:true:
The Power of Precision
false
us
ZenoTOF 7600 system
X500R system
X500B system
View all
SelexION device
SCIEX 7500 system
SCIEX Triple Quad 6500+ system
SCIEX 5500+ system
QTRAP 6500+ system
QTRAP 4500 system
Citrine system
4500MD system
Jasper system
View all mass spectrometers
Intabio ZT system
Echo MS system
Biologics Quant solution
Biotransform solution
MPX 2.0 High Throughput Multiplexing system
View all integrated solutions
BioPhase 8800 system
CESI 8000 Plus system
PA 800 Plus system
P/ACE MDQ Plus system
GenomeLab GeXP system
View all capillary electrophoresis
Advance your research with front-end instruments designed to help you realize the full power of your mass spectrometer. SCIEX has the broadest portfolio of ESI-MS front-ends that can facilitate various flow rates, sample requirements and sensitivities. No one else offers the entire range of analytical flow, microflow, nanoflow LC-MS and even ultra-low flow CESI-MS.
ExionLC 2.0 series
Micro HPLC columns
M5 MicroLC system
View All
Ultra-low Flow CESI-MS
View all front-end HPLC MS
Differential mobility spectrometry (DMS) and ion mobility spectrometry are analytical techniques used to separate ions based on their gas phase mobility. Multiple types of ion mobility devices exist, such as drift tubes, traveling wave, and high-field asymmetric waveform devices. Learn how you can separate yourself with Differential Ion Mobility.
The latest ion sources from SCIEX enable enhanced sensitivity and robustness with greater desolvation range across all MS platforms, from Triple Quad to QTRAP and QTOF.
Turbo V ion source
OptiFlow Turbo V ion source
OptiFlow Interface
View all ion sources
vMethod applications are pre-configured and verified LC-MS/MS methods that reduce the need for method development – significantly cutting the time, effort and money to deploy a new assay. Every vMethod provides method conditions, recommended sample prep, LC and MS conditions, and details for applicable MS/MS library databases for key applications.
AA45/20 1.0
aTRAQ
Illicit drugs
Acrylamide
Allergens
Antiobiotics/veterinary drugs
Cannabinoids
Illegal dyes
Melamine
Mycotoxins
Pesticides
Industrial chemicals (bisphenol)
Industrial chemicals (ethanolamines)
Pesticides (herbicides)
Pesticides (Polar)
Pharmaceutical and personal care products (PPCPs)
Peptide and protein bioanalysis
Routine biologics characterization
Benzodiazepines
Blood screening
Drugs of abuse
Etg and ets
Nicotine
THC-COOH
Urine screening
Explore vMethod applications
Software downloads
Software activation
Software support policy
Software support plans
Software feature request portal
Software partners
SCIEX OS software
Biologics Explorer software
Cliquid software
DiscoveryQuant software
Molecule Profiler software
OneOmics suite
View all software
High resolution and QTRAP libraries can dramatically enhance the quality of your analysis, giving you much improved confidence in your data. With a comprehensive library at your fingertips, you can easily create methods and process targeted and non-targeted screening data on your complex samples, faster and easier than ever before.
All in one library
SCIEX all-in-one HR-MS/MS library with NIST 2017
Antiobiotic Llbrary
Flurochemical library
Forensic library
Mycotoxin library
Natural products
Pesticide library
Wiley Libraries
Antibiotic library
Meta library
Explore the library selector tool
Boost the performance of your mass spectrometer and improve sensitivity, productivity, and data precision. iChemistry Solutions are the world's only reagents and consumables that are custom designed with your success in mind.
RNA 9000 Purity & Integrity kit
aTRAQ kit for amino acid analysis of hydrolysates
aTRAQ kit for amino acid analysis of physiological fluids
Protein CE-SDS Purity Analysis kit
MS calibration kits
CZE rapid charge variant analysis kit
BioPhase Fast Glycan Labeling and Analysis kit
iTRAQ reagent
mTRAQ reagent
View all consumables
QTOF – Quadrupole Time of Flight
QTRAP® – Triple Quad Linear Ion Trap
SWATH® – Data Independent Acquisition
SelexION® – Differential Mobility Separation
MicroLC – Microflow Chromatography
Ultra Low-Flow CESI-MS Technology
iCIEF-MS Technology
Nominal Mass LC-MS-MS
Acoustic Ejection Mass Spectrometry
View All Technology
ADME and DMPK
Biomarker quantitation
Cell therapy
CRISPR/Cas9 analysis
Viral vector characterization
Biomarker discovery
High-throughput mass spectrometry
Metabolite identification
Targeted protein degraders and PROTACs
Extractables and leachables
Pharma impurities
Residual nucleic acid analysis
Lipid nanoparticles and non-viral carrier
Messenger RNA analysis
Plasmid and DNA analysis
Synthetic oligonucleotide analysis
ADC analysis
Cell line analysis
Charge heterogeneity analysis
Glycan analysis
Intact protein analysis
Multi-attribute methodology
Peptide mapping analysis
Subunit mass analysis and middle-down
View all Biopharma and pharma
Clinical research
Clinical diagnostics
Clinical Mass Spec Operators
Clinical Method Developers
Clinical Lab Managers
View All Clinical
PFAS
Pesticides & herbicides
PPCP
Disinfection by-products
Soil and biota
Ethanolamine
Synthetic polymers
Exposome
Suspect screening
Nanomaterials
View All Environmental Testing
How do you protect your reputation and meet today’s global food safety standards? Whether you are a commercial lab or a food manufacturer, the quality of your food testing data is vital to your business. SCIEX solutions help you meet maximum residue limits (MRLs) with high-quality data that you can genuinely count upon. With a portfolio of applications, your lab can quickly and easily react to diverse market needs.
Pesticide Testing
Mycotoxins Testing
Antibiotics Testing
Potency Testing
Mycotoxin Testing
Terpenes Profiling
Meat Speciation Testing
Food Fraud Analysis
Food Adulterant Testing
Food Dye Testing
Food Omics
Allergen Testing
Ingredient Authenticity & Profiling Analysis
Packaging & Food Contact Substance Analysis
View All Food and Beverage Testing
How do you ensure the integrity of your results in an industry that is never constant? By accurately detecting even the smallest compound angles you can deliver evidence that stands. SCIEX forensic analysis solutions deliver fast, highly accurate data across a multitude of compounds and biomarkers, from the known to the new and novel.
Forensic toxicology
Homeland security (coming soon!)
Cannabis and hemp potency testing
Doping control
View All Forensic Testing
Discovery Proteomics
Next-Generation Proteomics
Targeted Proteomics
Untargeted Lipidomics
Targeted Lipidomics
Untargeted Metabolomics
Targeted Metabolomics
Metabolic Flux Analysis
Gene Expression Analysis
DNA Sequencing
Genotyping and SNP Analysis
STR Analysis
AFLPs
View All Life Science Research
The SCIEX Now Learning Hub offers the most diverse and flexible learning options available, with best-inclass content that helps you to get the most out of your instrument and take your lab to the next level. Available personalized learning paths based on the latest memory science ensure better knowledge retention, and automated onboarding and enrollment means you’ll get up and running faster.
SCIEX Now Learning Hub offers the most diverse and flexible learning options available, with best-in-class content that helps you to get the most out of your instrument and take your lab to the next level. Available personalized learning paths based on the latest memory science ensure better knowledge retention, and automated onboarding and enrollment means you’ll get up and running faster.
SCIEX Learning Manager provides you with the infrastructure to assign, monitor and report on your staff's competency through a single digital platform. Effectively manage the training process for new hires, ensure continuous staff development and access information with a single log-in to your SCIEX account.
You can browse, filter, or search our extensive list of training offerings. Choose from over 100 self-paced eLearnings or search for an instructor-led course near you. Once you select the course you want to take, you will be directed to Learning Hub for enrollment (login required).
Login to SCIEX Now Learning Hub
Success Programs at Your Site
Online Course Catalog
Clinical Knowledge Center
Application Scientist Training at Your Site
China
Europe
German CE Courses
India
Japan
Korea
North America
UK
Visit all Training
Support cases
SCIEX Now Learning Hub
Instruments
Manage my instruments
Registered software
Activate software
Resource library
My notifications
Request support
Course catalog
SCIEX Store
SCIEX Now New Feature Request
Visit your SCIEX Now™ Dashboard
Declaration of conformance
Safety data sheets
Certificates of analysis
View All regulatory documents
Customer documents
Software and IT services
Compliance services
Lab optimization
Customized training
Relocation services
LC-MS service plans
Protect Plus Suite for your new LC-MS
CE service plans
Clinical service plans
StatusScope remote monitoring
Software accelerator program
Premium access content
Academic partnership program
Academic partners
View all partnership programs
Join the SCIEX community today to interact with your peers, share and exchange ideas, develop your knowledge, stay up-to-date with the latest products, post insights and questions, comment on others and receive support. This community is designed to help you, our customers, move science forward and get the answers you need. We’re committed to engaging with and listening to you, to create the best customer experience possible and to contribute to the success of your work.
Biopharma
Clinical
Environmental / Industrial
Food and Beverage
Forensics
Life Science Research
Pharma
Technology
Knowledge Base Articles
Course Catalog
Software Downloads
Request Support
SCIEX Now Feature Requests
Software Feature Requests
Newsletter Archive
Featured Content
FAQs
View All Community
About SCIEX
About Danaher
Customer Profiles
Echo® MS Center Of Excellence
Our History
Our favorite papers
Meet our executives
Career opportunities
Contact us
Press releases
In the news
Awards
Sustainability
You've got questions. We've got experts who can help. Contact us to find out more, talk to a specialist, explore our solutions or get expert support.
Talk to a specialist
Request more information
Request a quote
SCIEX success network
Frequently asked questions
SCIEX community
Request hosted catalog
Request punchout
Global public relations
508-782-9484
Country/Region Canada Mexico United States
Country/Region Argentina Brazil Chile Colombia Costa Rica Ecuador El Salvador Guatemala Peru Uruguay Venezuela
Country/Region Germany Albania Austria Belgium Bosnia and Herzegovina Bulgaria Croatia Cyprus Czech Republic Denmark Estonia Finland France Germany Greece Hungary Ireland Italy Latvia Lithuania Luxembourg Macedonia Montenegro Netherlands Norway Poland Portugal Romania Serbia Slovakia Slovenia Spain Sweden Switzerland United Kingdom
Country/Region Bangladesh Brunei Darussalam Cambodia 中国 Hong Kong India Indonesia 日本 한국 Singapore Sri Lanka Taiwan Thailand Viet Nam
Country/Region Bahrain Iran Iraq Israel Jordan Kuwait Lebanon Oman Pakistan Palestine Qatar Saudi Arabia Syria Turkey United Arab Emirates Yemen
Country/Region Algeria Angola Botswana Burundi Egypt Ethiopia Kenya Liberia Libya Morocco Rwanda South Africa Tunisia Uganda United Republic of Tanzania Zambia Zimbabwe
Country/Region Armenia Azerbaijan Belarus Georgia Kazakhstan Kyrgyzstan Moldova Russia Tajikistan Turkmenistan Ukraine Uzbekistan
Country/Region Australia Micronesia New Zealand
AB Sciex is doing business as SCIEX. © 2010-2018 AB Sciex. The trademarks mentioned herein are the property of the AB Sciex Pte. Ltd. or their respective owners. AB SCIEX™ is being used under license. Beckman Coulter® is being used under license. Product(s) may not be available in all countries. For information on availability, please contact your local representative. For research use only. Not for use in diagnostic procedures.
Download tech note (PDF)
Using the ExionLC 2.0 system
Simon Roberts,1 Adrian M. Taylor2 1SCIEX, USA; 2SCIEX, Canada
Because of the pervasive nature of PFAS and the suggested PFAS detection limits continuingly being decreased in environmental sample analysis, there is an increasing need to have LC-MS strategies that can effectively manage PFAS background. Here, a workflow was established on the ExionLC 2.0 system with the optional wash system using delay columns to separate background PFAS contamination from sample analysis. An assay for 52 PFAS analytes was used to characterize the performance attributes of the LC system, including carryover. Analysis was performed using the SCIEX Triple Quad 7500 system to obtain very high sensitivity.
Per-- and polyfluoroalkyl substances (PFAS) are human made chemicals, developed to have resistance to grease, oil, water and heat. With these properties, PFAS are used in a wide range of consumer and industrial products, including stain and water-resistant fabrics and carpeting, cleaning products, paints, and firefighting foams. Limited use of certain PFAS has FDA approval to be used in cookware, food packaging and food processing equipment.
The strength of the C-F bond in PFAS makes natural degradation extremely difficult. The widespread use of PFAS and their ability to remain intact has caused increasing levels of environmental contamination over time from both past and current uses. This alarming accumulation rate has led to increased study of the potential environmental and health effects of PFAS. The resistance to degradation, however, also makes them a challenge to analyze because they are prevalent contaminants in analytical instrumentation. With guidance for PFAS concentrations continuingly decreasing the limits, there is an increasing need to manage the background levels in the analytical instrumentation used. This would allow an accurate measurement of PFAS amounts in environmental samples.
Here, the ExionLC 2.0 system with the optional wash system was investigated for its flexibility in minimizing background contamination of PFAS for LC-MS/MS analysis when analyzing PFAS containing samples. A SCIEX Triple Quad 7500 system coupled with an ExionLC 2.0 system was chosen as the highly sensitive test platform to investigate meeting a <0.05% carryover performance requirement after 1 ppb standard and a blank contamination <2.5 ppt for 52 PFAS compounds.
Figure 1. Carryover analysis. Blank extracted ion chromatogram for PFECHS showing extremely low contamination in blank samples (pink trace) analyzed immediately following the injection of the highest calibration standard of 10,000 ppt, overlaid with the LLOQ standard 2.5 ppt (blue trace).
Materials: All experiments were performed utilizing the U.S. EPA Method 537 and 533 analyte primary dilution standard solution/mixtures (Wellington Laboratories Cat.#). Verex glass and polypropylene autosampler vials with Verex polytetrafluoroethylene/silicon caps were purchased from Phenomenex.
Sample preparation: Standards were prepared to cover the calibration range 2.5-10,000 ppt.
Chromatography: LC separation was achieved using the SCIEX ExionLC 2.0 system and a Phenomenex Gemini C18 column (3 µm, 3.0 x 50 mm, P/N 00B-4439-Y0). A Phenomenex Gemini C18 5 µm, 4.6 x 30 mm column (P/N 00A-4435-E0) was installed after the 50 μL mixer and utilized as a delay column to separate the binary pump solvent PFAS contamination peak from the analytical peak.1 A 9.5 minute gradient of water and methanol with 10mM ammonium acetate buffer was used, with a flow rate of 0.6 mL/min and column temperature of 40 ̊C.
The SCIEX ExionLC 2.0 system autosampler was used with a configuration consisting of a 250 µL syringe, 250 µL buffer tubing, 100 µL sample loop and 15 µL needle tubing. To optimize sample consumption and minimize the injection cycle time, the injection mode used was the microliter pick-up plus mode and the injection volume was set to 10.0 μL utilizing two 35.0 μL transport segments (water containing 10mM ammonium acetate). The syringe speed was set to low and speed factor to 0.8. All polymer tubing was replaced with PEEK, including between solvent bottles and solvent selector valve (with 1/8” outside diameter, or O.D. and an 0.08” internal diameter, or I.D.), solvent selector valve to degasser (1/8” O.D. x 0.08” I.D.), degasser to pump heads (1/8” O.D. x 0.08” I.D) and buffer tubing in the autosampler (1/16” O.D. x 0.03” I.D.).
Autosampler wash system: The wash system was used to deliver various volumes of multiple solvents of differing compositions at varying flow rates to provide the flexibility and capability to manage carryover. The wash program solvents, flow rates and volumes used are shown in Figure 2. All polymer tubing was replaced with PEEK (1/16 in x 0.03 in). A Phenomenex Gemini C18 5 µm, 4.6 x 30 mm column (P/N 00A-4435-E0) was used as a delay column to separate the autosampler wash and transport solvent PFAS contamination peaks from the analytical peak.
Figure 2. Flexible configuration of autosampler wash station. Up to eight different solvents can be used to generate the most efficient wash program. Here, three different solvents were used in the various steps: acetonitrile/isopropanol (1:1, v/v) with 0.1% acetic acid, methanol with 10mM ammonium acetate wash, and water with 10mM ammonium acetate.
Mass Spectrometry: Mass spectrometry was performed using the SCIEX 7500 system, using electrospray ionization (ESI) in negative mode. One MRM transition was monitored for each analyte. The Scheduled MRM algorithm was used to monitor compounds only during their expected retention time window to maximize both cycle time and dwell time. All the peaks in the method contained >12 points across the peak.
Data acquisition was performed using SCIEX OS Software 2.1.6 with Components for the ExionLC 2.0 system.
Data processing: Processing of MS data was performed using SCIEX OS Software 2.1.6 in which calibration curves, precision and accuracy statistics were generated and assessed.
The wash system on the ExionLC 2.0 system has the flexibility to wash inside the autosampler tubing as well as the capability to perform an aggressive wash of the outside of the sample needle, using up to 8 different solvents at different flow rates (Figure 3).
Figure 3. Two step sequential wash sequence of the wash system. Step 1 describes the washing inside the sample needle. Step 2 describes the washing of the outside of the sample needle. Up to 8 solvents can be selected and used with different flow rates in the wash program for maximum flexibility and efficiency.
There is also the option to perform an autosampler valve rinse, using up to 3 autosampler injector valve toggles, and wash with gradient pump solvents prior to performing the wash program with wash system solvents. The wash procedure can be programed to start at any time after the injection, so the valve wash can be performed during the high organic portion of the gradient. A valve rinse is not performed during the wash program so there is no danger of introducing differing solvent compositions to the gradient and affecting chromatographic separation. To optimize sample consumption as well as minimize the injection cycle time, the injection mode used was the microliter pickup plus mode. A transport solvent segment is used in this injection mode to sandwich the sample and ensure delivery of all the sample onto the column. The use of the wash system, which is required for PFAS analysis on the ExionLC 2.0 system allows inclusion of an additional delay column prior to the autosampler valve to separate any PFAS contamination present in the autosampler solvents from the PFAS analytes in the samples and standards.
Blank samples showed very low responses and were below the requirement of <1/3 of the maximum residue limit (MRL). Figure 4 shows carryover peaks for select PFAS compounds in a blank (pink trace) analyzed immediately following the injection of the highest calibration standard of 10,000 ppt, overlaid with the LLOQ standard 2.5 ppt (blue trace). The integrated areas of the first blank after the highest concentration sample (10,000 ppt) were less than 32% of the lowest calibrator for all compounds. For example, the area of the first blank analyzed after the 10,000 ppt calibration standard was 19% of the area of the 2.5 ppt standard for PFECHS. The area of all the carryover peaks was lower than 0.01% of the highest standard peak area (10,000 ppt).
Figure 4. Blank samples. Blank extracted ion chromatograms for select PFAS compounds showing extremely low contamination in blank samples (pink trace). These were analyzed immediately following the injection of the highest calibration standard of 10,000 ppt, and are overlaid with the LLOQ standard 2.5 ppt (blue trace). Requirements specify the blank must be less than 1/3 the level of the MRL.
The wash system programing allows selection of the volume of wash solvent to use as well as the flow rate. This, in combination with the ability to use a delay column to clean the autosampler solvents, allowed the management of carryover for the ExionLC 2.0 system to meet the <0.05% carryover performance requirement. This was shown after a 10, 000 ppt standard was run, by a blank contamination of <2.5 ppt for 52 PFAS compounds. Example carryover performance for selected PFAS compounds is shown in Table 1.
Table 1. Carryover analysis.
The chromatographic separation of 52 PFAS compounds is shown in Figure 5. Very good separation was achieved, with narrow peak widths and very good peak symmetry, which is important when performing quantification.
Figure 5. Chromatographic separation. Extracted ion chromatogram showing the PFAS elution profile of the 25 ppt standard.
Peak symmetry was measured using the asymmetry factor—the distance from the center line of the peak to the back slope, divided by the distance from the center of the peak to the front slope, at 10% of the maximum peak—which is typically around 1.0 and is expected to be >0.8 and <1.5. Figure 6 shows the extracted ion chromatogram of selected compounds at 2.5 ppt. For the compounds shown in this figure, the average asymmetry factor was 1.01. Across the concentration range 2.5 to 1000 ppt, the average asymmetry factor was 1.21 for PFBS, 1.03 for PFECA A, 1.17 for HFPO DA, 1.05 for PFHxS, 0.94 for DONA, 1.02 for PFECHS and 1.14 for PFOS. The separation and asymmetry factor for two early eluting peaks are shown on Figure 7.
Figure 6. Signal at LLOQ. Extracted ion chromatogram of select PFAS from the 2.5 ppt standard. Very good peak symmetry was observed.
Figure 7. Asymmetry factor (AF). The AF is calculated for early eluting peaks, PFBS and PFHxA at a mid-point standard concentration of 100 ppt.
The 7-point calibration curve exhibited good accuracy within +/- 10% of the expected values for all points (Table 2) and R2 coefficients of >0.990, as shown in Figure 8.
Table 2. Calibration curve statistics. % Accuracy of calibration curve standards across the concentration range interrogated.
Figure 8. Calibration curves for selected PFAS compounds. Concentration lines were generated from the PFAS mixtures over a concentration range from 2.5 ppt to 1000 ppt. Excellent linearity was observed with r2 values better than 0.99.
The area reproducibility was also computed from 7 replicate injections of 2.5 ppt, then 7 replicate injections of 25 ppt standard. Typical variance results are shown using selected compounds in Table 3.
Table 3. QC peak area precision. The % coefficient of variation (n=7) for two concentration samples are shown.
Further excellent area reproducibility is demonstrated in the metric plot of internal standard area reproducibility over 30 injections (Figure 9). The mean internal standard area was calculated, and all collected data points fell within ±10% mean regression deviation (dashed lines). Area %CV for 13C4-PFBA, 18O2-PFHxS, 13C8-PFOS and 13C2-PFHxDA were 3.7, 3.2, 2.7 and 4.0% respectively.
Figure 9. Reproducibility of data. Metric plot of internal standard area reproducibility over 30 injections. Mean regression with ±10% mean regression deviation (dashed lines).
Retention time stability is critical when using narrow retention time windows in combination with time-scheduled MRM acquisition, to ensure the peaks remain within the detection windows. Stability of the LC system over time is critical to ensure consistent retention times are delivered across large sample batches. This reduces the time spent re-adjusting methods to accommodate retention time drifts and minimizes any lost data due to peaks shifting out of target windows.
As shown in Figure 10, the retention time precision of each of the analytes across a range of retention times is less than 0.1% CV, with a mean of 0.05 % CV for the 52 compounds. For most compounds tested, the maximum retention time difference over 20 injections was <1 second.
Figure 10. Retention time precision. Box and whisker plot showing the spread of the retention time %CV from 20 injections
Robust and reproducible results and linearity, with quantitative accuracy and precision for calculated PFAS concentrations, were achieved in a single ten-minute LC-MS/MS acquisition on the SCIEX Triple Quad™ 7500 system. This was enabled by a high-quality separation on the ExionLC 2.0 system, as demonstrated by the retention time precision and peak shape quality.
An important aspect of the accurate measurement of PFAS amounts in environmental samples is the management of the background PFAS levels from the analytical instrumentation.
This was easily implemented on the SCIEX ExionLC 2.0 system by using the optional wash system and additional delay columns, which minimize carryover, reducing false positive rates and the need for repeat extractions and re-injections.
The replacement of FEP tubing and installation of delay columns, in combination with the use of the wash system, minimized background contamination to allow sensitive MDLs for the entire suite of 52 PFAS compounds studied in this work.