
How do you protect your reputation and meet today’s global food safety standards? Whether you are a commercial lab or a food manufacturer, the quality of your food testing data is vital to your business. SCIEX solutions help you meet maximum residue limits (MRLs) with high-quality data that you can genuinely count upon. With a portfolio of applications, your lab can quickly and easily react to diverse market needs.
Pesticide Testing
Mycotoxins Testing
Antibiotics Testing
Potency Testing
Mycotoxin Testing
Terpenes Profiling
Meat Speciation Testing
Food Fraud Analysis
Food Adulterant Testing
Food Dye Testing
Food Omics
Allergen Testing
Ingredient Authenticity & Profiling Analysis
Packaging & Food Contact Substance Analysis
View All Food and Beverage Testing
How do you ensure the integrity of your results in an industry that is never constant? By accurately detecting even the smallest compound angles you can deliver evidence that stands. SCIEX forensic analysis solutions deliver fast, highly accurate data across a multitude of compounds and biomarkers, from the known to the new and novel.
Forensic toxicology
Homeland security (coming soon!)
Cannabis and hemp potency testing
Doping control
View All Forensic Testing
Discovery Proteomics
Next-Generation Proteomics
Targeted Proteomics
Untargeted Lipidomics
Targeted Lipidomics
Untargeted Metabolomics
Targeted Metabolomics
Metabolic Flux Analysis
Gene Expression Analysis
DNA Sequencing
Genotyping and SNP Analysis
STR Analysis
AFLPs
View All Life Science Research
The SCIEX Now Learning Hub offers the most diverse and flexible learning options available, with best-inclass content that helps you to get the most out of your instrument and take your lab to the next level. Available personalized learning paths based on the latest memory science ensure better knowledge retention, and automated onboarding and enrollment means you’ll get up and running faster.
SCIEX Now Learning Hub offers the most diverse and flexible learning options available, with best-in-class content that helps you to get the most out of your instrument and take your lab to the next level. Available personalized learning paths based on the latest memory science ensure better knowledge retention, and automated onboarding and enrollment means you’ll get up and running faster.
SCIEX Learning Manager provides you with the infrastructure to assign, monitor and report on your staff's competency through a single digital platform. Effectively manage the training process for new hires, ensure continuous staff development and access information with a single log-in to your SCIEX account.
You can browse, filter, or search our extensive list of training offerings. Choose from over 100 self-paced eLearnings or search for an instructor-led course near you. Once you select the course you want to take, you will be directed to Learning Hub for enrollment (login required).
Login to SCIEX Now Learning Hub
Success Programs at Your Site
Online Course Catalog
Clinical Knowledge Center
Application Scientist Training at Your Site
China
Europe
German CE Courses
India
Japan
Korea
North America
UK
Visit all Training
Support cases
SCIEX Now Learning Hub
Instruments
Manage my instruments
Registered software
Activate software
Resource library
My notifications
Request support
Course catalog
SCIEX Store
SCIEX Now New Feature Request
Visit your SCIEX Now™ Dashboard
Declaration of conformance
Safety data sheets
Certificates of analysis
View All regulatory documents
Customer documents
Software and IT services
Compliance services
Lab optimization
Customized training
Relocation services
LC-MS service plans
Protect Plus Suite for your new LC-MS
CE service plans
Clinical service plans
StatusScope remote monitoring
Software accelerator program
Premium access content
Academic partnership program
Academic partners
View all partnership programs
Join the SCIEX community today to interact with your peers, share and exchange ideas, develop your knowledge, stay up-to-date with the latest products, post insights and questions, comment on others and receive support. This community is designed to help you, our customers, move science forward and get the answers you need. We’re committed to engaging with and listening to you, to create the best customer experience possible and to contribute to the success of your work.
Biopharma
Clinical
Environmental / Industrial
Food and Beverage
Forensics
Life Science Research
Pharma
Technology
Knowledge Base Articles
Course Catalog
Software Downloads
Request Support
SCIEX Now Feature Requests
Software Feature Requests
Newsletter Archive
Featured Content
FAQs
View All Community
About SCIEX
About Danaher
Customer Profiles
Echo® MS Center Of Excellence
Our History
Our favorite papers
Meet our executives
Career opportunities
Contact us
Press releases
In the news
Awards
Sustainability
You've got questions. We've got experts who can help. Contact us to find out more, talk to a specialist, explore our solutions or get expert support.
Talk to a specialist
Request more information
Request a quote
SCIEX success network
Frequently asked questions
SCIEX community
Request hosted catalog
Request punchout
Global public relations
508-782-9484
Country/Region Canada Mexico United States
Country/Region Argentina Brazil Chile Colombia Costa Rica Ecuador El Salvador Guatemala Peru Uruguay Venezuela
Country/Region Germany Albania Austria Belgium Bosnia and Herzegovina Bulgaria Croatia Cyprus Czech Republic Denmark Estonia Finland France Germany Greece Hungary Ireland Italy Latvia Lithuania Luxembourg Macedonia Montenegro Netherlands Norway Poland Portugal Romania Serbia Slovakia Slovenia Spain Sweden Switzerland United Kingdom
Country/Region Bangladesh Brunei Darussalam Cambodia 中国 Hong Kong India Indonesia 日本 한국 Singapore Sri Lanka Taiwan Thailand Viet Nam
Country/Region Bahrain Iran Iraq Israel Jordan Kuwait Lebanon Oman Pakistan Palestine Qatar Saudi Arabia Syria Turkey United Arab Emirates Yemen
Country/Region Algeria Angola Botswana Burundi Egypt Ethiopia Kenya Liberia Libya Morocco Rwanda South Africa Tunisia Uganda United Republic of Tanzania Zambia Zimbabwe
Country/Region Armenia Azerbaijan Belarus Georgia Kazakhstan Kyrgyzstan Moldova Russia Tajikistan Turkmenistan Ukraine Uzbekistan
Country/Region Australia Micronesia New Zealand
AB Sciex is doing business as SCIEX. © 2010-2018 AB Sciex. The trademarks mentioned herein are the property of the AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Beckman Coulter® is being used under license. Product(s) may not be available in all countries. For information on availability, please contact your local representative. For research use only. Not for use in diagnostic procedures.
Download tech note (PDF)
Reproducible EPA Method 537 results with increased sensitivity on SCIEX Triple Quad™ 6500+ System
Karl A. Oetjen, Diana Tran, Simon C. Roberts, Craig Butt and Christopher Borton SCIEX, USA
Combining microflow chromatography with SCIEX Triple Quad 6500+ System provides ultimate sensitivity for PFAS compounds in drinking water and soils. This application note describes the configuration and provide data on robustness and sensitivity. Sensitivity gains over high flow chromatography were demonstrated.
Per- and polyfluoroalkyl substances (PFASs) are manmade compounds containing carbon-fluorine monomers.1 Per- and polyfluorinated compounds are chemical compounds that have all the hydrogens on the carbons replaced by fluorine.1 The abundance and strength of the C-F bonds make natural degradation of these compounds in the environment extremely difficult, while also making them highly resistant to degradation from acids, bases, oxidants, and heat.1,2 The overwhelming presence of PFASs in drinking water systems and in humans has motivated the United States Environmental Protection Agency (U.S. EPA) to monitor fourteen PFAS compounds, including PFOA and PFOS, in drinking water in Method 537.3
The U.S. EPA advisory level of PFOA and PFOS combined is 70 ng/L in drinking water, however, some studies have suggested this level might be 100-fold too high.4 This new research has influenced some states, like Vermont, to impose or suggest lower acceptable limits. In 2016, Vermont adopted an advisory level of 20 ng/L for PFOA and PFOS combined, with other states like Minnesota, New Jersey, and Michigan following suit with their own levels. As water system operators take appropriate steps, and the suggested PFAS concentration limits continue to decrease, more sensitive and robust analytical methods are needed.
This application note presents a microflow method for the analysis of EPA Method 537 on the SCIEX Triple Quad™ 6500+ LC-MS/MS System coupled with an OptiFlow® Turbo V Ion Source and a M5 MicroLC System. Due to the fact that EPA Method 537 requires samples be prepared in 96:4% (vol/vol) methanol/water, this study also utilizes an online mixing strategy using an analytical conduit adapter (AnaCondA). This approach prevented peak shape distortion and splitting in microflow chromatography due to lower flow rates and smaller column diameters.
Figure 1. Microflow LC setup with analytical conduit adapter (AnaCondA) for sample mixing in sample flow path.
Sample preparation: Sample preparation and data processing were carried out according to EPA Method 537. An additional 1/10 dilution was then performed. A total of 20 samples were extracted out of a variety of matrices, including drinking water, groundwater, wastewater, and soil extracts. The internal standards (ISTD) used were 13C2-PFOA, 13C4-PFOS, and d3-NMeFOSAA. The surrogates used were 13C2-PFHxA, d5-NEtFOSAA, and 13C2-PFDA. The complete sample set, including calibration and quality control samples, was run on 3 separate days.
Chromatography: The microflow analysis was performed using an M5 MicroLC System at a flowrate of 10 µL/min. A Gemini C18 3 µm, 100 x 0.3 mm column (Phenomenex) was used. This column uses the identical stationary phase, but smaller internal diameter as the high flow method.5 Mobile phases A and B were Milli-Q water with 10 mM ammonium acetate and J.T.Baker Ultra LC-MS grade methanol with 10 mM ammonium acetate, respectively (Table 1).
Table 1. MFLC gradient for microflow EPA Method 537 analysis.
A novel online AnaCondA mixer was placed upstream of the analytical column to promote mixing (Figure 1). This approach works through increasing the Reynolds number (Equation 1) and promoting turbulence, therefore creating more mixing.
Typically, the high injection solvent strength required by EPA Method 537 causes excessive breakthrough and peak splitting, even with a 1 µL injection volume (Figure 2a). To prevent this from occurring, online mixing was promoted using an AnaCondA with a wide internal diameter (ID) of 0.5 mm and length of 5 cm after the sample loop as shown in Figure 1. In addition to the AnaCondA, a faster sample injection speed was performed to increase the mixing turbulence. This allowed the injection volume to range between 1 – 10 µL without breakthrough or peak splitting (Figure 2b). The data shown in this application note was generated using a 4 µL injection volume, to represent a traditionally monitored concentration range.
Equation 1. Reynolds Number equation.
Figure 2. Advantage of using the online analytical conduit adapter mixer for microflow PFAS analysis. (Top) Example chromatograms of PFBS and PFHxA using direct injection without mixing with microflow chromatography. (Bottom) Same microflow chromatography with online mixing using the AnaCondA.
Mass spectrometry: The sample was injected into the SCIEX Triple Quad 6500+ System equipped with a OptiFlow Turbo V Ion Source that was designed specifically for lower flow rates. The optimized source conditions can be found in Table 2.
All analytes were monitored in multiple reaction monitoring (MRM) scan mode in negative polarity. The Scheduled MRM™ Algorithm was used to monitor compounds during a 60 second expected retention time window to maximize dwell times and optimize the cycle time of the method.
Data processing: Results were processed in SCIEX OS Software 1.7. Peak asymmetry and ion ratios were automatically calculated using custom columns. All calibration curves had a 1/x concentration weighting and were forced through the intercept as specified in EPA Method 537.
Table 2. OptiFlow Turbo V Ion Source settings for microflow EPA Method 537 analysis.
In EPA Method 537, peak asymmetry must fall in the range of 0.8 to 1.5 for the first two eluting compounds (PFBS and PFHxA). Using the outlined method, PFBS and PFHxA met all asymmetry requirements with values ranging from 1.0 to 1.2 (Table 3) at all the quality control concentration levels. Additionally, the ion ratios for both PFBS and PFHxA were within ±20% and the calculated concentration was within 5% of the expected value.
Table 3. Asymmetry and quality control parameters at different continuing calibration check concentration levels for PFBS and PFHxA.
Microflow LC has been widely used in the pharma and biopharma applications but has infrequent use in environmental applications. To ensure ruggedness of both the method and analysis, calibration curves were generated, then drinking water and soil samples were acquired in triplicate over 3 separate days. To evaluate whether suppression is occurring throughout calibration curve process, the ISTDs areas were plotted over the 3 day run for all calibration and quality control samples (Figure 3, top). The mean ISTD area was calculated and all collected data points fell within ±20%, suggesting no major suppression was occurring. The surrogate concentrations were also plotted over the 3 day run and found to be within the acceptable ±30% outlined in EPA Method 537 (Figure 3, bottom).
The normalized area of the ISTDs was compared for all extracted samples (Figure 4). The median normalized area for 13C2-PFOA was 98%, with the lowest response at 71% and the highest at 125%. All values were within ±30%, suggesting no major ion suppression or enhancement is occurring. The median normalized surrogate area for 13C2-PFDA was 101%, with the lowest value of 82% and the highest of 120%, thus indicating acceptable recovery during extraction the recovery of this compound during the extraction process is acceptable.
Figure 3. Reproducibility of data. 13C2-PFOA (used as an internal standard, top) and 13C2-PFDA (used as a surrogate, bottom) in the analysis were plotted for all standards, QC’s and blanks.
Figure 4. Normalized areas of A. the internal standard 13C2-PFOA and B. the surrogate 13C2-PFDA in all processed samples.
The 9 or 10-point calibration curve exhibited good accuracy within +/- 30% of the expected values for all points, accuracy within +/- 50% for the lowest calibrator, and R2 coefficients of >0.990 (Table 4). The lower limit of quantification (LLOQ) varied between 1 and 5 parts per trillion (ppt) in vial, equating to 0.04 and 0.2 ppt in the sample before extraction (Table 4; Figure 5). If further sensitivity was needed, a larger injection volume (up to 2.5x larger) could be performed.
The sensitivity between the presented microflow LC method and traditional flow method 5 using a 4 µL injection was compared. This comparison was made by dividing the signal to noise (S/N) for the compound using the microflow LC method by the S/N of the compound using the traditional flow method. This ratio was measured at the lowest point of the calibration curve in the traditional flow data. The lowest point of the traditional flow data was used because the microflow LLOQ was significantly lower. Comparing sensitivity gains from the current microflow method to high flow, all PFAS compounds showed improved sensitivity from the smaller flow rates. The exact change in peak signal intensity varied across the panel largely due to individual analyte properties (data not shown). However, the sensitivity gains ranged from 2.2 for PFOS to 24.2 for PFTeDA.
Table 4. The LOQ in of EPA 537 PFAS components in vial and in the extracted sample.
Figure 5. Example LLOQ chromatograms. PFBS (left column) and PFUdA (right column) showing a laboratory reagent blank (LRB), 1 ppt and 5 ppt standards.
Various PFAS compounds were detected in the 20 analyzed samples. The compound most frequently present in the samples above the LLOQ was PFBS, which was found in 16 of the 20 samples (Figure 6). The concentrations of PFBS ranged from 0.5 to 44.8 ppt in the samples before extraction. PFOS was the second most detected compound, present in 8 of 20 samples, with concentrations ranging from 1.9 ppt to above the ULOQ (>100 ppt in the sample.
Figure 6. PFBS chromatograms in extracted samples. The concentrations of PFBS ranged from 0.5 to 44.8 ppt in the samples before extraction.
A sensitive and robust method was developed for microflow analysis of the analytes in EPA Method 537. The assay showed reproducibility of internal standards, surrogates, and calculated concentrations of unknown environmental samples over multiple days. The increase in sensitivity in this study enabled LLOQs of 1-5 ppt for EPA Method 537 with a 4 µL injection volume. A larger injection volume, enabled by the AnaCondA mixing approach, would allow for even lower LLOQs if necessary.